xref: /csrg-svn/sys/sparc/fpu/fpu_emu.h (revision 63319)
155113Storek /*
2*63319Sbostic  * Copyright (c) 1992, 1993
3*63319Sbostic  *	The Regents of the University of California.  All rights reserved.
455113Storek  *
555113Storek  * This software was developed by the Computer Systems Engineering group
655113Storek  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
755113Storek  * contributed to Berkeley.
855113Storek  *
955500Sbostic  * All advertising materials mentioning features or use of this software
1055500Sbostic  * must display the following acknowledgement:
1155500Sbostic  *	This product includes software developed by the University of
1259195Storek  *	California, Lawrence Berkeley Laboratory.
1355500Sbostic  *
1455113Storek  * %sccs.include.redist.c%
1555113Storek  *
16*63319Sbostic  *	@(#)fpu_emu.h	8.1 (Berkeley) 06/11/93
1755113Storek  *
1859195Storek  * from: $Header: fpu_emu.h,v 1.3 92/11/26 01:30:54 torek Exp $
1955113Storek  */
2055113Storek 
2155113Storek /*
2255113Storek  * Floating point emulator (tailored for SPARC, but structurally
2355113Storek  * machine-independent).
2455113Storek  *
2555113Storek  * Floating point numbers are carried around internally in an `expanded'
2655113Storek  * or `unpacked' form consisting of:
2755113Storek  *	- sign
2855113Storek  *	- unbiased exponent
2955113Storek  *	- mantissa (`1.' + 112-bit fraction + guard + round)
3055113Storek  *	- sticky bit
3155113Storek  * Any implied `1' bit is inserted, giving a 113-bit mantissa that is
3255113Storek  * always nonzero.  Additional low-order `guard' and `round' bits are
3355113Storek  * scrunched in, making the entire mantissa 115 bits long.  This is divided
3455113Storek  * into four 32-bit words, with `spare' bits left over in the upper part
3555113Storek  * of the top word (the high bits of fp_mant[0]).  An internal `exploded'
3655113Storek  * number is thus kept within the half-open interval [1.0,2.0) (but see
3755113Storek  * the `number classes' below).  This holds even for denormalized numbers:
3855113Storek  * when we explode an external denorm, we normalize it, introducing low-order
3955113Storek  * zero bits, so that the rest of the code always sees normalized values.
4055113Storek  *
4155113Storek  * Note that a number of our algorithms use the `spare' bits at the top.
4255113Storek  * The most demanding algorithm---the one for sqrt---depends on two such
4355113Storek  * bits, so that it can represent values up to (but not including) 8.0,
4455113Storek  * and then it needs a carry on top of that, so that we need three `spares'.
4555113Storek  *
4655113Storek  * The sticky-word is 32 bits so that we can use `OR' operators to goosh
4755113Storek  * whole words from the mantissa into it.
4855113Storek  *
4955113Storek  * All operations are done in this internal extended precision.  According
5055113Storek  * to Hennesey & Patterson, Appendix A, rounding can be repeated---that is,
5155113Storek  * it is OK to do a+b in extended precision and then round the result to
5255113Storek  * single precision---provided single, double, and extended precisions are
5355113Storek  * `far enough apart' (they always are), but we will try to avoid any such
5455113Storek  * extra work where possible.
5555113Storek  */
5655113Storek struct fpn {
5755113Storek 	int	fp_class;		/* see below */
5855113Storek 	int	fp_sign;		/* 0 => positive, 1 => negative */
5955113Storek 	int	fp_exp;			/* exponent (unbiased) */
6055113Storek 	int	fp_sticky;		/* nonzero bits lost at right end */
6155113Storek 	u_int	fp_mant[4];		/* 115-bit mantissa */
6255113Storek };
6355113Storek 
6455113Storek #define	FP_NMANT	115		/* total bits in mantissa (incl g,r) */
6555113Storek #define	FP_NG		2		/* number of low-order guard bits */
6655113Storek #define	FP_LG		((FP_NMANT - 1) & 31)	/* log2(1.0) for fp_mant[0] */
6755113Storek #define	FP_QUIETBIT	(1 << (FP_LG - 1))	/* Quiet bit in NaNs (0.5) */
6855113Storek #define	FP_1		(1 << FP_LG)		/* 1.0 in fp_mant[0] */
6955113Storek #define	FP_2		(1 << (FP_LG + 1))	/* 2.0 in fp_mant[0] */
7055113Storek 
7155113Storek /*
7255113Storek  * Number classes.  Since zero, Inf, and NaN cannot be represented using
7355113Storek  * the above layout, we distinguish these from other numbers via a class.
7455113Storek  * In addition, to make computation easier and to follow Appendix N of
7555113Storek  * the SPARC Version 8 standard, we give each kind of NaN a separate class.
