xref: /csrg-svn/sys/nfs/nfs_socket.c (revision 52934)
1 /*
2  * Copyright (c) 1989, 1991 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * %sccs.include.redist.c%
9  *
10  *	@(#)nfs_socket.c	7.27 (Berkeley) 03/13/92
11  */
12 
13 /*
14  * Socket operations for use by nfs
15  */
16 
17 #include "types.h"
18 #include "param.h"
19 #include "uio.h"
20 #include "proc.h"
21 #include "signal.h"
22 #include "mount.h"
23 #include "kernel.h"
24 #include "malloc.h"
25 #include "mbuf.h"
26 #include "vnode.h"
27 #include "domain.h"
28 #include "protosw.h"
29 #include "socket.h"
30 #include "socketvar.h"
31 #include "syslog.h"
32 #include "tprintf.h"
33 #include "machine/endian.h"
34 #include "netinet/in.h"
35 #include "netinet/tcp.h"
36 #ifdef ISO
37 #include "netiso/iso.h"
38 #endif
39 #include "ufs/ufs/quota.h"
40 #include "ufs/ufs/ufsmount.h"
41 #include "rpcv2.h"
42 #include "nfsv2.h"
43 #include "nfs.h"
44 #include "xdr_subs.h"
45 #include "nfsm_subs.h"
46 #include "nfsmount.h"
47 #include "nfsnode.h"
48 #include "nfsrtt.h"
49 #include "nqnfs.h"
50 
51 #define	TRUE	1
52 #define	FALSE	0
53 
54 int netnetnet = sizeof (struct netaddrhash);
55 /*
56  * Estimate rto for an nfs rpc sent via. an unreliable datagram.
57  * Use the mean and mean deviation of rtt for the appropriate type of rpc
58  * for the frequent rpcs and a default for the others.
59  * The justification for doing "other" this way is that these rpcs
60  * happen so infrequently that timer est. would probably be stale.
61  * Also, since many of these rpcs are
62  * non-idempotent, a conservative timeout is desired.
63  * getattr, lookup - A+2D
64  * read, write     - A+4D
65  * other           - nm_timeo
66  */
67 #define	NFS_RTO(n, t) \
68 	((t) == 0 ? (n)->nm_timeo : \
69 	 ((t) < 3 ? \
70 	  (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \
71 	  ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1)))
72 #define	NFS_SRTT(r)	(r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1]
73 #define	NFS_SDRTT(r)	(r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1]
74 /*
75  * External data, mostly RPC constants in XDR form
76  */
77 extern u_long rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers, rpc_auth_unix,
78 	rpc_msgaccepted, rpc_call, rpc_autherr, rpc_rejectedcred,
79 	rpc_auth_kerb;
80 extern u_long nfs_prog, nfs_vers, nqnfs_prog, nqnfs_vers;
81 extern time_t nqnfsstarttime;
82 extern int nonidempotent[NFS_NPROCS];
83 
84 /*
85  * Maps errno values to nfs error numbers.
86  * Use NFSERR_IO as the catch all for ones not specifically defined in
87  * RFC 1094.
88  */
89 static int nfsrv_errmap[ELAST] = {
90   NFSERR_PERM,	NFSERR_NOENT,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
91   NFSERR_NXIO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
92   NFSERR_IO,	NFSERR_IO,	NFSERR_ACCES,	NFSERR_IO,	NFSERR_IO,
93   NFSERR_IO,	NFSERR_EXIST,	NFSERR_IO,	NFSERR_NODEV,	NFSERR_NOTDIR,
94   NFSERR_ISDIR,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
95   NFSERR_IO,	NFSERR_FBIG,	NFSERR_NOSPC,	NFSERR_IO,	NFSERR_ROFS,
96   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
97   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
98   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
99   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
100   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
101   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
102   NFSERR_IO,	NFSERR_IO,	NFSERR_NAMETOL,	NFSERR_IO,	NFSERR_IO,
103   NFSERR_NOTEMPTY, NFSERR_IO,	NFSERR_IO,	NFSERR_DQUOT,	NFSERR_STALE,
104   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
105   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
106   NFSERR_IO,
107 };
108 
109 /*
110  * Defines which timer to use for the procnum.
111  * 0 - default
112  * 1 - getattr
113  * 2 - lookup
114  * 3 - read
115  * 4 - write
116  */
117 static int proct[NFS_NPROCS] = {
118 	0, 1, 0, 0, 2, 3, 3, 0, 4, 0, 0, 0, 0, 0, 0, 0, 3, 0, 3, 0, 0, 0,
119 };
120 
121 /*
122  * There is a congestion window for outstanding rpcs maintained per mount
123  * point. The cwnd size is adjusted in roughly the way that:
124  * Van Jacobson, Congestion avoidance and Control, In "Proceedings of
125  * SIGCOMM '88". ACM, August 1988.
126  * describes for TCP. The cwnd size is chopped in half on a retransmit timeout
127  * and incremented by 1/cwnd when each rpc reply is received and a full cwnd
128  * of rpcs is in progress.
129  * (The sent count and cwnd are scaled for integer arith.)
130  * Variants of "slow start" were tried and were found to be too much of a
131  * performance hit (ave. rtt 3 times larger),
132  * I suspect due to the large rtt that nfs rpcs have.
133  */
134 #define	NFS_CWNDSCALE	256
135 #define	NFS_MAXCWND	(NFS_CWNDSCALE * 32)
136 static int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, };
137 int	nfs_sbwait();
138 void	nfs_disconnect(), nfs_realign(), nfsrv_wakenfsd(), nfs_sndunlock();
139 void	nfs_rcvunlock(), nqnfs_serverd();
140 struct mbuf *nfsm_rpchead();
141 int nfsrtton = 0;
142 struct nfsrtt nfsrtt;
143 struct nfsd nfsd_head;
144 
145 int	nfsrv_null(),
146 	nfsrv_getattr(),
147 	nfsrv_setattr(),
148 	nfsrv_lookup(),
149 	nfsrv_readlink(),
150 	nfsrv_read(),
151 	nfsrv_write(),
152 	nfsrv_create(),
153 	nfsrv_remove(),
154 	nfsrv_rename(),
155 	nfsrv_link(),
156 	nfsrv_symlink(),
157 	nfsrv_mkdir(),
158 	nfsrv_rmdir(),
159 	nfsrv_readdir(),
160 	nfsrv_statfs(),
161 	nfsrv_noop(),
162 	nqnfsrv_readdirlook(),
163 	nqnfsrv_getlease(),
164 	nqnfsrv_vacated();
165 
166 int (*nfsrv_procs[NFS_NPROCS])() = {
167 	nfsrv_null,
168 	nfsrv_getattr,
169 	nfsrv_setattr,
170 	nfsrv_noop,
171 	nfsrv_lookup,
172 	nfsrv_readlink,
173 	nfsrv_read,
174 	nfsrv_noop,
175 	nfsrv_write,
176 	nfsrv_create,
177 	nfsrv_remove,
178 	nfsrv_rename,
179 	nfsrv_link,
180 	nfsrv_symlink,
181 	nfsrv_mkdir,
182 	nfsrv_rmdir,
183 	nfsrv_readdir,
184 	nfsrv_statfs,
185 	nqnfsrv_readdirlook,
186 	nqnfsrv_getlease,
187 	nqnfsrv_vacated,
188 };
189 
190 struct nfsreq nfsreqh;
191 
192 /*
193  * Initialize sockets and congestion for a new NFS connection.
194  * We do not free the sockaddr if error.
195  */
196 nfs_connect(nmp, rep)
197 	register struct nfsmount *nmp;
198 	struct nfsreq *rep;
199 {
200 	register struct socket *so;
201 	int s, error, rcvreserve, sndreserve;
202 	struct mbuf *m;
203 
204 	nmp->nm_so = (struct socket *)0;
205 	if (error = socreate(mtod(nmp->nm_nam, struct sockaddr *)->sa_family,
206 		&nmp->nm_so, nmp->nm_sotype, nmp->nm_soproto))
207 		goto bad;
208 	so = nmp->nm_so;
209 	nmp->nm_soflags = so->so_proto->pr_flags;
210 
211 	/*
212 	 * Protocols that do not require connections may be optionally left
213 	 * unconnected for servers that reply from a port other than NFS_PORT.
214 	 */
215 	if (nmp->nm_flag & NFSMNT_NOCONN) {
216 		if (nmp->nm_soflags & PR_CONNREQUIRED) {
217 			error = ENOTCONN;
218 			goto bad;
219 		}
220 	} else {
221 		if (error = soconnect(so, nmp->nm_nam))
222 			goto bad;
223 
224 		/*
225 		 * Wait for the connection to complete. Cribbed from the
226 		 * connect system call but with the wait timing out so
227 		 * that interruptible mounts don't hang here for a long time.
228 		 */
229 		s = splnet();
230 		while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
231 			(void) tsleep((caddr_t)&so->so_timeo, PSOCK,
232 				"nfscon", 2 * hz);
233 			if ((so->so_state & SS_ISCONNECTING) &&
234 			    so->so_error == 0 && rep &&
235 			    (error = nfs_sigintr(nmp, rep, rep->r_procp))) {
236 				so->so_state &= ~SS_ISCONNECTING;
237 				splx(s);
238 				goto bad;
239 			}
240 		}
241 		if (so->so_error) {
242 			error = so->so_error;
243 			so->so_error = 0;
244 			splx(s);
245 			goto bad;
246 		}
247 		splx(s);
248 	}
249 	if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) {
250 		so->so_rcv.sb_timeo = (5 * hz);
251 		so->so_snd.sb_timeo = (5 * hz);
252 	} else {
253 		so->so_rcv.sb_timeo = 0;
254 		so->so_snd.sb_timeo = 0;
255 	}
256 	if (nmp->nm_sotype == SOCK_DGRAM) {
257 		sndreserve = nmp->nm_wsize + NFS_MAXPKTHDR;
258 		rcvreserve = nmp->nm_rsize + NFS_MAXPKTHDR;
259 	} else if (nmp->nm_sotype == SOCK_SEQPACKET) {
260 		sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
261 		rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR) * 2;
262 	} else {
263 		if (nmp->nm_sotype != SOCK_STREAM)
264 			panic("nfscon sotype");
265 		if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
266 			MGET(m, M_WAIT, MT_SOOPTS);
267 			*mtod(m, int *) = 1;
268 			m->m_len = sizeof(int);
269 			sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, m);
270 		}
271 		if (so->so_proto->pr_protocol == IPPROTO_TCP) {
272 			MGET(m, M_WAIT, MT_SOOPTS);
273 			*mtod(m, int *) = 1;
274 			m->m_len = sizeof(int);
275 			sosetopt(so, IPPROTO_TCP, TCP_NODELAY, m);
276 		}
277 		sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR + sizeof (u_long))
278 				* 2;
279 		rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR + sizeof (u_long))
280 				* 2;
281 	}
282 	if (error = soreserve(so, sndreserve, rcvreserve))
283 		goto bad;
284 	so->so_rcv.sb_flags |= SB_NOINTR;
285 	so->so_snd.sb_flags |= SB_NOINTR;
286 
287 	/* Initialize other non-zero congestion variables */
288 	nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] =
289 		nmp->nm_srtt[4] = (NFS_TIMEO << 3);
290 	nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
291 		nmp->nm_sdrtt[3] = nmp->nm_sdrtt[4] = 0;
292 	nmp->nm_cwnd = NFS_MAXCWND / 2;	    /* Initial send window */
293 	nmp->nm_sent = 0;
294 	nmp->nm_timeouts = 0;
295 	return (0);
296 
297 bad:
298 	nfs_disconnect(nmp);
299 	return (error);
300 }
301 
302 /*
303  * Reconnect routine:
304  * Called when a connection is broken on a reliable protocol.
