xref: /csrg-svn/sys/nfs/nfs_socket.c (revision 52903)
1 /*
2  * Copyright (c) 1989, 1991 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * %sccs.include.redist.c%
9  *
10  *	@(#)nfs_socket.c	7.25 (Berkeley) 03/09/92
11  */
12 
13 /*
14  * Socket operations for use by nfs
15  */
16 
17 #include "types.h"
18 #include "param.h"
19 #include "uio.h"
20 #include "proc.h"
21 #include "signal.h"
22 #include "mount.h"
23 #include "kernel.h"
24 #include "malloc.h"
25 #include "mbuf.h"
26 #include "vnode.h"
27 #include "domain.h"
28 #include "protosw.h"
29 #include "socket.h"
30 #include "socketvar.h"
31 #include "syslog.h"
32 #include "tprintf.h"
33 #include "machine/endian.h"
34 #include "netinet/in.h"
35 #include "netinet/tcp.h"
36 #ifdef ISO
37 #include "netiso/iso.h"
38 #endif
39 #include "ufs/ufs/quota.h"
40 #include "ufs/ufs/ufsmount.h"
41 #include "rpcv2.h"
42 #include "nfsv2.h"
43 #include "nfs.h"
44 #include "xdr_subs.h"
45 #include "nfsm_subs.h"
46 #include "nfsmount.h"
47 #include "nfsnode.h"
48 #include "nfsrtt.h"
49 #include "nqnfs.h"
50 
51 #include "syslog.h"
52 
53 #define	TRUE	1
54 #define	FALSE	0
55 
56 int netnetnet = sizeof (struct netaddrhash);
57 /*
58  * Estimate rto for an nfs rpc sent via. an unreliable datagram.
59  * Use the mean and mean deviation of rtt for the appropriate type of rpc
60  * for the frequent rpcs and a default for the others.
61  * The justification for doing "other" this way is that these rpcs
62  * happen so infrequently that timer est. would probably be stale.
63  * Also, since many of these rpcs are
64  * non-idempotent, a conservative timeout is desired.
65  * getattr, lookup - A+2D
66  * read, write     - A+4D
67  * other           - nm_timeo
68  */
69 #define	NFS_RTO(n, t) \
70 	((t) == 0 ? (n)->nm_timeo : \
71 	 ((t) < 3 ? \
72 	  (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \
73 	  ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1)))
74 #define	NFS_SRTT(r)	(r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1]
75 #define	NFS_SDRTT(r)	(r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1]
76 /*
77  * External data, mostly RPC constants in XDR form
78  */
79 extern u_long rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers, rpc_auth_unix,
80 	rpc_msgaccepted, rpc_call, rpc_autherr, rpc_rejectedcred,
81 	rpc_auth_kerb;
82 extern u_long nfs_prog, nfs_vers, nqnfs_prog, nqnfs_vers;
83 extern time_t nqnfsstarttime;
84 extern int nonidempotent[NFS_NPROCS];
85 
86 /*
87  * Maps errno values to nfs error numbers.
88  * Use NFSERR_IO as the catch all for ones not specifically defined in
89  * RFC 1094.
90  */
91 static int nfsrv_errmap[ELAST] = {
92   NFSERR_PERM,	NFSERR_NOENT,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
93   NFSERR_NXIO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
94   NFSERR_IO,	NFSERR_IO,	NFSERR_ACCES,	NFSERR_IO,	NFSERR_IO,
95   NFSERR_IO,	NFSERR_EXIST,	NFSERR_IO,	NFSERR_NODEV,	NFSERR_NOTDIR,
96   NFSERR_ISDIR,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
97   NFSERR_IO,	NFSERR_FBIG,	NFSERR_NOSPC,	NFSERR_IO,	NFSERR_ROFS,
98   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
99   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
100   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
101   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
102   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
103   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
104   NFSERR_IO,	NFSERR_IO,	NFSERR_NAMETOL,	NFSERR_IO,	NFSERR_IO,
105   NFSERR_NOTEMPTY, NFSERR_IO,	NFSERR_IO,	NFSERR_DQUOT,	NFSERR_STALE,
106   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
107   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
108   NFSERR_IO,
109 };
110 
111 /*
112  * Defines which timer to use for the procnum.
113  * 0 - default
114  * 1 - getattr
115  * 2 - lookup
116  * 3 - read
117  * 4 - write
118  */
119 static int proct[NFS_NPROCS] = {
120 	0, 1, 0, 0, 2, 3, 3, 0, 4, 0, 0, 0, 0, 0, 0, 0, 3, 0, 3, 0, 0, 0,
121 };
122 
123 /*
124  * There is a congestion window for outstanding rpcs maintained per mount
125  * point. The cwnd size is adjusted in roughly the way that:
126  * Van Jacobson, Congestion avoidance and Control, In "Proceedings of
127  * SIGCOMM '88". ACM, August 1988.
128  * describes for TCP. The cwnd size is chopped in half on a retransmit timeout
129  * and incremented by 1/cwnd when each rpc reply is received and a full cwnd
130  * of rpcs is in progress.
131  * (The sent count and cwnd are scaled for integer arith.)
