xref: /csrg-svn/sys/sparc/fpu/fpu_explode.c (revision 55113)
1*55113Storek /*
2*55113Storek  * Copyright (c) 1992 The Regents of the University of California.
3*55113Storek  * All rights reserved.
4*55113Storek  *
5*55113Storek  * This software was developed by the Computer Systems Engineering group
6*55113Storek  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7*55113Storek  * contributed to Berkeley.
8*55113Storek  *
9*55113Storek  * %sccs.include.redist.c%
10*55113Storek  *
11*55113Storek  *	@(#)fpu_explode.c	7.1 (Berkeley) 07/13/92
12*55113Storek  *
13*55113Storek  * from: $Header: fpu_explode.c,v 1.2 92/06/17 05:41:32 torek Exp $
14*55113Storek  */
15*55113Storek 
16*55113Storek /*
17*55113Storek  * FPU subroutines: `explode' the machine's `packed binary' format numbers
18*55113Storek  * into our internal format.
19*55113Storek  */
20*55113Storek 
21*55113Storek #include "sys/types.h"
22*55113Storek 
23*55113Storek #include "machine/ieee.h"
24*55113Storek #include "machine/instr.h"
25*55113Storek #include "machine/reg.h"
26*55113Storek 
27*55113Storek #include "fpu_arith.h"
28*55113Storek #include "fpu_emu.h"
29*55113Storek 
30*55113Storek /*
31*55113Storek  * N.B.: in all of the following, we assume the FP format is
32*55113Storek  *
33*55113Storek  *	---------------------------
34*55113Storek  *	| s | exponent | fraction |
35*55113Storek  *	---------------------------
36*55113Storek  *
37*55113Storek  * (which represents -1**s * 1.fraction * 2**exponent), so that the
38*55113Storek  * sign bit is way at the top (bit 31), the exponent is next, and
39*55113Storek  * then the remaining bits mark the fraction.  A zero exponent means
40*55113Storek  * zero or denormalized (0.fraction rather than 1.fraction), and the
41*55113Storek  * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
42*55113Storek  *
43*55113Storek  * Since the sign bit is always the topmost bit---this holds even for
44*55113Storek  * integers---we set that outside all the *tof functions.  Each function
45*55113Storek  * returns the class code for the new number (but note that we use
46*55113Storek  * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
47*55113Storek  */
48*55113Storek 
49*55113Storek /*
50*55113Storek  * int -> fpn.
51*55113Storek  */
52*55113Storek int
53*55113Storek fpu_itof(fp, i)
54*55113Storek 	register struct fpn *fp;
55*55113Storek 	register u_int i;
56*55113Storek {
57*55113Storek 
58*55113Storek 	if (i == 0)
59*55113Storek 		return (FPC_ZERO);
60*55113Storek 	/*
61*55113Storek 	 * The value FP_1 represents 2^FP_LG, so set the exponent
62*55113Storek 	 * there and let normalization fix it up.  Convert negative
63*55113Storek 	 * numbers to sign-and-magnitude.  Note that this relies on
64*55113Storek 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
65*55113Storek 	 */
66*55113Storek 	fp->fp_exp = FP_LG;
67*55113Storek 	fp->fp_mant[0] = (int)i < 0 ? -i : i;
68*55113Storek 	fp->fp_mant[1] = 0;
69*55113Storek 	fp->fp_mant[2] = 0;
70*55113Storek 	fp->fp_mant[3] = 0;
71*55113Storek 	fpu_norm(fp);
72*55113Storek 	return (FPC_NUM);
73*55113Storek }
74*55113Storek 
75*55113Storek #define	mask(nbits) ((1 << (nbits)) - 1)
76*55113Storek 
77*55113Storek /*
78*55113Storek  * All external floating formats convert to internal in the same manner,
79*55113Storek  * as defined here.  Note that only normals get an implied 1.0 inserted.