305  * - clean up the old socket
306  * - nfs_connect() again
307  * - set R_MUSTRESEND for all outstanding requests on mount point
308  * If this fails the mount point is DEAD!
309  * nb: Must be called with the nfs_sndlock() set on the mount point.
310  */
311 nfs_reconnect(rep)
312 	register struct nfsreq *rep;
313 {
314 	register struct nfsreq *rp;
315 	register struct nfsmount *nmp = rep->r_nmp;
316 	int error;
317 
318 	nfs_disconnect(nmp);
319 	while (error = nfs_connect(nmp, rep)) {
320 		if (error == EINTR || error == ERESTART)
321 			return (EINTR);
322 		(void) tsleep((caddr_t)&lbolt, PSOCK, "nfscon", 0);
323 	}
324 
325 	/*
326 	 * Loop through outstanding request list and fix up all requests
327 	 * on old socket.
328 	 */
329 	rp = nfsreqh.r_next;
330 	while (rp != &nfsreqh) {
331 		if (rp->r_nmp == nmp)
332 			rp->r_flags |= R_MUSTRESEND;
333 		rp = rp->r_next;
334 	}
335 	return (0);
336 }
337 
338 /*
339  * NFS disconnect. Clean up and unlink.
340  */
341 void
342 nfs_disconnect(nmp)
343 	register struct nfsmount *nmp;
344 {
345 	register struct socket *so;
346 
347 	if (nmp->nm_so) {
348 		so = nmp->nm_so;
349 		nmp->nm_so = (struct socket *)0;
350 		soshutdown(so, 2);
351 		soclose(so);
352 	}
353 }
354 
355 /*
356  * This is the nfs send routine. For connection based socket types, it
357  * must be called with an nfs_sndlock() on the socket.
358  * "rep == NULL" indicates that it has been called from a server.
359  * For the client side:
360  * - return EINTR if the RPC is terminated, 0 otherwise
361  * - set R_MUSTRESEND if the send fails for any reason
362  * - do any cleanup required by recoverable socket errors (???)
363  * For the server side:
364  * - return EINTR or ERESTART if interrupted by a signal
365  * - return EPIPE if a connection is lost for connection based sockets (TCP...)
366  * - do any cleanup required by recoverable socket errors (???)
367  */
368 nfs_send(so, nam, top, rep)
369 	register struct socket *so;
370 	struct mbuf *nam;
371 	register struct mbuf *top;
372 	struct nfsreq *rep;
373 {
374 	struct mbuf *sendnam;
375 	int error, soflags, flags;
376 
377 	if (rep) {
378 		if (rep->r_flags & R_SOFTTERM) {
379 			m_freem(top);
380 			return (EINTR);
381 		}
382 		if ((so = rep->r_nmp->nm_so) == NULL) {
383 			rep->r_flags |= R_MUSTRESEND;
384 			m_freem(top);
385 			return (0);
386 		}
387 		rep->r_flags &= ~R_MUSTRESEND;
388 		soflags = rep->r_nmp->nm_soflags;
389 	} else
390 		soflags = so->so_proto->pr_flags;
391 	if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
392 		sendnam = (struct mbuf *)0;
393 	else
394 		sendnam = nam;
395 	if (so->so_type == SOCK_SEQPACKET)
396 		flags = MSG_EOR;
397 	else
398 		flags = 0;
399 
400 	error = sosend(so, sendnam, (struct uio *)0, top,
401 		(struct mbuf *)0, flags);
402 	if (error) {
403 		if (rep) {
404 			log(LOG_INFO, "nfs send error %d for server %s\n",error,
405 			    rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
406 			/*
407 			 * Deal with errors for the client side.
408 			 */
409 			if (rep->r_flags & R_SOFTTERM)
410 				error = EINTR;
411 			else
412 				rep->r_flags |= R_MUSTRESEND;
413 		} else
414 			log(LOG_INFO, "nfsd send error %d\n", error);
415 
416 		/*
417 		 * Handle any recoverable (soft) socket errors here. (???)
418 		 */
419 		if (error != EINTR && error != ERESTART &&
420 			error != EWOULDBLOCK && error != EPIPE)
421 			error = 0;
422 	}
423 	return (error);
424 }
425 
426 /*
427  * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
428  * done by soreceive(), but for SOCK_STREAM we must deal with the Record
429  * Mark and consolidate the data into a new mbuf list.
430  * nb: Sometimes TCP passes the data up to soreceive() in long lists of
431  *     small mbufs.
432  * For SOCK_STREAM we must be very careful to read an entire record once
433  * we have read any of it, even if the system call has been interrupted.
434  */
435 nfs_receive(rep, aname, mp)
436 	register struct nfsreq *rep;
437 	struct mbuf **aname;
438 	struct mbuf **mp;
439 {
440 	register struct socket *so;
441 	struct uio auio;
442 	struct iovec aio;
443 	register struct mbuf *m;
444 	struct mbuf *control;
445 	u_long len;
446 	struct mbuf **getnam;
447 	int error, sotype, rcvflg;
448 	struct proc *p = curproc;	/* XXX */
449 
450 	/*
451 	 * Set up arguments for soreceive()
452 	 */
453 	*mp = (struct mbuf *)0;
454 	*aname = (struct mbuf *)0;
455 	sotype = rep->r_nmp->nm_sotype;
456 
457 	/*
458 	 * For reliable protocols, lock against other senders/receivers
459 	 * in case a reconnect is necessary.
460 	 * For SOCK_STREAM, first get the Record Mark to find out how much
461 	 * more there is to get.
462 	 * We must lock the socket against other receivers
463 	 * until we have an entire rpc request/reply.
464 	 */
465 	if (sotype != SOCK_DGRAM) {
466 		if (error = nfs_sndlock(&rep->r_nmp->nm_flag, rep))
467 			return (error);
468 tryagain:
469 		/*
470 		 * Check for fatal errors and resending request.
471 		 */
472 		/*
473 		 * Ugh: If a reconnect attempt just happened, nm_so
474 		 * would have changed. NULL indicates a failed
475 		 * attempt that has essentially shut down this
476 		 * mount point.
477 		 */
478 		if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) {
479 			nfs_sndunlock(&rep->r_nmp->nm_flag);
480 			return (EINTR);
481 		}
482 		if ((so = rep->r_nmp->nm_so) == NULL) {
483 			if (error = nfs_reconnect(rep)) {
484 				nfs_sndunlock(&rep->r_nmp->nm_flag);
485 				return (error);
486 			}
487 			goto tryagain;
488 		}
489 		while (rep->r_flags & R_MUSTRESEND) {
490 			m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
491 			nfsstats.rpcretries++;
492 			if (error = nfs_send(so, rep->r_nmp->nm_nam, m, rep)) {
493 				if (error == EINTR || error == ERESTART ||
494 				    (error = nfs_reconnect(rep))) {
495 					nfs_sndunlock(&rep->r_nmp->nm_flag);
496 					return (error);
497 				}
498 				goto tryagain;
499 			}
500 		}
501 		nfs_sndunlock(&rep->r_nmp->nm_flag);
502 		if (sotype == SOCK_STREAM) {
503 			aio.iov_base = (caddr_t) &len;
504 			aio.iov_len = sizeof(u_long);
505 			auio.uio_iov = &aio;
506 			auio.uio_iovcnt = 1;
507 			auio.uio_segflg = UIO_SYSSPACE;
508 			auio.uio_rw = UIO_READ;
509 			auio.uio_offset = 0;
510 			auio.uio_resid = sizeof(u_long);
511 			auio.uio_procp = p;
512 			do {
513 			   rcvflg = MSG_WAITALL;
514 			   error = soreceive(so, (struct mbuf **)0, &auio,
515 				(struct mbuf **)0, (struct mbuf **)0, &rcvflg);
516 			   if (error == EWOULDBLOCK && rep) {
517 				if (rep->r_flags & R_SOFTTERM)
518 					return (EINTR);
519 			   }
520 			} while (error == EWOULDBLOCK);
521 			if (!error && auio.uio_resid > 0) {
522 			    log(LOG_INFO,
523 				 "short receive (%d/%d) from nfs server %s\n",
524 				 sizeof(u_long) - auio.uio_resid,
525 				 sizeof(u_long),
526 				 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
527 			    error = EPIPE;
528 			}
529 			if (error)
530 				goto errout;
531 			len = ntohl(len) & ~0x80000000;
532 			/*
533 			 * This is SERIOUS! We are out of sync with the sender
534 			 * and forcing a disconnect/reconnect is all I can do.