132  * Variants of "slow start" were tried and were found to be too much of a
133  * performance hit (ave. rtt 3 times larger),
134  * I suspect due to the large rtt that nfs rpcs have.
135  */
136 #define	NFS_CWNDSCALE	256
137 #define	NFS_MAXCWND	(NFS_CWNDSCALE * 32)
138 static int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, };
139 int	nfs_sbwait();
140 void	nfs_disconnect(), nfs_realign(), nfsrv_wakenfsd(), nfs_sndunlock();
141 void	nfs_rcvunlock(), nqnfs_serverd();
142 struct mbuf *nfsm_rpchead();
143 int nfsrtton = 0;
144 struct nfsrtt nfsrtt;
145 struct nfsd nfsd_head;
146 
147 int	nfsrv_null(),
148 	nfsrv_getattr(),
149 	nfsrv_setattr(),
150 	nfsrv_lookup(),
151 	nfsrv_readlink(),
152 	nfsrv_read(),
153 	nfsrv_write(),
154 	nfsrv_create(),
155 	nfsrv_remove(),
156 	nfsrv_rename(),
157 	nfsrv_link(),
158 	nfsrv_symlink(),
159 	nfsrv_mkdir(),
160 	nfsrv_rmdir(),
161 	nfsrv_readdir(),
162 	nfsrv_statfs(),
163 	nfsrv_noop(),
164 	nqnfsrv_readdirlook(),
165 	nqnfsrv_getlease(),
166 	nqnfsrv_vacated();
167 
168 int (*nfsrv_procs[NFS_NPROCS])() = {
169 	nfsrv_null,
170 	nfsrv_getattr,
171 	nfsrv_setattr,
172 	nfsrv_noop,
173 	nfsrv_lookup,
174 	nfsrv_readlink,
175 	nfsrv_read,
176 	nfsrv_noop,
177 	nfsrv_write,
178 	nfsrv_create,
179 	nfsrv_remove,
180 	nfsrv_rename,
181 	nfsrv_link,
182 	nfsrv_symlink,
183 	nfsrv_mkdir,
184 	nfsrv_rmdir,
185 	nfsrv_readdir,
186 	nfsrv_statfs,
187 	nqnfsrv_readdirlook,
188 	nqnfsrv_getlease,
189 	nqnfsrv_vacated,
190 };
191 
192 struct nfsreq nfsreqh;
193 
194 /*
195  * Initialize sockets and congestion for a new NFS connection.
196  * We do not free the sockaddr if error.
197  */
198 nfs_connect(nmp, rep)
199 	register struct nfsmount *nmp;
200 	struct nfsreq *rep;
201 {
202 	register struct socket *so;
203 	int s, error, rcvreserve, sndreserve;
204 	struct mbuf *m;
205 
206 	nmp->nm_so = (struct socket *)0;
207 	if (error = socreate(mtod(nmp->nm_nam, struct sockaddr *)->sa_family,
208 		&nmp->nm_so, nmp->nm_sotype, nmp->nm_soproto))
209 		goto bad;
210 	so = nmp->nm_so;
211 	nmp->nm_soflags = so->so_proto->pr_flags;
212 
213 	/*
214 	 * Protocols that do not require connections may be optionally left
215 	 * unconnected for servers that reply from a port other than NFS_PORT.
216 	 */
217 	if (nmp->nm_flag & NFSMNT_NOCONN) {
218 		if (nmp->nm_soflags & PR_CONNREQUIRED) {
219 			error = ENOTCONN;
220 			goto bad;
221 		}
222 	} else {
223 		if (error = soconnect(so, nmp->nm_nam))
224 			goto bad;
225 
226 		/*
227 		 * Wait for the connection to complete. Cribbed from the
228 		 * connect system call but with the wait timing out so
229 		 * that interruptible mounts don't hang here for a long time.