80*55113Storek  */
81*55113Storek #define	FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
82*55113Storek 	if (exp == 0) { \
83*55113Storek 		if (allfrac == 0) \
84*55113Storek 			return (FPC_ZERO); \
85*55113Storek 		fp->fp_exp = 1 - expbias; \
86*55113Storek 		fp->fp_mant[0] = f0; \
87*55113Storek 		fp->fp_mant[1] = f1; \
88*55113Storek 		fp->fp_mant[2] = f2; \
89*55113Storek 		fp->fp_mant[3] = f3; \
90*55113Storek 		fpu_norm(fp); \
91*55113Storek 		return (FPC_NUM); \
92*55113Storek 	} \
93*55113Storek 	if (exp == (2 * expbias + 1)) { \
94*55113Storek 		if (allfrac == 0) \
95*55113Storek 			return (FPC_INF); \
96*55113Storek 		fp->fp_mant[0] = f0; \
97*55113Storek 		fp->fp_mant[1] = f1; \
98*55113Storek 		fp->fp_mant[2] = f2; \
99*55113Storek 		fp->fp_mant[3] = f3; \
100*55113Storek 		return (FPC_QNAN); \
101*55113Storek 	} \
102*55113Storek 	fp->fp_exp = exp - expbias; \
103*55113Storek 	fp->fp_mant[0] = FP_1 | f0; \
104*55113Storek 	fp->fp_mant[1] = f1; \
105*55113Storek 	fp->fp_mant[2] = f2; \
106*55113Storek 	fp->fp_mant[3] = f3; \
107*55113Storek 	return (FPC_NUM)
108*55113Storek 
109*55113Storek /*
110*55113Storek  * 32-bit single precision -> fpn.
111*55113Storek  * We assume a single occupies at most (64-FP_LG) bits in the internal
112*55113Storek  * format: i.e., needs at most fp_mant[0] and fp_mant[1].
113*55113Storek  */
114*55113Storek int
115*55113Storek fpu_stof(fp, i)
116*55113Storek 	register struct fpn *fp;
117*55113Storek 	register u_int i;
118*55113Storek {
119*55113Storek 	register int exp;
120*55113Storek 	register u_int frac, f0, f1;
121*55113Storek #define SNG_SHIFT (SNG_FRACBITS - FP_LG)
122*55113Storek 
123*55113Storek 	exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
124*55113Storek 	frac = i & mask(SNG_FRACBITS);
125*55113Storek 	f0 = frac >> SNG_SHIFT;
126*55113Storek 	f1 = frac << (32 - SNG_SHIFT);
127*55113Storek 	FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
128*55113Storek }
129*55113Storek 
130*55113Storek /*
131*55113Storek  * 64-bit double -> fpn.
132*55113Storek  * We assume this uses at most (96-FP_LG) bits.
133*55113Storek  */
134*55113Storek int
135*55113Storek fpu_dtof(fp, i, j)
136*55113Storek 	register struct fpn *fp;
137*55113Storek 	register u_int i, j;
138*55113Storek {
139*55113Storek 	register int exp;
140*55113Storek 	register u_int frac, f0, f1, f2;
141*55113Storek #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
142*55113Storek 
143*55113Storek 	exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
144*55113Storek 	frac = i & mask(DBL_FRACBITS - 32);
145*55113Storek 	f0 = frac >> DBL_SHIFT;
146*55113Storek 	f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
147*55113Storek 	f2 = j << (32 - DBL_SHIFT);
148*55113Storek 	frac |= j;
149*55113Storek 	FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
150*55113Storek }
151*55113Storek 
152*55113Storek /*
153*55113Storek  * 128-bit extended -> fpn.