535 			 */
536 			if (len > NFS_MAXPACKET) {
537 			    log(LOG_ERR, "%s (%d) from nfs server %s\n",
538 				"impossible packet length",
539 				len,
540 				rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
541 			    error = EFBIG;
542 			    goto errout;
543 			}
544 			auio.uio_resid = len;
545 			do {
546 			    rcvflg = MSG_WAITALL;
547 			    error =  soreceive(so, (struct mbuf **)0,
548 				&auio, mp, (struct mbuf **)0, &rcvflg);
549 			} while (error == EWOULDBLOCK || error == EINTR ||
550 				 error == ERESTART);
551 			if (!error && auio.uio_resid > 0) {
552 			    log(LOG_INFO,
553 				"short receive (%d/%d) from nfs server %s\n",
554 				len - auio.uio_resid, len,
555 				rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
556 			    error = EPIPE;
557 			}
558 		} else {
559 			/*
560 			 * NB: Since uio_resid is big, MSG_WAITALL is ignored
561 			 * and soreceive() will return when it has either a
562 			 * control msg or a data msg.
563 			 * We have no use for control msg., but must grab them
564 			 * and then throw them away so we know what is going
565 			 * on.
566 			 */
567 			auio.uio_resid = len = 100000000; /* Anything Big */
568 			auio.uio_procp = p;
569 			do {
570 			    rcvflg = 0;
571 			    error =  soreceive(so, (struct mbuf **)0,
572 				&auio, mp, &control, &rcvflg);
573 			    if (control)
574 				m_freem(control);
575 			    if (error == EWOULDBLOCK && rep) {
576 				if (rep->r_flags & R_SOFTTERM)
577 					return (EINTR);
578 			    }
579 			} while (error == EWOULDBLOCK ||
580 				 (!error && *mp == NULL && control));
581 			if ((rcvflg & MSG_EOR) == 0)
582 				printf("Egad!!\n");
583 			if (!error && *mp == NULL)
584 				error = EPIPE;
585 			len -= auio.uio_resid;
586 		}
587 errout:
588 		if (error && error != EINTR && error != ERESTART) {
589 			m_freem(*mp);
590 			*mp = (struct mbuf *)0;
591 			if (error != EPIPE)
592 				log(LOG_INFO,
593 				    "receive error %d from nfs server %s\n",
594 				    error,
595 				 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
596 			error = nfs_sndlock(&rep->r_nmp->nm_flag, rep);
597 			if (!error)
598 				error = nfs_reconnect(rep);
599 			if (!error)
600 				goto tryagain;
601 		}
602 	} else {
603 		if ((so = rep->r_nmp->nm_so) == NULL)
604 			return (EACCES);
605 		if (so->so_state & SS_ISCONNECTED)
606 			getnam = (struct mbuf **)0;
607 		else
608 			getnam = aname;
609 		auio.uio_resid = len = 1000000;
610 		auio.uio_procp = p;
611 		do {
612 			rcvflg = 0;
613 			error =  soreceive(so, getnam, &auio, mp,
614 				(struct mbuf **)0, &rcvflg);
615 			if (error == EWOULDBLOCK &&
616 			    (rep->r_flags & R_SOFTTERM))
617 				return (EINTR);
618 		} while (error == EWOULDBLOCK);
619 		len -= auio.uio_resid;
620 	}
621 	if (error) {
622 		m_freem(*mp);
623 		*mp = (struct mbuf *)0;
624 	}
625 	/*
626 	 * Search for any mbufs that are not a multiple of 4 bytes long
627 	 * or with m_data not longword aligned.
628 	 * These could cause pointer alignment problems, so copy them to
629 	 * well aligned mbufs.
630 	 */
631 	nfs_realign(*mp, 5 * NFSX_UNSIGNED);
632 	return (error);
633 }
634 
635 /*
636  * Implement receipt of reply on a socket.
637  * We must search through the list of received datagrams matching them
638  * with outstanding requests using the xid, until ours is found.
639  */
640 /* ARGSUSED */
641 nfs_reply(myrep)
642 	struct nfsreq *myrep;
643 {
644 	register struct nfsreq *rep;
645 	register struct nfsmount *nmp = myrep->r_nmp;
646 	register long t1;
647 	struct mbuf *mrep, *nam, *md;
648 	u_long rxid, *tl;
649 	caddr_t dpos, cp2;
650 	int error;
651 
652 	/*
653 	 * Loop around until we get our own reply
654 	 */
655 	for (;;) {
656 		/*
657 		 * Lock against other receivers so that I don't get stuck in
658 		 * sbwait() after someone else has received my reply for me.
659 		 * Also necessary for connection based protocols to avoid
660 		 * race conditions during a reconnect.
661 		 */
662 		if (error = nfs_rcvlock(myrep))
663 			return (error);
664 		/* Already received, bye bye */
665 		if (myrep->r_mrep != NULL) {
666 			nfs_rcvunlock(&nmp->nm_flag);
667 			return (0);
668 		}
669 		/*
670 		 * Get the next Rpc reply off the socket
671 		 */
672 		error = nfs_receive(myrep, &nam, &mrep);
673 		nfs_rcvunlock(&nmp->nm_flag);
674 if (error) printf("rcv err=%d\n",error);
675 		if (error) {
676 
677 			/*
678 			 * Ignore routing errors on connectionless protocols??
679 			 */
680 			if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
681 				nmp->nm_so->so_error = 0;
682 				continue;
683 			}
684 			return (error);
685 		}
686 		if (nam)
687 			m_freem(nam);
688 
689 		/*
690 		 * Get the xid and check that it is an rpc reply
691 		 */
692 		md = mrep;
693 		dpos = mtod(md, caddr_t);
694 		nfsm_dissect(tl, u_long *, 2*NFSX_UNSIGNED);
695 		rxid = *tl++;
696 		if (*tl != rpc_reply) {
697 			if (nmp->nm_flag & NFSMNT_NQNFS) {
698 				if (nqnfs_callback(nmp, mrep, md, dpos))
699 					nfsstats.rpcinvalid++;
700 			} else {
701 				nfsstats.rpcinvalid++;
702 				m_freem(mrep);
703 			}
704 nfsmout:
705 			continue;
706 		}
707 
708 		/*
709 		 * Loop through the request list to match up the reply
710 		 * Iff no match, just drop the datagram
711 		 */
712 		rep = nfsreqh.r_next;
713 		while (rep != &nfsreqh) {
714 			if (rep->r_mrep == NULL && rxid == rep->r_xid) {
715 				/* Found it.. */
716 				rep->r_mrep = mrep;
717 				rep->r_md = md;
718 				rep->r_dpos = dpos;
719 				if (nfsrtton) {
720 					struct rttl *rt;
721 
722 					rt = &nfsrtt.rttl[nfsrtt.pos];
723 					rt->proc = rep->r_procnum;
724 					rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]);
725 					rt->sent = nmp->nm_sent;
726 					rt->cwnd = nmp->nm_cwnd;
727 					rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
728 					rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
729 					rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid;
730 					rt->tstamp = time;
731 					if (rep->r_flags & R_TIMING)
732 						rt->rtt = rep->r_rtt;
733 					else
734 						rt->rtt = 1000000;
735 					nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
736 				}
737 				/*
738 				 * Update congestion window.
739 				 * Do the additive increase of
740 				 * one rpc/rtt.
741 				 */
742 				if (nmp->nm_cwnd <= nmp->nm_sent) {
743 					nmp->nm_cwnd +=
744 					   (NFS_CWNDSCALE * NFS_CWNDSCALE +
745 					   (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd;
746 					if (nmp->nm_cwnd > NFS_MAXCWND)
747 						nmp->nm_cwnd = NFS_MAXCWND;
748 				}
749 				nmp->nm_sent -= NFS_CWNDSCALE;
750 				/*
751 				 * Update rtt using a gain of 0.125 on the mean
752 				 * and a gain of 0.25 on the deviation.
753 				 */
754 				if (rep->r_flags & R_TIMING) {
755 					/*
756 					 * Since the timer resolution of
757 					 * NFS_HZ is so course, it can often
758 					 * result in r_rtt == 0. Since
759 					 * r_rtt == N means that the actual
760 					 * rtt is between N+dt and N+2-dt ticks,
761 					 * add 1.
762 					 */
763 					t1 = rep->r_rtt + 1;
764 					t1 -= (NFS_SRTT(rep) >> 3);
765 					NFS_SRTT(rep) += t1;
766 					if (t1 < 0)
767 						t1 = -t1;
768 					t1 -= (NFS_SDRTT(rep) >> 2);
769 					NFS_SDRTT(rep) += t1;
770 				}
771 				nmp->nm_timeouts = 0;
772 				break;
773 			}
774 			rep = rep->r_next;
775 		}
776 		/*
777 		 * If not matched to a request, drop it.
778 		 * If it's mine, get out.
779 		 */
780 		if (rep == &nfsreqh) {
781 			nfsstats.rpcunexpected++;
782 			m_freem(mrep);
783 		} else if (rep == myrep)
784 			return (0);
785 	}
786 }
787 
788 /*
789  * nfs_request - goes something like this
790  *	- fill in request struct
791  *	- links it into list
792  *	- calls nfs_send() for first transmit
793  *	- calls nfs_receive() to get reply
794  *	- break down rpc header and return with nfs reply pointed to
795  *	  by mrep or error
796  * nb: always frees up mreq mbuf list
797  */
798 nfs_request(vp, mrest, procnum, procp, cred, mrp, mdp, dposp)
799 	struct vnode *vp;
800 	struct mbuf *mrest;
801 	int procnum;
802 	struct proc *procp;
803 	struct ucred *cred;
804 	struct mbuf **mrp;
805 	struct mbuf **mdp;
806 	caddr_t *dposp;
807 {
808 	register struct mbuf *m, *mrep;
809 	register struct nfsreq *rep;
810 	register u_long *tl;
811 	register int i;
812 	struct nfsmount *nmp;
813 	struct mbuf *md, *mheadend;
814 	struct nfsreq *reph;
815 	struct nfsnode *tp, *np;
816 	time_t reqtime, waituntil;
817 	caddr_t dpos, cp2;
818 	int t1, nqlflag, cachable, s, error = 0, mrest_len, auth_len, auth_type;
819 	int trylater_delay = NQ_TRYLATERDEL, trylater_cnt = 0, failed_auth = 0;
820 	u_long xid;
821 	char *auth_str;
822 
823 	nmp = VFSTONFS(vp->v_mount);
824 	MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
825 	rep->r_nmp = nmp;
826 	rep->r_vp = vp;
827 	rep->r_procp = procp;
828 	rep->r_procnum = procnum;
829 	i = 0;
830 	m = mrest;
831 	while (m) {
832 		i += m->m_len;
833 		m = m->m_next;
834 	}
835 	mrest_len = i;
836 
837 	/*
838 	 * Get the RPC header with authorization.