7655113Storek  */
7755113Storek #define	FPC_SNAN	-2		/* signalling NaN (sign irrelevant) */
7855113Storek #define	FPC_QNAN	-1		/* quiet NaN (sign irrelevant) */
7955113Storek #define	FPC_ZERO	0		/* zero (sign matters) */
8055113Storek #define	FPC_NUM		1		/* number (sign matters) */
8155113Storek #define	FPC_INF		2		/* infinity (sign matters) */
8255113Storek 
8355113Storek #define	ISNAN(fp)	((fp)->fp_class < 0)
8455113Storek #define	ISZERO(fp)	((fp)->fp_class == 0)
8555113Storek #define	ISINF(fp)	((fp)->fp_class == FPC_INF)
8655113Storek 
8755113Storek /*
8855113Storek  * ORDER(x,y) `sorts' a pair of `fpn *'s so that the right operand (y) points
8955113Storek  * to the `more significant' operand for our purposes.  Appendix N says that
9055113Storek  * the result of a computation involving two numbers are:
9155113Storek  *
9255113Storek  *	If both are SNaN: operand 2, converted to Quiet
9355113Storek  *	If only one is SNaN: the SNaN operand, converted to Quiet
9455113Storek  *	If both are QNaN: operand 2
9555113Storek  *	If only one is QNaN: the QNaN operand
9655113Storek  *
9755113Storek  * In addition, in operations with an Inf operand, the result is usually
9855113Storek  * Inf.  The class numbers are carefully arranged so that if
9955113Storek  *	(unsigned)class(op1) > (unsigned)class(op2)
10055113Storek  * then op1 is the one we want; otherwise op2 is the one we want.
10155113Storek  */
10255113Storek #define	ORDER(x, y) { \
10355113Storek 	if ((u_int)(x)->fp_class > (u_int)(y)->fp_class) \
10455113Storek 		SWAP(x, y); \
10555113Storek }
10655113Storek #define	SWAP(x, y) { \
10755113Storek 	register struct fpn *swap; \
10855113Storek 	swap = (x), (x) = (y), (y) = swap; \
10955113Storek }
11055113Storek 
11155113Storek /*
11255113Storek  * Emulator state.
11355113Storek  */
11455113Storek struct fpemu {
11555113Storek 	struct	fpstate *fe_fpstate;	/* registers, etc */
11655113Storek 	int	fe_fsr;			/* fsr copy (modified during op) */
11755113Storek 	int	fe_cx;			/* exceptions */
11855113Storek 	struct	fpn fe_f1;		/* operand 1 */
11955113Storek 	struct	fpn fe_f2;		/* operand 2, if required */
12055113Storek 	struct	fpn fe_f3;		/* available storage for result */
12155113Storek };
12255113Storek 
12355113Storek /*
12455113Storek  * Arithmetic functions.
12555113Storek  * Each of these may modify its inputs (f1,f2) and/or the temporary.
12655113Storek  * Each returns a pointer to the result and/or sets exceptions.
12755113Storek  */
12855113Storek struct	fpn *fpu_add(struct fpemu *);
12955113Storek #define	fpu_sub(fe) ((fe)->fe_f2.fp_sign ^= 1, fpu_add(fe))
13055113Storek struct	fpn *fpu_mul(struct fpemu *);
13155113Storek struct	fpn *fpu_div(struct fpemu *);
13255113Storek struct	fpn *fpu_sqrt(struct fpemu *);
13355113Storek 
13455113Storek /*
13555113Storek  * Other functions.
13655113Storek  */
13755113Storek 
13855113Storek /* Perform a compare instruction (with or without unordered exception). */
13955113Storek void	fpu_compare(struct fpemu *, int);
14055113Storek 
14155113Storek /* Build a new Quiet NaN (sign=0, frac=all 1's). */
14255113Storek struct	fpn *fpu_newnan(struct fpemu *);
14355113Storek 
14455113Storek /*
14555113Storek  * Shift a number right some number of bits, taking care of round/sticky.
14655113Storek  * Note that the result is probably not a well-formed number (it will lack
14755113Storek  * the normal 1-bit mant[0]&FP_1).
14855113Storek  */
14955113Storek int	fpu_shr(struct fpn *, int);
15055113Storek 
15155113Storek /* Conversion to and from internal format -- note asymmetry. */
15255113Storek int	fpu_itofpn(struct fpn *, u_int);
15355113Storek int	fpu_stofpn(struct fpn *, u_int);
15455113Storek int	fpu_dtofpn(struct fpn *, u_int, u_int);
15555113Storek int	fpu_xtofpn(struct fpn *, u_int, u_int, u_int, u_int);
15655113Storek 
15755113Storek u_int	fpu_fpntoi(struct fpemu *, struct fpn *);
15855113Storek u_int	fpu_fpntos(struct fpemu *, struct fpn *);
15955113Storek u_int	fpu_fpntod(struct fpemu *, struct fpn *);
16055113Storek u_int	fpu_fpntox(struct fpemu *, struct fpn *);
16155113Storek 
16255113Storek void	fpu_explode(struct fpemu *, struct fpn *, int, int);
16355113Storek void	fpu_implode(struct fpemu *, struct fpn *, int, u_int *);
164