xref: /csrg-svn/sys/sparc/fpu/fpu_implode.c (revision 55113)
1 /*
2  * Copyright (c) 1992 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * This software was developed by the Computer Systems Engineering group
6  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7  * contributed to Berkeley.
8  *
9  * %sccs.include.redist.c%
10  *
11  *	@(#)fpu_implode.c	7.1 (Berkeley) 07/13/92
12  *
13  * from: $Header: fpu_implode.c,v 1.4 92/06/17 05:41:33 torek Exp $
14  */
15 
16 /*
17  * FPU subroutines: `implode' internal format numbers into the machine's
18  * `packed binary' format.
19  */
20 
21 #include "sys/types.h"
22 
23 #include "machine/ieee.h"
24 #include "machine/instr.h"
25 #include "machine/reg.h"
26 
27 #include "fpu_arith.h"
28 #include "fpu_emu.h"
29 
30 /*
31  * Round a number (algorithm from Motorola MC68882 manual, modified for
32  * our internal format).  Set inexact exception if rounding is required.
33  * Return true iff we rounded up.
34  *
35  * After rounding, we discard the guard and round bits by shifting right
36  * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
37  * This saves effort later.
38  *
39  * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
40  * responsibility to fix this if necessary.
41  */
42 static int
43 round(register struct fpemu *fe, register struct fpn *fp)
44 {
45 	register u_int m0, m1, m2, m3;
46 	register int gr, s, ret;
47 
48 	m0 = fp->fp_mant[0];
49 	m1 = fp->fp_mant[1];
50 	m2 = fp->fp_mant[2];
51 	m3 = fp->fp_mant[3];
52 	gr = m3 & 3;
53 	s = fp->fp_sticky;
54 
55 	/* mant >>= FP_NG */
56 	m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
57 	m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
58 	m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
59 	m0 >>= FP_NG;
60 
61 	if ((gr | s) == 0)	/* result is exact: no rounding needed */
62 		goto rounddown;
63 
64 	fe->fe_cx |= FSR_NX;	/* inexact */
65 
66 	/* Go to rounddown to round down; break to round up. */
67 	switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
68 
69 	case FSR_RD_RN:
70 	default:
71 		/*
72 		 * Round only if guard is set (gr & 2).  If guard is set,
73 		 * but round & sticky both clear, then we want to round
74 		 * but have a tie, so round to even, i.e., add 1 iff odd.
75 		 */
76 		if ((gr & 2) == 0)
77 			goto rounddown;
78 		if ((gr & 1) || fp->fp_sticky || (m3 & 1))
79 			break;
80 		goto rounddown;
81 
82 	case FSR_RD_RZ:
83 		/* Round towards zero, i.e., down. */
84 		goto rounddown;
85 
86 	case FSR_RD_RM:
87 		/* Round towards -Inf: up if negative, down if positive. */
88 		if (fp->fp_sign)
89 			break;
90 		goto rounddown;
91 
92 	case FSR_RD_RP:
93 		/* Round towards +Inf: up if positive, down otherwise. */
94 		if (!fp->fp_sign)
95 			break;
96 		goto rounddown;
97 	}
98 
99 	/* Bump low bit of mantissa, with carry. */
100 #ifdef sparc /* ``cheating'' (left out FPU_DECL_CARRY; know this is faster) */
101 	FPU_ADDS(m3, m3, 1);
102 	FPU_ADDCS(m2, m2, 0);
103 	FPU_ADDCS(m1, m1, 0);
104 	FPU_ADDC(m0, m0, 0);
105 #else
106 	if (++m3 == 0 && ++m2 == 0 && ++m1 == 0)
107 		m0++;
108 #endif
109 	fp->fp_mant[0] = m0;
110 	fp->fp_mant[1] = m1;
111 	fp->fp_mant[2] = m2;
112 	fp->fp_mant[3] = m3;
113 	return (1);
114 
115 rounddown:
116 	fp->fp_mant[0] = m0;
117 	fp->fp_mant[1] = m1;
118 	fp->fp_mant[2] = m2;
119 	fp->fp_mant[3] = m3;
120 	return (0);
121 }
122 
123 /*
124  * For overflow: return true if overflow is to go to +/-Inf, according
125  * to the sign of the overflowing result.  If false, overflow is to go
126  * to the largest magnitude value instead.
127  */
128 static int
129 toinf(struct fpemu *fe, int sign)
130 {
131 	int inf;
132 
133 	/* look at rounding direction */
134 	switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
135 
136 	default:
137 	case FSR_RD_RN:		/* the nearest value is always Inf */
138 		inf = 1;
139 		break;
140 
141 	case FSR_RD_RZ:		/* toward 0 => never towards Inf */
142 		inf = 0;
143 		break;
144 
145 	case FSR_RD_RP:		/* toward +Inf iff positive */
146 		inf = sign == 0;
147 		break;
148 
149 	case FSR_RD_RM:		/* toward -Inf iff negative */
150 		inf = sign;
151 		break;
152 	}
153 	return (inf);
154 }
155 
156 /*
157  * fpn -> int (int value returned as return value).