839 	 */
840 kerbauth:
841 	auth_str = (char *)0;
842 	if (nmp->nm_flag & NFSMNT_KERB) {
843 		if (failed_auth) {
844 			error = nfs_getauth(nmp, rep, cred, &auth_type,
845 				&auth_str, &auth_len);
846 			if (error) {
847 				free((caddr_t)rep, M_NFSREQ);
848 				m_freem(mrest);
849 				return (error);
850 			}
851 		} else {
852 			auth_type = RPCAUTH_UNIX;
853 			auth_len = 5 * NFSX_UNSIGNED;
854 		}
855 	} else {
856 		auth_type = RPCAUTH_UNIX;
857 		auth_len = ((((cred->cr_ngroups - 1) > nmp->nm_numgrps) ?
858 			nmp->nm_numgrps : (cred->cr_ngroups - 1)) << 2) +
859 			5 * NFSX_UNSIGNED;
860 	}
861 	m = nfsm_rpchead(cred, (nmp->nm_flag & NFSMNT_NQNFS), procnum,
862 	     auth_type, auth_len, auth_str, mrest, mrest_len, &mheadend, &xid);
863 	if (auth_str)
864 		free(auth_str, M_TEMP);
865 
866 	/*
867 	 * For stream protocols, insert a Sun RPC Record Mark.
868 	 */
869 	if (nmp->nm_sotype == SOCK_STREAM) {
870 		M_PREPEND(m, NFSX_UNSIGNED, M_WAIT);
871 		*mtod(m, u_long *) = htonl(0x80000000 |
872 			 (m->m_pkthdr.len - NFSX_UNSIGNED));
873 	}
874 	rep->r_mreq = m;
875 	rep->r_xid = xid;
876 tryagain:
877 	if (nmp->nm_flag & NFSMNT_SOFT)
878 		rep->r_retry = nmp->nm_retry;
879 	else
880 		rep->r_retry = NFS_MAXREXMIT + 1;	/* past clip limit */
881 	rep->r_rtt = rep->r_rexmit = 0;
882 	if (proct[procnum] > 0)
883 		rep->r_flags = R_TIMING;
884 	else
885 		rep->r_flags = 0;
886 	rep->r_mrep = NULL;
887 
888 	/*
889 	 * Do the client side RPC.
890 	 */
891 	nfsstats.rpcrequests++;
892 	/*
893 	 * Chain request into list of outstanding requests. Be sure
894 	 * to put it LAST so timer finds oldest requests first.
895 	 */
896 	s = splsoftclock();
897 	reph = &nfsreqh;
898 	reph->r_prev->r_next = rep;
899 	rep->r_prev = reph->r_prev;
900 	reph->r_prev = rep;
901 	rep->r_next = reph;
902 
903 	/* Get send time for nqnfs */
904 	reqtime = time.tv_sec;
905 
906 	/*
907 	 * If backing off another request or avoiding congestion, don't
908 	 * send this one now but let timer do it. If not timing a request,
909 	 * do it now.
910 	 */
911 	if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM ||
912 		(nmp->nm_flag & NFSMNT_DUMBTIMR) ||
913 		nmp->nm_sent < nmp->nm_cwnd)) {
914 		splx(s);
915 		if (nmp->nm_soflags & PR_CONNREQUIRED)
916 			error = nfs_sndlock(&nmp->nm_flag, rep);
917 		if (!error) {
918 			m = m_copym(m, 0, M_COPYALL, M_WAIT);
919 			error = nfs_send(nmp->nm_so, nmp->nm_nam, m, rep);
920 			if (nmp->nm_soflags & PR_CONNREQUIRED)
921 				nfs_sndunlock(&nmp->nm_flag);
922 		}
923 		if (!error && (rep->r_flags & R_MUSTRESEND) == 0) {
924 			nmp->nm_sent += NFS_CWNDSCALE;
925 			rep->r_flags |= R_SENT;
926 		}
927 	} else {
928 		splx(s);
929 		rep->r_rtt = -1;
930 	}
931 
932 	/*
933 	 * Wait for the reply from our send or the timer's.
934 	 */
935 	if (!error)
936 		error = nfs_reply(rep);
937 
938 	/*
939 	 * RPC done, unlink the request.
940 	 */
941 	s = splsoftclock();
942 	rep->r_prev->r_next = rep->r_next;
943 	rep->r_next->r_prev = rep->r_prev;
944 	splx(s);
945 
946 	/*
947 	 * If there was a successful reply and a tprintf msg.
948 	 * tprintf a response.
949 	 */
950 	if (!error && (rep->r_flags & R_TPRINTFMSG))
951 		nfs_msg(rep->r_procp, nmp->nm_mountp->mnt_stat.f_mntfromname,
952 		    "is alive again");
953 	mrep = rep->r_mrep;
954 	md = rep->r_md;
955 	dpos = rep->r_dpos;
956 	if (error) {
957 		m_freem(rep->r_mreq);
958 		free((caddr_t)rep, M_NFSREQ);
959 		return (error);
960 	}
961 
962 	/*
963 	 * break down the rpc header and check if ok
964 	 */
965 	nfsm_dissect(tl, u_long *, 3*NFSX_UNSIGNED);
966 	if (*tl++ == rpc_msgdenied) {
967 		if (*tl == rpc_mismatch)
968 			error = EOPNOTSUPP;
969 		else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) {
970 			if (*tl == rpc_rejectedcred && failed_auth == 0) {
971 				failed_auth++;
972 				mheadend->m_next = (struct mbuf *)0;
973 				m_freem(mrep);
974 				m_freem(rep->r_mreq);
975 				goto kerbauth;
976 			} else
977 				error = EAUTH;
978 		} else
979 			error = EACCES;
980 		m_freem(mrep);
981 		m_freem(rep->r_mreq);
982 		free((caddr_t)rep, M_NFSREQ);
983 		return (error);
984 	}
985 
986 	/*
987 	 * skip over the auth_verf, someday we may want to cache auth_short's
988 	 * for nfs_reqhead(), but for now just dump it
989 	 */
990 	if (*++tl != 0) {
991 		i = nfsm_rndup(fxdr_unsigned(long, *tl));
992 		nfsm_adv(i);
993 	}
994 	nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
995 	/* 0 == ok */
996 	if (*tl == 0) {
997 		nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
998 		if (*tl != 0) {
999 			error = fxdr_unsigned(int, *tl);
1000 			m_freem(mrep);
1001 			if ((nmp->nm_flag & NFSMNT_NQNFS) &&
1002 			    error == NQNFS_TRYLATER) {
1003 				error = 0;
1004 				waituntil = time.tv_sec + trylater_delay;
1005 				while (time.tv_sec < waituntil)
1006 					(void) tsleep((caddr_t)&lbolt,
1007 						PSOCK, "nqnfstry", 0);
1008 				trylater_delay *= nfs_backoff[trylater_cnt];
1009 				if (trylater_cnt < 7)
1010 					trylater_cnt++;
1011 				goto tryagain;
1012 			}
1013 			m_freem(rep->r_mreq);
1014 			free((caddr_t)rep, M_NFSREQ);
1015 			return (error);
1016 		}
1017 
1018 		/*
1019 		 * For nqnfs, get any lease in reply
1020 		 */
1021 		if (nmp->nm_flag & NFSMNT_NQNFS) {
1022 			nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
1023 			if (*tl) {
1024 				np = VTONFS(vp);
1025 				nqlflag = fxdr_unsigned(int, *tl);
1026 				nfsm_dissect(tl, u_long *, 4*NFSX_UNSIGNED);
1027 				cachable = fxdr_unsigned(int, *tl++);
1028 				reqtime += fxdr_unsigned(int, *tl++);
1029 				if (reqtime > time.tv_sec) {
1030 				    if (np->n_tnext) {
1031 					if (np->n_tnext == (struct nfsnode *)nmp)
1032 					    nmp->nm_tprev = np->n_tprev;
1033 					else
1034 					    np->n_tnext->n_tprev = np->n_tprev;
1035 					if (np->n_tprev == (struct nfsnode *)nmp)
1036 					    nmp->nm_tnext = np->n_tnext;
1037 					else
1038 					    np->n_tprev->n_tnext = np->n_tnext;
1039 					if (nqlflag == NQL_WRITE)
1040 					    np->n_flag |= NQNFSWRITE;
1041 				    } else if (nqlflag == NQL_READ)
1042 					np->n_flag &= ~NQNFSWRITE;
1043 				    else
1044 					np->n_flag |= NQNFSWRITE;
1045 				    if (cachable)
1046 					np->n_flag &= ~NQNFSNONCACHE;
1047 				    else
1048 					np->n_flag |= NQNFSNONCACHE;
1049 				    np->n_expiry = reqtime;
1050 				    fxdr_hyper(tl, &np->n_lrev);
1051 				    tp = nmp->nm_tprev;
1052 				    while (tp != (struct nfsnode *)nmp &&
1053 				           tp->n_expiry > np->n_expiry)
1054 						tp = tp->n_tprev;
1055 				    if (tp == (struct nfsnode *)nmp) {
1056 					np->n_tnext = nmp->nm_tnext;
1057 					nmp->nm_tnext = np;
1058 				    } else {
1059 					np->n_tnext = tp->n_tnext;
1060 					tp->n_tnext = np;
1061 				    }
1062 				    np->n_tprev = tp;
1063 				    if (np->n_tnext == (struct nfsnode *)nmp)
1064 					nmp->nm_tprev = np;
1065 				    else
1066 					np->n_tnext->n_tprev = np;
1067 				}
1068 			}
1069 		}
1070 		*mrp = mrep;
1071 		*mdp = md;
1072 		*dposp = dpos;
1073 		m_freem(rep->r_mreq);
1074 		FREE((caddr_t)rep, M_NFSREQ);
1075 		return (0);
1076 	}
1077 	m_freem(mrep);
1078 	m_freem(rep->r_mreq);
1079 	free((caddr_t)rep, M_NFSREQ);
1080 	error = EPROTONOSUPPORT;
1081 nfsmout:
1082 	return (error);
1083 }
1084 
1085 /*
1086  * Generate the rpc reply header
1087  * siz arg. is used to decide if adding a cluster is worthwhile
1088  */
1089 nfs_rephead(siz, nd, err, cache, frev, mrq, mbp, bposp)
1090 	int siz;
1091 	struct nfsd *nd;
1092 	int err;
1093 	int cache;
1094 	u_quad_t *frev;
1095 	struct mbuf **mrq;
1096 	struct mbuf **mbp;
1097 	caddr_t *bposp;
1098 {
1099 	register u_long *tl;
1100 	register struct mbuf *mreq;
1101 	caddr_t bpos;
1102 	struct mbuf *mb, *mb2;
1103 
1104 	MGETHDR(mreq, M_WAIT, MT_DATA);
1105 	mb = mreq;
1106 	/*
1107 	 * If this is a big reply, use a cluster else
1108 	 * try and leave leading space for the lower level headers.
