155112Storek /* 255112Storek * Copyright (c) 1992 The Regents of the University of California. 355112Storek * All rights reserved. 455112Storek * 555112Storek * This software was developed by the Computer Systems Engineering group 655112Storek * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 755112Storek * contributed to Berkeley. 855112Storek * 955500Sbostic * All advertising materials mentioning features or use of this software 1055500Sbostic * must display the following acknowledgement: 1155500Sbostic * This product includes software developed by the University of 1255500Sbostic * California, Lawrence Berkeley Laboratories. 1355500Sbostic * 1455112Storek * %sccs.include.redist.c% 1555112Storek * 16*56537Sbostic * @(#)fpu_div.c 7.3 (Berkeley) 10/11/92 1755112Storek * 1855112Storek * from: $Header: fpu_div.c,v 1.2 92/06/17 05:41:30 torek Exp $ 1955112Storek */ 2055112Storek 2155112Storek /* 2255112Storek * Perform an FPU divide (return x / y). 2355112Storek */ 2455112Storek 25*56537Sbostic #include <sys/types.h> 2655112Storek 27*56537Sbostic #include <machine/reg.h> 2855112Storek 29*56537Sbostic #include <sparc/fpu/fpu_arith.h> 30*56537Sbostic #include <sparc/fpu/fpu_emu.h> 3155112Storek 3255112Storek /* 3355112Storek * Division of normal numbers is done as follows: 3455112Storek * 3555112Storek * x and y are floating point numbers, i.e., in the form 1.bbbb * 2^e. 3655112Storek * If X and Y are the mantissas (1.bbbb's), the quotient is then: 3755112Storek * 3855112Storek * q = (X / Y) * 2^((x exponent) - (y exponent)) 3955112Storek * 4055112Storek * Since X and Y are both in [1.0,2.0), the quotient's mantissa (X / Y) 4155112Storek * will be in [0.5,2.0). Moreover, it will be less than 1.0 if and only 4255112Storek * if X < Y. In that case, it will have to be shifted left one bit to 4355112Storek * become a normal number, and the exponent decremented. Thus, the 4455112Storek * desired exponent is: 4555112Storek * 4655112Storek * left_shift = x->fp_mant < y->fp_mant; 4755112Storek * result_exp = x->fp_exp - y->fp_exp - left_shift; 4855112Storek * 4955112Storek * The quotient mantissa X/Y can then be computed one bit at a time 5055112Storek * using the following algorithm: 5155112Storek * 5255112Storek * Q = 0; -- Initial quotient. 5355112Storek * R = X; -- Initial remainder, 5455112Storek * if (left_shift) -- but fixed up in advance. 5555112Storek * R *= 2; 5655112Storek * for (bit = FP_NMANT; --bit >= 0; R *= 2) { 5755112Storek * if (R >= Y) { 5855112Storek * Q |= 1 << bit; 5955112Storek * R -= Y; 6055112Storek * } 6155112Storek * } 6255112Storek * 6355112Storek * The subtraction R -= Y always removes the uppermost bit from R (and 6455112Storek * can sometimes remove additional lower-order 1 bits); this proof is 6555112Storek * left to the reader. 6655112Storek * 6755112Storek * This loop correctly calculates the guard and round bits since they are 6855112Storek * included in the expanded internal representation. The sticky bit 6955112Storek * is to be set if and only if any other bits beyond guard and round 7055112Storek * would be set. From the above it is obvious that this is true if and 7155112Storek * only if the remainder R is nonzero when the loop terminates. 