158  *
159  * N.B.: this conversion always rounds towards zero (this is a peculiarity
160  * of the SPARC instruction set).
161  */
162 u_int
163 fpu_ftoi(fe, fp)
164 	struct fpemu *fe;
165 	register struct fpn *fp;
166 {
167 	register u_int i;
168 	register int sign, exp;
169 
170 	sign = fp->fp_sign;
171 	switch (fp->fp_class) {
172 
173 	case FPC_ZERO:
174 		return (0);
175 
176 	case FPC_NUM:
177 		/*
178 		 * If exp >= 2^32, overflow.  Otherwise shift value right
179 		 * into last mantissa word (this will not exceed 0xffffffff),
180 		 * shifting any guard and round bits out into the sticky
181 		 * bit.  Then ``round'' towards zero, i.e., just set an
182 		 * inexact exception if sticky is set (see round()).
183 		 * If the result is > 0x80000000, or is positive and equals
184 		 * 0x80000000, overflow; otherwise the last fraction word
185 		 * is the result.
186 		 */
187 		if ((exp = fp->fp_exp) >= 32)
188 			break;
189 		/* NB: the following includes exp < 0 cases */
190 		if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
191 			fe->fe_cx |= FSR_NX;
192 		i = fp->fp_mant[3];
193 		if (i >= ((u_int)0x80000000 + sign))
194 			break;
195 		return (sign ? -i : i);
196 
197 	default:		/* Inf, qNaN, sNaN */
198 		break;
199 	}
200 	/* overflow: replace any inexact exception with invalid */
201 	fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV;
202 	return (0x7fffffff + sign);
203 }
204 
205 /*
206  * fpn -> single (32 bit single returned as return value).
207  * We assume <= 29 bits in a single-precision fraction (1.f part).
208  */
209 u_int
210 fpu_ftos(fe, fp)
211 	struct fpemu *fe;
212 	register struct fpn *fp;
213 {
214 	register u_int sign = fp->fp_sign << 31;
215 	register int exp;
216 
217 #define	SNG_EXP(e)	((e) << SNG_FRACBITS)	/* makes e an exponent */
218 #define	SNG_MASK	(SNG_EXP(1) - 1)	/* mask for fraction */
219 
220 	/* Take care of non-numbers first. */
221 	if (ISNAN(fp)) {
222 		/*
223 		 * Preserve upper bits of NaN, per SPARC V8 appendix N.
224 		 * Note that fp->fp_mant[0] has the quiet bit set,
225 		 * even if it is classified as a signalling NaN.
226 		 */
227 		(void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
228 		exp = SNG_EXP_INFNAN;
229 		goto done;
230 	}
231 	if (ISINF(fp))
232 		return (sign | SNG_EXP(SNG_EXP_INFNAN));
233 	if (ISZERO(fp))
234 		return (sign);
235 
236 	/*
237 	 * Normals (including subnormals).  Drop all the fraction bits
238 	 * (including the explicit ``implied'' 1 bit) down into the
239 	 * single-precision range.  If the number is subnormal, move
240 	 * the ``implied'' 1 into the explicit range as well, and shift
241 	 * right to introduce leading zeroes.  Rounding then acts
242 	 * differently for normals and subnormals: the largest subnormal
243 	 * may round to the smallest normal (1.0 x 2^minexp), or may
244 	 * remain subnormal.  In the latter case, signal an underflow
245 	 * if the result was inexact or if underflow traps are enabled.
246 	 *
247 	 * Rounding a normal, on the other hand, always produces another
248 	 * normal (although either way the result might be too big for
249 	 * single precision, and cause an overflow).  If rounding a
250 	 * normal produces 2.0 in the fraction, we need not adjust that
251 	 * fraction at all, since both 1.0 and 2.0 are zero under the
252 	 * fraction mask.
253 	 *
254 	 * Note that the guard and round bits vanish from the number after
255 	 * rounding.
256 	 */
257 	if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) {	/* subnormal */
258 		/* -NG for g,r; -SNG_FRACBITS-exp for fraction */
259 		(void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
260 		if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
261 			return (sign | SNG_EXP(1) | 0);
262 		if ((fe->fe_cx & FSR_NX) ||
263 		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
264 			fe->fe_cx |= FSR_UF;
265 		return (sign | SNG_EXP(0) | fp->fp_mant[3]);
266 	}
267 	/* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
268 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
269 #ifdef DIAGNOSTIC
270 	if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
271 		panic("fpu_ftos");
272 #endif
273 	if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
274 		exp++;
275 	if (exp >= SNG_EXP_INFNAN) {
276 		/* overflow to inf or to max single */
277 		fe->fe_cx |= FSR_OF | FSR_NX;
278 		if (toinf(fe, sign))
279 			return (sign | SNG_EXP(SNG_EXP_INFNAN));
280 		return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
281 	}
282 done:
283 	/* phew, made it */
284 	return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
285 }
286 
287 /*
288  * fpn -> double (32 bit high-order result returned; 32-bit low order result
289  * left in res[1]).  Assumes <= 61 bits in double precision fraction.