1109 	 */
1110 	siz += RPC_REPLYSIZ;
1111 	if (siz >= MINCLSIZE) {
1112 		MCLGET(mreq, M_WAIT);
1113 	} else
1114 		mreq->m_data += max_hdr;
1115 	tl = mtod(mreq, u_long *);
1116 	mreq->m_len = 6*NFSX_UNSIGNED;
1117 	bpos = ((caddr_t)tl)+mreq->m_len;
1118 	*tl++ = nd->nd_retxid;
1119 	*tl++ = rpc_reply;
1120 	if (err == ERPCMISMATCH || err == NQNFS_AUTHERR) {
1121 		*tl++ = rpc_msgdenied;
1122 		if (err == NQNFS_AUTHERR) {
1123 			*tl++ = rpc_autherr;
1124 			*tl = rpc_rejectedcred;
1125 			mreq->m_len -= NFSX_UNSIGNED;
1126 			bpos -= NFSX_UNSIGNED;
1127 		} else {
1128 			*tl++ = rpc_mismatch;
1129 			*tl++ = txdr_unsigned(2);
1130 			*tl = txdr_unsigned(2);
1131 		}
1132 	} else {
1133 		*tl++ = rpc_msgaccepted;
1134 		*tl++ = 0;
1135 		*tl++ = 0;
1136 		switch (err) {
1137 		case EPROGUNAVAIL:
1138 			*tl = txdr_unsigned(RPC_PROGUNAVAIL);
1139 			break;
1140 		case EPROGMISMATCH:
1141 			*tl = txdr_unsigned(RPC_PROGMISMATCH);
1142 			nfsm_build(tl, u_long *, 2*NFSX_UNSIGNED);
1143 			*tl++ = txdr_unsigned(2);
1144 			*tl = txdr_unsigned(2);	/* someday 3 */
1145 			break;
1146 		case EPROCUNAVAIL:
1147 			*tl = txdr_unsigned(RPC_PROCUNAVAIL);
1148 			break;
1149 		default:
1150 			*tl = 0;
1151 			if (err != VNOVAL) {
1152 				nfsm_build(tl, u_long *, NFSX_UNSIGNED);
1153 				if (err)
1154 					*tl = txdr_unsigned(nfsrv_errmap[err - 1]);
1155 				else
1156 					*tl = 0;
1157 			}
1158 			break;
1159 		};
1160 	}
1161 
1162 	/*
1163 	 * For nqnfs, piggyback lease as requested.
1164 	 */
1165 	if (nd->nd_nqlflag != NQL_NOVAL && err == 0) {
1166 		if (nd->nd_nqlflag) {
1167 			nfsm_build(tl, u_long *, 5*NFSX_UNSIGNED);
1168 			*tl++ = txdr_unsigned(nd->nd_nqlflag);
1169 			*tl++ = txdr_unsigned(cache);
1170 			*tl++ = txdr_unsigned(nd->nd_duration);
1171 			txdr_hyper(frev, tl);
1172 		} else {
1173 			if (nd->nd_nqlflag != 0)
1174 				panic("nqreph");
1175 			nfsm_build(tl, u_long *, NFSX_UNSIGNED);
1176 			*tl = 0;
1177 		}
1178 	}
1179 	*mrq = mreq;
1180 	*mbp = mb;
1181 	*bposp = bpos;
1182 	if (err != 0 && err != VNOVAL)
1183 		nfsstats.srvrpc_errs++;
1184 	return (0);
1185 }
1186 
1187 /*
1188  * Nfs timer routine
1189  * Scan the nfsreq list and retranmit any requests that have timed out
1190  * To avoid retransmission attempts on STREAM sockets (in the future) make
1191  * sure to set the r_retry field to 0 (implies nm_retry == 0).
1192  */
1193 nfs_timer()
1194 {
1195 	register struct nfsreq *rep;
1196 	register struct mbuf *m;
1197 	register struct socket *so;
1198 	register struct nfsmount *nmp;
1199 	register int timeo;
1200 	static long lasttime = 0;
1201 	int s, error;
1202 
1203 	s = splnet();
1204 	for (rep = nfsreqh.r_next; rep != &nfsreqh; rep = rep->r_next) {
1205 		nmp = rep->r_nmp;
1206 		if (rep->r_mrep || (rep->r_flags & R_SOFTTERM))
1207 			continue;
1208 		if (nfs_sigintr(nmp, rep, rep->r_procp)) {
1209 			rep->r_flags |= R_SOFTTERM;
1210 			continue;
1211 		}
1212 		if (rep->r_rtt >= 0) {
1213 			rep->r_rtt++;
1214 			if (nmp->nm_flag & NFSMNT_DUMBTIMR)
1215 				timeo = nmp->nm_timeo;
1216 			else
1217 				timeo = NFS_RTO(nmp, proct[rep->r_procnum]);
1218 			if (nmp->nm_timeouts > 0)
1219 				timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1220 			if (rep->r_rtt <= timeo)
1221 				continue;
1222 			if (nmp->nm_timeouts < 8)
1223 				nmp->nm_timeouts++;
1224 		}
1225 		/*
1226 		 * Check for server not responding
1227 		 */
1228 		if ((rep->r_flags & R_TPRINTFMSG) == 0 &&
1229 		     rep->r_rexmit > nmp->nm_deadthresh) {
1230 			nfs_msg(rep->r_procp,
1231 			    nmp->nm_mountp->mnt_stat.f_mntfromname,
1232 			    "not responding");
1233 			rep->r_flags |= R_TPRINTFMSG;
1234 		}
1235 		if (rep->r_rexmit >= rep->r_retry) {	/* too many */
1236 			nfsstats.rpctimeouts++;
1237 			rep->r_flags |= R_SOFTTERM;
1238 			continue;
1239 		}
1240 		if (nmp->nm_sotype != SOCK_DGRAM) {
1241 			if (++rep->r_rexmit > NFS_MAXREXMIT)
1242 				rep->r_rexmit = NFS_MAXREXMIT;
1243 			continue;
1244 		}
1245 		if ((so = nmp->nm_so) == NULL)
1246 			continue;
1247 
1248 		/*
1249 		 * If there is enough space and the window allows..
1250 		 *	Resend it
1251 		 * Set r_rtt to -1 in case we fail to send it now.
1252 		 */
1253 		rep->r_rtt = -1;
1254 		if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
1255 		   ((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1256 		    (rep->r_flags & R_SENT) ||
1257 		    nmp->nm_sent < nmp->nm_cwnd) &&
1258 		   (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){
1259 			if ((nmp->nm_flag & NFSMNT_NOCONN) == 0)
1260 			    error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1261 			    (struct mbuf *)0, (struct mbuf *)0);
1262 			else
1263 			    error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1264 			    nmp->nm_nam, (struct mbuf *)0);
1265 			if (error) {
1266 				if (NFSIGNORE_SOERROR(nmp->nm_soflags, error))
1267 					so->so_error = 0;
1268 			} else {
1269 				/*
1270 				 * Iff first send, start timing
1271 				 * else turn timing off, backoff timer
1272 				 * and divide congestion window by 2.
1273 				 */
1274 				if (rep->r_flags & R_SENT) {
1275 					rep->r_flags &= ~R_TIMING;
1276 					if (++rep->r_rexmit > NFS_MAXREXMIT)
1277 						rep->r_rexmit = NFS_MAXREXMIT;
1278 					nmp->nm_cwnd >>= 1;
1279 					if (nmp->nm_cwnd < NFS_CWNDSCALE)
1280 						nmp->nm_cwnd = NFS_CWNDSCALE;
1281 					nfsstats.rpcretries++;
1282 				} else {
1283 					rep->r_flags |= R_SENT;
1284 					nmp->nm_sent += NFS_CWNDSCALE;
1285 				}
1286 				rep->r_rtt = 0;
1287 			}
1288 		}
1289 	}
1290 
1291 	/*
1292 	 * Call the nqnfs server timer once a second to handle leases.
1293 	 */
1294 	if (lasttime != time.tv_sec) {
1295 		lasttime = time.tv_sec;
1296 		nqnfs_serverd();
1297 	}
1298 	splx(s);
1299 	timeout(nfs_timer, (caddr_t)0, hz/NFS_HZ);
1300 }
1301 
1302 /*
1303  * Test for a termination condition pending on the process.
1304  * This is used for NFSMNT_INT mounts.
1305  */
1306 nfs_sigintr(nmp, rep, p)
1307 	struct nfsmount *nmp;
1308 	struct nfsreq *rep;
1309 	register struct proc *p;
1310 {
1311 
1312 	if (rep && (rep->r_flags & R_SOFTTERM))
1313 		return (EINTR);
1314 	if (!(nmp->nm_flag & NFSMNT_INT))
1315 		return (0);
1316 	if (p && p->p_sig && (((p->p_sig &~ p->p_sigmask) &~ p->p_sigignore) &
1317 	    NFSINT_SIGMASK))
1318 		return (EINTR);
1319 	return (0);
1320 }
1321 
1322 /*
1323  * Lock a socket against others.
1324  * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
1325  * and also to avoid race conditions between the processes with nfs requests
1326  * in progress when a reconnect is necessary.
1327  */
1328 nfs_sndlock(flagp, rep)
1329 	register int *flagp;
1330 	struct nfsreq *rep;
1331 {
1332 	struct proc *p;
1333 
1334 	if (rep)
1335 		p = rep->r_procp;
1336 	else
1337 		p = (struct proc *)0;
1338 	while (*flagp & NFSMNT_SNDLOCK) {
1339 		if (nfs_sigintr(rep->r_nmp, rep, p))
1340 			return (EINTR);
1341 		*flagp |= NFSMNT_WANTSND;
1342 		(void) tsleep((caddr_t)flagp, PZERO-1, "nfsndlck", 0);
1343 	}
1344 	*flagp |= NFSMNT_SNDLOCK;
1345 	return (0);
1346 }
1347 
1348 /*
1349  * Unlock the stream socket for others.