154*55113Storek  */
155*55113Storek int
156*55113Storek fpu_xtof(fp, i, j, k, l)
157*55113Storek 	register struct fpn *fp;
158*55113Storek 	register u_int i, j, k, l;
159*55113Storek {
160*55113Storek 	register int exp;
161*55113Storek 	register u_int frac, f0, f1, f2, f3;
162*55113Storek #define EXT_SHIFT (-(EXT_FRACBITS - 3 * 32 - FP_LG))	/* left shift! */
163*55113Storek 
164*55113Storek 	/*
165*55113Storek 	 * Note that ext and fpn `line up', hence no shifting needed.
166*55113Storek 	 */
167*55113Storek 	exp = (i >> (32 - 1 - EXT_EXPBITS)) & mask(EXT_EXPBITS);
168*55113Storek 	frac = i & mask(EXT_FRACBITS - 3 * 32);
169*55113Storek 	f0 = (frac << EXT_SHIFT) | (j >> (32 - EXT_SHIFT));
170*55113Storek 	f1 = (j << EXT_SHIFT) | (k >> (32 - EXT_SHIFT));
171*55113Storek 	f2 = (k << EXT_SHIFT) | (l >> (32 - EXT_SHIFT));
172*55113Storek 	f3 = l << EXT_SHIFT;
173*55113Storek 	frac |= j | k | l;
174*55113Storek 	FP_TOF(exp, EXT_EXP_BIAS, frac, f0, f1, f2, f3);
175*55113Storek }
176*55113Storek 
177*55113Storek /*
178*55113Storek  * Explode the contents of a register / regpair / regquad.
179*55113Storek  * If the input is a signalling NaN, an NV (invalid) exception
180*55113Storek  * will be set.  (Note that nothing but NV can occur until ALU
181*55113Storek  * operations are performed.)
182*55113Storek  */
183*55113Storek void
184*55113Storek fpu_explode(fe, fp, type, reg)
185*55113Storek 	register struct fpemu *fe;
186*55113Storek 	register struct fpn *fp;
187*55113Storek 	int type, reg;
188*55113Storek {
189*55113Storek 	register u_int s, *space;
190*55113Storek 
191*55113Storek 	space = &fe->fe_fpstate->fs_regs[reg];
192*55113Storek 	s = space[0];
193*55113Storek 	fp->fp_sign = s >> 31;
194*55113Storek 	fp->fp_sticky = 0;
195*55113Storek 	switch (type) {
196*55113Storek 
197*55113Storek 	case FTYPE_INT:
198*55113Storek 		s = fpu_itof(fp, s);
199*55113Storek 		break;
200*55113Storek 
201*55113Storek 	case FTYPE_SNG:
202*55113Storek 		s = fpu_stof(fp, s);
203*55113Storek 		break;
204*55113Storek 
205*55113Storek 	case FTYPE_DBL:
206*55113Storek 		s = fpu_dtof(fp, s, space[1]);
207*55113Storek 		break;
208*55113Storek 
209*55113Storek 	case FTYPE_EXT:
210*55113Storek 		s = fpu_xtof(fp, s, space[1], space[2], space[3]);
211*55113Storek 		break;
212*55113Storek 
213*55113Storek 	default:
214*55113Storek 		panic("fpu_explode");
215*55113Storek 	}
216*55113Storek 	if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
217*55113Storek 		/*
218*55113Storek 		 * Input is a signalling NaN.  All operations that return
219*55113Storek 		 * an input NaN operand put it through a ``NaN conversion'',
220*55113Storek 		 * which basically just means ``turn on the quiet bit''.
221*55113Storek 		 * We do this here so that all NaNs internally look quiet
222*55113Storek 		 * (we can tell signalling ones by their class).
223*55113Storek 		 */
224*55113Storek 		fp->fp_mant[0] |= FP_QUIETBIT;
225*55113Storek 		fe->fe_cx = FSR_NV;	/* assert invalid operand */
226*55113Storek 		s = FPC_SNAN;
227*55113Storek 	}
228*55113Storek 	fp->fp_class = s;
229*55113Storek }
230