7255112Storek * 7355112Storek * Examining the loop above, we can see that the quotient Q is built 7455112Storek * one bit at a time ``from the top down''. This means that we can 7555112Storek * dispense with the multi-word arithmetic and just build it one word 7655112Storek * at a time, writing each result word when it is done. 7755112Storek * 7855112Storek * Furthermore, since X and Y are both in [1.0,2.0), we know that, 7955112Storek * initially, R >= Y. (Recall that, if X < Y, R is set to X * 2 and 8055112Storek * is therefore at in [2.0,4.0).) Thus Q is sure to have bit FP_NMANT-1 8155112Storek * set, and R can be set initially to either X - Y (when X >= Y) or 8255112Storek * 2X - Y (when X < Y). In addition, comparing R and Y is difficult, 8355112Storek * so we will simply calculate R - Y and see if that underflows. 8455112Storek * This leads to the following revised version of the algorithm: 8555112Storek * 8655112Storek * R = X; 8755112Storek * bit = FP_1; 8855112Storek * D = R - Y; 8955112Storek * if (D >= 0) { 9055112Storek * result_exp = x->fp_exp - y->fp_exp; 9155112Storek * R = D; 9255112Storek * q = bit; 9355112Storek * bit >>= 1; 9455112Storek * } else { 9555112Storek * result_exp = x->fp_exp - y->fp_exp - 1; 9655112Storek * q = 0; 9755112Storek * } 9855112Storek * R <<= 1; 9955112Storek * do { 10055112Storek * D = R - Y; 10155112Storek * if (D >= 0) { 10255112Storek * q |= bit; 10355112Storek * R = D; 10455112Storek * } 10555112Storek * R <<= 1; 10655112Storek * } while ((bit >>= 1) != 0); 10755112Storek * Q[0] = q; 10855112Storek * for (i = 1; i < 4; i++) { 10955112Storek * q = 0, bit = 1 << 31; 11055112Storek * do { 11155112Storek * D = R - Y; 11255112Storek * if (D >= 0) { 11355112Storek * q |= bit; 11455112Storek * R = D; 11555112Storek * } 11655112Storek * R <<= 1; 11755112Storek * } while ((bit >>= 1) != 0); 11855112Storek * Q[i] = q; 11955112Storek * } 12055112Storek * 12155112Storek * This can be refined just a bit further by moving the `R <<= 1' 12255112Storek * calculations to the front of the do-loops and eliding the first one. 12355112Storek * The process can be terminated immediately whenever R becomes 0, but 12455112Storek * this is relatively rare, and we do not bother. 12555112Storek */ 12655112Storek 12755112Storek struct fpn * 12855112Storek fpu_div(fe) 12955112Storek register struct fpemu *fe; 13055112Storek { 13155112Storek register struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2; 13255112Storek register u_int q, bit; 13355112Storek register u_int r0, r1, r2, r3, d0, d1, d2, d3, y0, y1, y2, y3; 13455112Storek FPU_DECL_CARRY 13555112Storek 13655112Storek /* 13755112Storek * Since divide is not commutative, we cannot just use ORDER. 13855112Storek * Check either operand for NaN first; if there is at least one, 13955112Storek * order the signalling one (if only one) onto the right, then 14055112Storek * return it. Otherwise we have the following cases: 14155112Storek * 14255112Storek * Inf / Inf = NaN, plus NV exception 14355112Storek * Inf / num = Inf [i.e., return x] 14455112Storek * Inf / 0 = Inf [i.e., return x] 14555112Storek * 0 / Inf = 0 [i.e., return x] 14655112Storek * 0 / num = 0 [i.e., return x] 