1350  */
1351 void
1352 nfs_sndunlock(flagp)
1353 	register int *flagp;
1354 {
1355 
1356 	if ((*flagp & NFSMNT_SNDLOCK) == 0)
1357 		panic("nfs sndunlock");
1358 	*flagp &= ~NFSMNT_SNDLOCK;
1359 	if (*flagp & NFSMNT_WANTSND) {
1360 		*flagp &= ~NFSMNT_WANTSND;
1361 		wakeup((caddr_t)flagp);
1362 	}
1363 }
1364 
1365 nfs_rcvlock(rep)
1366 	register struct nfsreq *rep;
1367 {
1368 	register int *flagp = &rep->r_nmp->nm_flag;
1369 
1370 	while (*flagp & NFSMNT_RCVLOCK) {
1371 		if (nfs_sigintr(rep->r_nmp, rep, rep->r_procp))
1372 			return (EINTR);
1373 		*flagp |= NFSMNT_WANTRCV;
1374 		(void) tsleep((caddr_t)flagp, PZERO-1, "nfsrcvlck", 0);
1375 	}
1376 	*flagp |= NFSMNT_RCVLOCK;
1377 	return (0);
1378 }
1379 
1380 /*
1381  * Unlock the stream socket for others.
1382  */
1383 void
1384 nfs_rcvunlock(flagp)
1385 	register int *flagp;
1386 {
1387 
1388 	if ((*flagp & NFSMNT_RCVLOCK) == 0)
1389 		panic("nfs rcvunlock");
1390 	*flagp &= ~NFSMNT_RCVLOCK;
1391 	if (*flagp & NFSMNT_WANTRCV) {
1392 		*flagp &= ~NFSMNT_WANTRCV;
1393 		wakeup((caddr_t)flagp);
1394 	}
1395 }
1396 
1397 /*
1398  * This function compares two net addresses by family and returns TRUE
1399  * if they are the same host.
1400  * If there is any doubt, return FALSE.
1401  * The AF_INET family is handled as a special case so that address mbufs
1402  * don't need to be saved to store "struct in_addr", which is only 4 bytes.
1403  */
1404 nfs_netaddr_match(family, haddr, hmask, nam)
1405 	int family;
1406 	union nethostaddr *haddr;
1407 	union nethostaddr *hmask;
1408 	struct mbuf *nam;
1409 {
1410 	register struct sockaddr_in *inetaddr;
1411 #ifdef ISO
1412 	register struct sockaddr_iso *isoaddr1, *isoaddr2;
1413 #endif
1414 
1415 
1416 	switch (family) {
1417 	case AF_INET:
1418 		inetaddr = mtod(nam, struct sockaddr_in *);
1419 		if (inetaddr->sin_family != AF_INET)
1420 			return (0);
1421 		if (hmask) {
1422 			if ((inetaddr->sin_addr.s_addr & hmask->had_inetaddr) ==
1423 			    (haddr->had_inetaddr & hmask->had_inetaddr))
1424 				return (1);
1425 		} else if (inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
1426 			return (1);
1427 		break;
1428 #ifdef ISO
1429 	case AF_ISO:
1430 		isoaddr1 = mtod(nam, struct sockaddr_iso *);
1431 		if (isoaddr1->siso_family != AF_ISO)
1432 			return (0);
1433 		isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
1434 		if (isoaddr1->siso_nlen > 0 &&
1435 		    isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
1436 		    SAME_ISOADDR(isoaddr1, isoaddr2))
1437 			return (1);
1438 		break;
1439 #endif	/* ISO */
1440 	default:
1441 		break;
1442 	};
1443 	return (0);
1444 }
1445 
1446 /*
1447  * Build hash lists of net addresses and hang them off the mount point.
1448  * Called by ufs_mount() to set up the lists of export addresses.
1449  */
1450 hang_addrlist(mp, argp)
1451 	struct mount *mp;
1452 	struct ufs_args *argp;
1453 {
1454 	register struct netaddrhash *np, **hnp;
1455 	register int i;
1456 	struct ufsmount *ump;
1457 	struct sockaddr *saddr;
1458 	struct mbuf *nam, *msk = (struct mbuf *)0;
1459 	union nethostaddr netmsk;
1460 	int error;
1461 
1462 	if (error = sockargs(&nam, (caddr_t)argp->saddr, argp->slen,
1463 	    MT_SONAME))
1464 	    return (error);
1465 	saddr = mtod(nam, struct sockaddr *);
1466 	ump = VFSTOUFS(mp);
1467 	if (saddr->sa_family == AF_INET &&
1468 	    ((struct sockaddr_in *)saddr)->sin_addr.s_addr == INADDR_ANY) {
1469 	    m_freem(nam);
1470 	    if (mp->mnt_flag & MNT_DEFEXPORTED)
1471 		return (EPERM);
1472 	    np = &ump->um_defexported;
1473 	    np->neth_exflags = argp->exflags;
1474 	    np->neth_anon = argp->anon;
1475 	    np->neth_anon.cr_ref = 1;
1476 	    mp->mnt_flag |= MNT_DEFEXPORTED;
1477 	    return (0);
1478 	}
1479 	if (argp->msklen > 0) {
1480 	    if (error = sockargs(&msk, (caddr_t)argp->smask, argp->msklen,
1481 		MT_SONAME)) {
1482 		m_freem(nam);
1483 		return (error);
1484 	    }
1485 
1486 	    /*
1487 	     * Scan all the hash lists to check against duplications.
1488 	     * For the net list, try both masks to catch a subnet
1489 	     * of another network.
1490 	     */
1491 	    hnp = &ump->um_netaddr[NETMASK_HASH];
1492 	    np = *hnp;
1493 	    if (saddr->sa_family == AF_INET)
1494 		netmsk.had_inetaddr =
1495 		    mtod(msk, struct sockaddr_in *)->sin_addr.s_addr;
1496 	    else
1497 		netmsk.had_nam = msk;
1498 	    while (np) {
1499 		if (nfs_netaddr_match(np->neth_family, &np->neth_haddr,
1500 		    &np->neth_hmask, nam) ||
1501 		    nfs_netaddr_match(np->neth_family, &np->neth_haddr,
1502 		    &netmsk, nam)) {
1503 			m_freem(nam);
1504 			m_freem(msk);
1505 			return (EPERM);
1506 		}
1507 		np = np->neth_next;
1508 	    }
1509 	    for (i = 0; i < NETHASHSZ; i++) {
1510 		np = ump->um_netaddr[i];
1511 		while (np) {
1512 		    if (nfs_netaddr_match(np->neth_family, &np->neth_haddr,
1513 			&netmsk, nam)) {
1514 			m_freem(nam);
1515 			m_freem(msk);
1516 			return (EPERM);
1517 		    }
1518 		    np = np->neth_next;
1519 		}
1520 	    }
1521 	} else {
1522 	    hnp = &ump->um_netaddr[NETADDRHASH(saddr)];
1523 	    np = ump->um_netaddr[NETMASK_HASH];
1524 	    while (np) {
1525 		if (nfs_netaddr_match(np->neth_family, &np->neth_haddr,
1526 		    &np->neth_hmask, nam)) {
1527 		    m_freem(nam);
1528 		    return (EPERM);
1529 		}
1530 		np = np->neth_next;
1531 	    }
1532 	    np = *hnp;
1533 	    while (np) {
1534 		if (nfs_netaddr_match(np->neth_family, &np->neth_haddr,
1535 		    (union nethostaddr *)0, nam)) {
1536 		    m_freem(nam);
1537 		    return (EPERM);
1538 		}
1539 		np = np->neth_next;
1540 	    }
1541 	}
1542 	np = (struct netaddrhash *) malloc(sizeof(struct netaddrhash), M_NETADDR,
1543 	    M_WAITOK);
1544 	np->neth_family = saddr->sa_family;
1545 	if (saddr->sa_family == AF_INET) {
1546 		np->neth_inetaddr = ((struct sockaddr_in *)saddr)->sin_addr.s_addr;
1547 		m_freem(nam);
1548 		if (msk) {
1549 			np->neth_inetmask = netmsk.had_inetaddr;
1550 			m_freem(msk);
1551 			if (np->neth_inetaddr &~ np->neth_inetmask)
1552 				return (EPERM);
1553 		} else
1554 			np->neth_inetmask = 0xffffffff;
1555 	} else {
1556 		np->neth_nam = nam;
1557 		np->neth_msk = msk;
1558 	}
1559 	np->neth_exflags = argp->exflags;
1560 	np->neth_anon = argp->anon;
1561 	np->neth_anon.cr_ref = 1;
1562 	np->neth_next = *hnp;
1563 	*hnp = np;
1564 	return (0);
1565 }
1566 
1567 /*
1568  * Free the net address hash lists that are hanging off the mount points.
1569  */
1570 free_addrlist(ump)
1571 	struct ufsmount *ump;
1572 {
1573 	register struct netaddrhash *np, *onp;
1574 	register int i;
1575 
1576 	for (i = 0; i <= NETHASHSZ; i++) {
1577 		np = ump->um_netaddr[i];
1578 		ump->um_netaddr[i] = (struct netaddrhash *)0;
1579 		while (np) {
1580 			onp = np;
1581 			np = np->neth_next;
1582 			if (onp->neth_family != AF_INET) {
1583 				m_freem(onp->neth_nam);
1584 				m_freem(onp->neth_msk);
1585 			}
1586 			free((caddr_t)onp, M_NETADDR);
1587 		}
1588 	}
1589 }
1590 
1591 /*
1592  * Generate a hash code for an iso host address. Used by NETADDRHASH() for
1593  * iso addresses.
1594  */
1595 iso_addrhash(saddr)
1596 	struct sockaddr *saddr;
1597 {
1598 #ifdef ISO
1599 	register struct sockaddr_iso *siso;
1600 	register int i, sum;
1601 
1602 	sum = 0;
1603 	for (i = 0; i < siso->siso_nlen; i++)
1604 		sum += siso->siso_data[i];
1605 	return (sum & (NETHASHSZ - 1));
1606 #else
1607 	return (0);
1608 #endif	/* ISO */
1609 }
1610 
1611 /*
1612  * Check for badly aligned mbuf data areas and
1613  * realign data in an mbuf list by copying the data areas up, as required.