290  *
291  * This code mimics fpu_ftos; see it for comments.
292  */
293 u_int
294 fpu_ftod(fe, fp, res)
295 	struct fpemu *fe;
296 	register struct fpn *fp;
297 	u_int *res;
298 {
299 	register u_int sign = fp->fp_sign << 31;
300 	register int exp;
301 
302 #define	DBL_EXP(e)	((e) << (DBL_FRACBITS & 31))
303 #define	DBL_MASK	(DBL_EXP(1) - 1)
304 
305 	if (ISNAN(fp)) {
306 		(void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
307 		exp = DBL_EXP_INFNAN;
308 		goto done;
309 	}
310 	if (ISINF(fp)) {
311 		sign |= DBL_EXP(DBL_EXP_INFNAN);
312 		goto zero;
313 	}
314 	if (ISZERO(fp)) {
315 zero:		res[1] = 0;
316 		return (sign);
317 	}
318 
319 	if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
320 		(void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
321 		if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
322 			res[1] = 0;
323 			return (sign | DBL_EXP(1) | 0);
324 		}
325 		if ((fe->fe_cx & FSR_NX) ||
326 		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
327 			fe->fe_cx |= FSR_UF;
328 		exp = 0;
329 		goto done;
330 	}
331 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
332 	if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
333 		exp++;
334 	if (exp >= DBL_EXP_INFNAN) {
335 		fe->fe_cx |= FSR_OF | FSR_NX;
336 		if (toinf(fe, sign)) {
337 			res[1] = 0;
338 			return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
339 		}
340 		res[1] = ~0;
341 		return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
342 	}
343 done:
344 	res[1] = fp->fp_mant[3];
345 	return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
346 }
347 
348 /*
349  * fpn -> extended (32 bit high-order result returned; low-order fraction
350  * words left in res[1]..res[3]).  Like ftod, which is like ftos ... but
351  * our internal format *is* extended precision, plus 2 bits for guard/round,
352  * so we can avoid a small bit of work.
353  */
354 u_int
355 fpu_ftox(fe, fp, res)
356 	struct fpemu *fe;
357 	register struct fpn *fp;
358 	u_int *res;
359 {
360 	register u_int sign = fp->fp_sign << 31;
361 	register int exp;
362 
363 #define	EXT_EXP(e)	((e) << (EXT_FRACBITS & 31))
364 #define	EXT_MASK	(EXT_EXP(1) - 1)
365 
366 	if (ISNAN(fp)) {
367 		(void) fpu_shr(fp, 2);	/* since we are not rounding */
368 		exp = EXT_EXP_INFNAN;
369 		goto done;
370 	}
371 	if (ISINF(fp)) {
372 		sign |= EXT_EXP(EXT_EXP_INFNAN);
373 		goto zero;
374 	}
375 	if (ISZERO(fp)) {
376 zero:		res[1] = res[2] = res[3] = 0;
377 		return (sign);
378 	}
379 
380 	if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) {
381 		(void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
382 		if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(1)) {
383 			res[1] = res[2] = res[3] = 0;
384 			return (sign | EXT_EXP(1) | 0);
385 		}
386 		if ((fe->fe_cx & FSR_NX) ||
387 		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
388 			fe->fe_cx |= FSR_UF;
389 		exp = 0;
390 		goto done;
391 	}
392 	/* Since internal == extended, no need to shift here. */
393 	if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(2))
394 		exp++;
395 	if (exp >= EXT_EXP_INFNAN) {
396 		fe->fe_cx |= FSR_OF | FSR_NX;
397 		if (toinf(fe, sign)) {
398 			res[1] = res[2] = res[3] = 0;
399 			return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
400 		}
401 		res[1] = res[2] = res[3] = ~0;
402 		return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
403 	}
404 done:
405 	res[1] = fp->fp_mant[1];
406 	res[2] = fp->fp_mant[2];
407 	res[3] = fp->fp_mant[3];
408 	return (sign | EXT_EXP(exp) | (fp->fp_mant[0] & EXT_MASK));
409 }
410 
411 /*
412  * Implode an fpn, writing the result into the given space.
413  */
414 void
415 fpu_implode(fe, fp, type, space)
416 	struct fpemu *fe;
417 	register struct fpn *fp;
418 	int type;
419 	register u_int *space;
420 {
421 
422 	switch (type) {
423 
424 	case FTYPE_INT:
425 		space[0] = fpu_ftoi(fe, fp);
426 		break;
427 
428 	case FTYPE_SNG:
429 		space[0] = fpu_ftos(fe, fp);
430 		break;
431 
432 	case FTYPE_DBL:
433 		space[0] = fpu_ftod(fe, fp, space);
434 		break;
435 
436 	case FTYPE_EXT:
437 		/* funky rounding precision options ?? */
438 		space[0] = fpu_ftox(fe, fp, space);
439 		break;
440 
441 	default:
442 		panic("fpu_implode");
443 	}
444 }
445