14755112Storek * 0 / 0 = NaN, plus NV exception 14855112Storek * num / Inf = 0 14955112Storek * num / num = num (do the divide) 15055112Storek * num / 0 = Inf, plus DZ exception 15155112Storek */ 15255112Storek if (ISNAN(x) || ISNAN(y)) { 15355112Storek ORDER(x, y); 15455112Storek return (y); 15555112Storek } 15655112Storek if (ISINF(x) || ISZERO(x)) { 15755112Storek if (x->fp_class == y->fp_class) 15855112Storek return (fpu_newnan(fe)); 15955112Storek return (x); 16055112Storek } 16155112Storek 16255112Storek /* all results at this point use XOR of operand signs */ 16355112Storek x->fp_sign ^= y->fp_sign; 16455112Storek if (ISINF(y)) { 16555112Storek x->fp_class = FPC_ZERO; 16655112Storek return (x); 16755112Storek } 16855112Storek if (ISZERO(y)) { 16955112Storek fe->fe_cx = FSR_DZ; 17055112Storek x->fp_class = FPC_INF; 17155112Storek return (x); 17255112Storek } 17355112Storek 17455112Storek /* 17555112Storek * Macros for the divide. See comments at top for algorithm. 17655112Storek * Note that we expand R, D, and Y here. 17755112Storek */ 17855112Storek 17955112Storek #define SUBTRACT /* D = R - Y */ \ 18055112Storek FPU_SUBS(d3, r3, y3); FPU_SUBCS(d2, r2, y2); \ 18155112Storek FPU_SUBCS(d1, r1, y1); FPU_SUBC(d0, r0, y0) 18255112Storek 18355112Storek #define NONNEGATIVE /* D >= 0 */ \ 18455112Storek ((int)d0 >= 0) 18555112Storek 18655112Storek #ifdef FPU_SHL1_BY_ADD 18755112Storek #define SHL1 /* R <<= 1 */ \ 18855112Storek FPU_ADDS(r3, r3, r3); FPU_ADDCS(r2, r2, r2); \ 18955112Storek FPU_ADDCS(r1, r1, r1); FPU_ADDC(r0, r0, r0) 19055112Storek #else 19155112Storek #define SHL1 \ 19255112Storek r0 = (r0 << 1) | (r1 >> 31), r1 = (r1 << 1) | (r2 >> 31), \ 19355112Storek r2 = (r2 << 1) | (r3 >> 31), r3 <<= 1 19455112Storek #endif 19555112Storek 19655112Storek #define LOOP /* do ... while (bit >>= 1) */ \ 19755112Storek do { \ 19855112Storek SHL1; \ 19955112Storek SUBTRACT; \ 20055112Storek if (NONNEGATIVE) { \ 20155112Storek q |= bit; \ 20255112Storek r0 = d0, r1 = d1, r2 = d2, r3 = d3; \ 20355112Storek } \ 20455112Storek } while ((bit >>= 1) != 0) 20555112Storek 20655112Storek #define WORD(r, i) /* calculate r->fp_mant[i] */ \ 20755112Storek q = 0; \ 20855112Storek bit = 1 << 31; \ 20955112Storek LOOP; \ 21055112Storek (x)->fp_mant[i] = q 21155112Storek 21255112Storek /* Setup. Note that we put our result in x. */ 21355112Storek r0 = x->fp_mant[0]; 21455112Storek r1 = x->fp_mant[1]; 21555112Storek r2 = x->fp_mant[2]; 21655112Storek r3 = x->fp_mant[3]; 21755112Storek y0 = y->fp_mant[0]; 21855112Storek y1 = y->fp_mant[1]; 21955112Storek y2 = y->fp_mant[2]; 22055112Storek y3 = y->fp_mant[3]; 22155112Storek 22255112Storek bit = FP_1; 22355112Storek SUBTRACT; 22455112Storek if (NONNEGATIVE) { 22555112Storek x->fp_exp -= y->fp_exp; 22655112Storek r0 = d0, r1 = d1, r2 = d2, r3 = d3; 22755112Storek q = bit; 22855112Storek bit >>= 1; 22955112Storek } else { 23055112Storek x->fp_exp -= y->fp_exp + 1; 23155112Storek q = 0; 23255112Storek } 23355112Storek LOOP; 23455112Storek x->fp_mant[0] = q; 23555112Storek WORD(x, 1); 23655112Storek WORD(x, 2); 23755112Storek WORD(x, 3); 23855112Storek x->fp_sticky = r0 | r1 | r2 | r3; 23955112Storek 24055112Storek return (x); 24155112Storek } 242