1614  */
1615 void
1616 nfs_realign(m, hsiz)
1617 	register struct mbuf *m;
1618 	int hsiz;
1619 {
1620 	register struct mbuf *m2;
1621 	register int siz, mlen, olen;
1622 	register caddr_t tcp, fcp;
1623 	struct mbuf *mnew;
1624 
1625 	while (m) {
1626 	    /*
1627 	     * This never happens for UDP, rarely happens for TCP
1628 	     * but frequently happens for iso transport.
1629 	     */
1630 	    if ((m->m_len & 0x3) || (mtod(m, int) & 0x3)) {
1631 		olen = m->m_len;
1632 		fcp = mtod(m, caddr_t);
1633 		m->m_flags &= ~M_PKTHDR;
1634 		if (m->m_flags & M_EXT)
1635 			m->m_data = m->m_ext.ext_buf;
1636 		else
1637 			m->m_data = m->m_dat;
1638 		m->m_len = 0;
1639 		tcp = mtod(m, caddr_t);
1640 		mnew = m;
1641 		m2 = m->m_next;
1642 
1643 		/*
1644 		 * If possible, only put the first invariant part
1645 		 * of the RPC header in the first mbuf.
1646 		 */
1647 		if (olen <= hsiz)
1648 			mlen = hsiz;
1649 		else
1650 			mlen = M_TRAILINGSPACE(m);
1651 
1652 		/*
1653 		 * Loop through the mbuf list consolidating data.
1654 		 */
1655 		while (m) {
1656 			while (olen > 0) {
1657 				if (mlen == 0) {
1658 					m2->m_flags &= ~M_PKTHDR;
1659 					if (m2->m_flags & M_EXT)
1660 						m2->m_data = m2->m_ext.ext_buf;
1661 					else
1662 						m2->m_data = m2->m_dat;
1663 					m2->m_len = 0;
1664 					mlen = M_TRAILINGSPACE(m2);
1665 					tcp = mtod(m2, caddr_t);
1666 					mnew = m2;
1667 					m2 = m2->m_next;
1668 				}
1669 				siz = MIN(mlen, olen);
1670 				if (tcp != fcp)
1671 					bcopy(fcp, tcp, siz);
1672 				mnew->m_len += siz;
1673 				mlen -= siz;
1674 				olen -= siz;
1675 				tcp += siz;
1676 				fcp += siz;
1677 			}
1678 			m = m->m_next;
1679 			if (m) {
1680 				olen = m->m_len;
1681 				fcp = mtod(m, caddr_t);
1682 			}
1683 		}
1684 
1685 		/*
1686 		 * Finally, set m_len == 0 for any trailing mbufs that have
1687 		 * been copied out of.
1688 		 */
1689 		while (m2) {
1690 			m2->m_len = 0;
1691 			m2 = m2->m_next;
1692 		}
1693 		return;
1694 	    }
1695 	    m = m->m_next;
1696 	}
1697 }
1698 
1699 /*
1700  * Socket upcall routine for the nfsd sockets.
1701  * The caddr_t arg is a pointer to the "struct nfssvc_sock".
1702  * Essentially do as much as possible non-blocking, else punt and it will
1703  * be called with M_WAIT from an nfsd.
1704  */
1705 void
1706 nfsrv_rcv(so, arg, waitflag)
1707 	struct socket *so;
1708 	caddr_t arg;
1709 	int waitflag;
1710 {
1711 	register struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
1712 	register struct mbuf *m;
1713 	struct mbuf *mp, *nam;
1714 	struct uio auio;
1715 	int flags, error;
1716 
1717 	if ((slp->ns_flag & SLP_VALID) == 0)
1718 		return;
1719 #ifdef notdef
1720 	/*
1721 	 * Define this to test for nfsds handling this under heavy load.
1722 	 */
1723 	if (waitflag == M_DONTWAIT) {
1724 		slp->ns_flag |= SLP_NEEDQ; goto dorecs;
1725 	}
1726 #endif
1727 	auio.uio_procp = NULL;
1728 	if (so->so_type == SOCK_STREAM) {
1729 		/*
1730 		 * If there are already records on the queue, defer soreceive()
1731 		 * to an nfsd so that there is feedback to the TCP layer that
1732 		 * the nfs servers are heavily loaded.
1733 		 */
1734 		if (slp->ns_rec && waitflag == M_DONTWAIT) {
1735 			slp->ns_flag |= SLP_NEEDQ;
1736 			goto dorecs;
1737 		}
1738 
1739 		/*
1740 		 * Do soreceive().
1741 		 */
1742 		auio.uio_resid = 1000000000;
1743 		flags = MSG_DONTWAIT;
1744 		error = soreceive(so, &nam, &auio, &mp, (struct mbuf **)0, &flags);
1745 		if (error || mp == (struct mbuf *)0) {
1746 			if (error == EWOULDBLOCK)
1747 				slp->ns_flag |= SLP_NEEDQ;
1748 			else
1749 				slp->ns_flag |= SLP_DISCONN;
1750 			goto dorecs;
1751 		}
1752 		m = mp;
1753 		if (slp->ns_rawend) {
1754 			slp->ns_rawend->m_next = m;
1755 			slp->ns_cc += 1000000000 - auio.uio_resid;
1756 		} else {
1757 			slp->ns_raw = m;
1758 			slp->ns_cc = 1000000000 - auio.uio_resid;
1759 		}
1760 		while (m->m_next)
1761 			m = m->m_next;
1762 		slp->ns_rawend = m;
1763 
1764 		/*
1765 		 * Now try and parse record(s) out of the raw stream data.
1766 		 */
1767 		if (error = nfsrv_getstream(slp, waitflag)) {
1768 			if (error == EPERM)
1769 				slp->ns_flag |= SLP_DISCONN;
1770 			else
1771 				slp->ns_flag |= SLP_NEEDQ;
1772 		}
1773 	} else {
1774 		do {
1775 			auio.uio_resid = 1000000000;
1776 			flags = MSG_DONTWAIT;
1777 			error = soreceive(so, &nam, &auio, &mp,
1778 						(struct mbuf **)0, &flags);
1779 			if (mp) {
1780 				nfs_realign(mp, 10 * NFSX_UNSIGNED);
1781 				if (nam) {
1782 					m = nam;
1783 					m->m_next = mp;
1784 				} else
1785 					m = mp;
1786 				if (slp->ns_recend)
1787 					slp->ns_recend->m_nextpkt = m;
1788 				else
1789 					slp->ns_rec = m;
1790 				slp->ns_recend = m;
1791 				m->m_nextpkt = (struct mbuf *)0;
1792 			}
1793 			if (error) {
1794 				if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
1795 					&& error != EWOULDBLOCK) {
1796 					slp->ns_flag |= SLP_DISCONN;
1797 					goto dorecs;
1798 				}
1799 			}
1800 		} while (mp);
1801 	}
1802 
1803 	/*
1804 	 * Now try and process the request records, non-blocking.
1805 	 */
1806 dorecs:
1807 	if (waitflag == M_DONTWAIT &&
1808 		(slp->ns_rec || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN))))
1809 		nfsrv_wakenfsd(slp);
1810 }
1811 
1812 /*
1813  * Try and extract an RPC request from the mbuf data list received on a
1814  * stream socket. The "waitflag" argument indicates whether or not it
1815  * can sleep.
1816  */
1817 nfsrv_getstream(slp, waitflag)
1818 	register struct nfssvc_sock *slp;
1819 	int waitflag;
1820 {
1821 	register struct mbuf *m;
1822 	register char *cp1, *cp2;
1823 	register int len;
1824 	struct mbuf *om, *m2, *recm;
1825 	u_long recmark;
1826 
1827 	if (slp->ns_flag & SLP_GETSTREAM)
1828 		panic("nfs getstream");
1829 	slp->ns_flag |= SLP_GETSTREAM;
1830 	for (;;) {
1831 	    if (slp->ns_reclen == 0) {
1832 		if (slp->ns_cc < NFSX_UNSIGNED) {
1833 			slp->ns_flag &= ~SLP_GETSTREAM;
1834 			return (0);
1835 		}
1836 		m = slp->ns_raw;
1837 		if (m->m_len >= NFSX_UNSIGNED) {
1838 			bcopy(mtod(m, caddr_t), (caddr_t)&recmark, NFSX_UNSIGNED);
1839 			m->m_data += NFSX_UNSIGNED;
1840 			m->m_len -= NFSX_UNSIGNED;
1841 		} else {
1842 			cp1 = (caddr_t)&recmark;
1843 			cp2 = mtod(m, caddr_t);
1844 			while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) {
1845 				while (m->m_len == 0) {
1846 					m = m->m_next;
1847 					cp2 = mtod(m, caddr_t);
1848 				}
1849 				*cp1++ = *cp2++;
1850 				m->m_data++;
1851 				m->m_len--;
1852 			}
1853 		}
1854 		slp->ns_cc -= NFSX_UNSIGNED;
1855 		slp->ns_reclen = ntohl(recmark) & ~0x80000000;
1856 		if (slp->ns_reclen < NFS_MINPACKET || slp->ns_reclen > NFS_MAXPACKET) {
1857 			slp->ns_flag &= ~SLP_GETSTREAM;
1858 			return (EPERM);
1859 		}
1860 	    }
1861 
1862 	    /*
1863 	     * Now get the record part.
1864 	     */
1865 	    if (slp->ns_cc == slp->ns_reclen) {
1866 		recm = slp->ns_raw;
1867 		slp->ns_raw = slp->ns_rawend = (struct mbuf *)0;
1868 		slp->ns_cc = slp->ns_reclen = 0;
1869 	    } else if (slp->ns_cc > slp->ns_reclen) {
1870 		len = 0;
1871 		m = slp->ns_raw;
1872 		om = (struct mbuf *)0;
1873 		while (len < slp->ns_reclen) {
1874 			if ((len + m->m_len) > slp->ns_reclen) {
1875 				m2 = m_copym(m, 0, slp->ns_reclen - len,
1876 					waitflag);
1877 				if (m2) {
1878 					if (om) {
1879 						om->m_next = m2;
1880 						recm = slp->ns_raw;
1881 					} else
1882 						recm = m2;
1883 					m->m_data += slp->ns_reclen - len;
1884 					m->m_len -= slp->ns_reclen - len;
1885 					len = slp->ns_reclen;
1886 				} else {
1887 					slp->ns_flag &= ~SLP_GETSTREAM;
1888 					return (EWOULDBLOCK);
1889 				}
1890 			} else if ((len + m->m_len) == slp->ns_reclen) {
1891 				om = m;
1892 				len += m->m_len;
1893 				m = m->m_next;
1894 				recm = slp->ns_raw;
1895 				om->m_next = (struct mbuf *)0;
1896 			} else {
1897 				om = m;
1898 				len += m->m_len;
1899 				m = m->m_next;
1900 			}
1901 		}
1902 		slp->ns_raw = m;
1903 		slp->ns_cc -= len;
1904 		slp->ns_reclen = 0;
1905 	    } else {
1906 		slp->ns_flag &= ~SLP_GETSTREAM;
1907 		return (0);
1908 	    }
1909 	    nfs_realign(recm, 10 * NFSX_UNSIGNED);
1910 	    if (slp->ns_recend)
1911 		slp->ns_recend->m_nextpkt = recm;
1912 	    else
1913 		slp->ns_rec = recm;
1914 	    slp->ns_recend = recm;
1915 	}
1916 }
1917 
1918 /*
1919  * Parse an RPC header.
1920  */
1921 nfsrv_dorec(slp, nd)
1922 	register struct nfssvc_sock *slp;
1923 	register struct nfsd *nd;
1924 {
1925 	register struct mbuf *m;
1926 	int error;
1927 
1928 	if ((slp->ns_flag & SLP_VALID) == 0 ||
1929 	    (m = slp->ns_rec) == (struct mbuf *)0)
1930 		return (ENOBUFS);
1931 	if (slp->ns_rec = m->m_nextpkt)
1932 		m->m_nextpkt = (struct mbuf *)0;
1933 	else
1934 		slp->ns_recend = (struct mbuf *)0;
1935 	if (m->m_type == MT_SONAME) {
1936 		nd->nd_nam = m;
1937 		nd->nd_md = nd->nd_mrep = m->m_next;
1938 		m->m_next = (struct mbuf *)0;
1939 	} else {
1940 		nd->nd_nam = (struct mbuf *)0;
1941 		nd->nd_md = nd->nd_mrep = m;
1942 	}
1943 	nd->nd_dpos = mtod(nd->nd_md, caddr_t);
1944 	if (error = nfs_getreq(nd, TRUE)) {
1945 		m_freem(nd->nd_nam);
1946 		return (error);
1947 	}
1948 	return (0);
1949 }
1950 
1951 /*
1952  * Parse an RPC request
1953  * - verify it
1954  * - fill in the cred struct.
1955  */
1956 nfs_getreq(nd, has_header)
1957 	register struct nfsd *nd;
1958 	int has_header;
1959 {
1960 	register int len, i;
1961 	register u_long *tl;
1962 	register long t1;
1963 	struct uio uio;
1964 	struct iovec iov;
1965 	caddr_t dpos, cp2;
1966 	u_long nfsvers, auth_type;
1967 	int error = 0, nqnfs = 0;
1968 	struct mbuf *mrep, *md;
1969 
1970 	mrep = nd->nd_mrep;
1971 	md = nd->nd_md;
1972 	dpos = nd->nd_dpos;
1973 	if (has_header) {
1974 		nfsm_dissect(tl, u_long *, 10*NFSX_UNSIGNED);
1975 		nd->nd_retxid = *tl++;
1976 		if (*tl++ != rpc_call) {
1977 			m_freem(mrep);
1978 			return (EBADRPC);
1979 		}
1980 	} else {
1981 		nfsm_dissect(tl, u_long *, 8*NFSX_UNSIGNED);
1982 	}
1983 	nd->nd_repstat = 0;
1984 	if (*tl++ != rpc_vers) {
1985 		nd->nd_repstat = ERPCMISMATCH;
1986 		nd->nd_procnum = NFSPROC_NOOP;
1987 		return (0);
1988 	}
1989 	nfsvers = nfs_vers;
1990 	if (*tl != nfs_prog) {
1991 		if (*tl == nqnfs_prog) {
1992 			nqnfs++;
1993 			nfsvers = nqnfs_vers;
1994 		} else {
1995 			nd->nd_repstat = EPROGUNAVAIL;
1996 			nd->nd_procnum = NFSPROC_NOOP;
1997 			return (0);
1998 		}
1999 	}
2000 	tl++;
2001 	if (*tl++ != nfsvers) {
2002 		nd->nd_repstat = EPROGMISMATCH;
2003 		nd->nd_procnum = NFSPROC_NOOP;
2004 		return (0);
2005 	}
2006 	nd->nd_procnum = fxdr_unsigned(u_long, *tl++);
2007 	if (nd->nd_procnum == NFSPROC_NULL)
2008 		return (0);
2009 	if (nd->nd_procnum >= NFS_NPROCS ||
2010 		(!nqnfs && nd->nd_procnum > NFSPROC_STATFS) ||
2011 		(*tl != rpc_auth_unix && *tl != rpc_auth_kerb)) {
2012 		nd->nd_repstat = EPROCUNAVAIL;
2013 		nd->nd_procnum = NFSPROC_NOOP;
2014 		return (0);
2015 	}
2016 	auth_type = *tl++;
2017 	len = fxdr_unsigned(int, *tl++);
2018 	if (len < 0 || len > RPCAUTH_MAXSIZ) {
2019 		m_freem(mrep);
2020 		return (EBADRPC);
2021 	}
2022 
2023 	/*
2024 	 * Handle auth_unix or auth_kerb.
2025 	 */
2026 	if (auth_type == rpc_auth_unix) {
2027 		len = fxdr_unsigned(int, *++tl);
2028 		if (len < 0 || len > NFS_MAXNAMLEN) {
2029 			m_freem(mrep);
2030 			return (EBADRPC);
2031 		}
2032 		nfsm_adv(nfsm_rndup(len));
2033 		nfsm_dissect(tl, u_long *, 3*NFSX_UNSIGNED);
2034 		nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
2035 		nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++);
2036 		len = fxdr_unsigned(int, *tl);
2037 		if (len < 0 || len > RPCAUTH_UNIXGIDS) {
2038 			m_freem(mrep);
2039 			return (EBADRPC);
2040 		}
2041 		nfsm_dissect(tl, u_long *, (len + 2)*NFSX_UNSIGNED);
2042 		for (i = 1; i <= len; i++)
2043 			if (i < NGROUPS)
2044 				nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++);
2045 			else
2046 				tl++;
2047 		nd->nd_cr.cr_ngroups = (len >= NGROUPS) ? NGROUPS : (len + 1);
2048 	} else if (auth_type == rpc_auth_kerb) {
2049 		nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
2050 		nd->nd_authlen = fxdr_unsigned(int, *tl);
2051 		iov.iov_len = uio.uio_resid = nfsm_rndup(nd->nd_authlen);
2052 		if (uio.uio_resid > (len - 2*NFSX_UNSIGNED)) {
2053 			m_freem(mrep);
2054 			return (EBADRPC);
2055 		}
2056 		uio.uio_offset = 0;
2057 		uio.uio_iov = &iov;
2058 		uio.uio_iovcnt = 1;
2059 		uio.uio_segflg = UIO_SYSSPACE;
2060 		iov.iov_base = (caddr_t)nd->nd_authstr;
2061 		nfsm_mtouio(&uio, uio.uio_resid);
2062 		nfsm_dissect(tl, u_long *, 2*NFSX_UNSIGNED);
2063 		nd->nd_flag |= NFSD_NEEDAUTH;
2064 	}
2065 
2066 	/*
2067 	 * Do we have any use for the verifier.
2068 	 * According to the "Remote Procedure Call Protocol Spec." it
2069 	 * should be AUTH_NULL, but some clients make it AUTH_UNIX?
2070 	 * For now, just skip over it
2071 	 */
2072 	len = fxdr_unsigned(int, *++tl);
2073 	if (len < 0 || len > RPCAUTH_MAXSIZ) {
2074 		m_freem(mrep);
2075 		return (EBADRPC);
2076 	}
2077 	if (len > 0) {
2078 		nfsm_adv(nfsm_rndup(len));
2079 	}
2080 
2081 	/*
2082 	 * For nqnfs, get piggybacked lease request.
2083 	 */
2084 	if (nqnfs && nd->nd_procnum != NQNFSPROC_EVICTED) {
2085 		nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
2086 		nd->nd_nqlflag = fxdr_unsigned(int, *tl);
2087 		if (nd->nd_nqlflag) {
2088 			nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
2089 			nd->nd_duration = fxdr_unsigned(int, *tl);
2090 		} else
2091 			nd->nd_duration = NQ_MINLEASE;
2092 	} else {
2093 		nd->nd_nqlflag = NQL_NOVAL;
2094 		nd->nd_duration = NQ_MINLEASE;
2095 	}
2096 	nd->nd_md = md;
2097 	nd->nd_dpos = dpos;
2098 	return (0);
2099 nfsmout:
2100 	return (error);
2101 }
2102 
2103 /*
2104  * Search for a sleeping nfsd and wake it up.
2105  * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the
2106  * running nfsds will go look for the work in the nfssvc_sock list.
2107  */
2108 void
2109 nfsrv_wakenfsd(slp)
2110 	struct nfssvc_sock *slp;
2111 {
2112 	register struct nfsd *nd = nfsd_head.nd_next;
2113 
2114 	if ((slp->ns_flag & SLP_VALID) == 0)
2115 		return;
2116 	while (nd != (struct nfsd *)&nfsd_head) {
2117 		if (nd->nd_flag & NFSD_WAITING) {
2118 			nd->nd_flag &= ~NFSD_WAITING;
2119 			if (nd->nd_slp)
2120 				panic("nfsd wakeup");
2121 			nd->nd_slp = slp;
2122 			wakeup((caddr_t)nd);
2123 			return;
2124 		}
2125 		nd = nd->nd_next;
2126 	}
2127 	slp->ns_flag |= SLP_DOREC;
2128 	nfsd_head.nd_flag |= NFSD_CHECKSLP;
2129 }
2130 
2131 nfs_msg(p, server, msg)
2132 	struct proc *p;
2133 	char *server, *msg;
2134 {
2135 	tpr_t tpr;
2136 
2137 	if (p)
2138 		tpr = tprintf_open(p);
2139 	else
2140 		tpr = NULL;
2141 	tprintf(tpr, "nfs server %s: %s\n", server, msg);
2142 	tprintf_close(tpr);
2143 }
2144