230 		 */
231 		s = splnet();
232 		while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
233 			(void) tsleep((caddr_t)&so->so_timeo, PSOCK,
234 				"nfscon", 2 * hz);
235 			if ((so->so_state & SS_ISCONNECTING) &&
236 			    so->so_error == 0 && rep &&
237 			    (error = nfs_sigintr(nmp, rep, rep->r_procp))) {
238 				so->so_state &= ~SS_ISCONNECTING;
239 				splx(s);
240 				goto bad;
241 			}
242 		}
243 		if (so->so_error) {
244 			error = so->so_error;
245 			so->so_error = 0;
246 			splx(s);
247 			goto bad;
248 		}
249 		splx(s);
250 	}
251 	if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) {
252 		so->so_rcv.sb_timeo = (5 * hz);
253 		so->so_snd.sb_timeo = (5 * hz);
254 	} else {
255 		so->so_rcv.sb_timeo = 0;
256 		so->so_snd.sb_timeo = 0;
257 	}
258 	if (nmp->nm_sotype == SOCK_DGRAM) {
259 		sndreserve = nmp->nm_wsize + NFS_MAXPKTHDR;
260 		rcvreserve = nmp->nm_rsize + NFS_MAXPKTHDR;
261 	} else if (nmp->nm_sotype == SOCK_SEQPACKET) {
262 		sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
263 		rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR) * 2;
264 	} else {
265 		if (nmp->nm_sotype != SOCK_STREAM)
266 			panic("nfscon sotype");
267 		if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
268 			MGET(m, M_WAIT, MT_SOOPTS);
269 			*mtod(m, int *) = 1;
270 			m->m_len = sizeof(int);
271 			sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, m);
272 		}
273 		if (so->so_proto->pr_protocol == IPPROTO_TCP) {
274 			MGET(m, M_WAIT, MT_SOOPTS);
275 			*mtod(m, int *) = 1;
276 			m->m_len = sizeof(int);
277 			sosetopt(so, IPPROTO_TCP, TCP_NODELAY, m);
278 		}
279 		sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR + sizeof (u_long))
280 				* 2;
281 		rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR + sizeof (u_long))
282 				* 2;
283 	}
284 	if (error = soreserve(so, sndreserve, rcvreserve))
285 		goto bad;
286 	so->so_rcv.sb_flags |= SB_NOINTR;
287 	so->so_snd.sb_flags |= SB_NOINTR;
288 
289 	/* Initialize other non-zero congestion variables */
290 	nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] =
291 		nmp->nm_srtt[4] = (NFS_TIMEO << 3);
292 	nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
293 		nmp->nm_sdrtt[3] = nmp->nm_sdrtt[4] = 0;
294 	nmp->nm_cwnd = NFS_MAXCWND / 2;	    /* Initial send window */
295 	nmp->nm_sent = 0;
296 	nmp->nm_timeouts = 0;
297 	return (0);
298 
299 bad:
300 	nfs_disconnect(nmp);
301 	return (error);
302 }
303 
304 /*
305  * Reconnect routine:
306  * Called when a connection is broken on a reliable protocol.
307  * - clean up the old socket
308  * - nfs_connect() again
309  * - set R_MUSTRESEND for all outstanding requests on mount point
310  * If this fails the mount point is DEAD!
311  * nb: Must be called with the nfs_sndlock() set on the mount point.
312  */
313 nfs_reconnect(rep)
314 	register struct nfsreq *rep;
315 {
316 	register struct nfsreq *rp;
317 	register struct nfsmount *nmp = rep->r_nmp;
318 	int error;
319 
320 	nfs_disconnect(nmp);
321 	while (error = nfs_connect(nmp, rep)) {
322 		if (error == EINTR || error == ERESTART)
323 			return (EINTR);
324 		(void) tsleep((caddr_t)&lbolt, PSOCK, "nfscon", 0);
325 	}
326 
327 	/*
328 	 * Loop through outstanding request list and fix up all requests
329 	 * on old socket.
330 	 */
331 	rp = nfsreqh.r_next;
332 	while (rp != &nfsreqh) {
333 		if (rp->r_nmp == nmp)
334 			rp->r_flags |= R_MUSTRESEND;
335 		rp = rp->r_next;
336 	}
337 	return (0);
338 }
339 
340 /*
341  * NFS disconnect. Clean up and unlink.
342  */
343 void
344 nfs_disconnect(nmp)
345 	register struct nfsmount *nmp;
346 {
347 	register struct socket *so;
348 
349 	if (nmp->nm_so) {
350 		so = nmp->nm_so;
351 		nmp->nm_so = (struct socket *)0;
352 		soshutdown(so, 2);
353 		soclose(so);
354 	}
355 }
356 
357 /*
358  * This is the nfs send routine. For connection based socket types, it
359  * must be called with an nfs_sndlock() on the socket.
360  * "rep == NULL" indicates that it has been called from a server.
361  * For the client side:
362  * - return EINTR if the RPC is terminated, 0 otherwise
363  * - set R_MUSTRESEND if the send fails for any reason
364  * - do any cleanup required by recoverable socket errors (???)
365  * For the server side:
366  * - return EINTR or ERESTART if interrupted by a signal
367  * - return EPIPE if a connection is lost for connection based sockets (TCP...)
368  * - do any cleanup required by recoverable socket errors (???)
369  */
370 nfs_send(so, nam, top, rep)
371 	register struct socket *so;
372 	struct mbuf *nam;
373 	register struct mbuf *top;
374 	struct nfsreq *rep;
375 {
376 	struct mbuf *sendnam;
377 	int error, soflags, flags;
378 
379 	if (rep) {
380 		if (rep->r_flags & R_SOFTTERM) {
381 			m_freem(top);
382 			return (EINTR);
383 		}
384 		if ((so = rep->r_nmp->nm_so) == NULL) {
385 			rep->r_flags |= R_MUSTRESEND;
386 			m_freem(top);
387 			return (0);
388 		}
389 		rep->r_flags &= ~R_MUSTRESEND;
390 		soflags = rep->r_nmp->nm_soflags;
391 	} else
392 		soflags = so->so_proto->pr_flags;
393 	if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
394 		sendnam = (struct mbuf *)0;
395 	else
396 		sendnam = nam;
397 	if (so->so_type == SOCK_SEQPACKET)
398 		flags = MSG_EOR;
399 	else
400 		flags = 0;
401 
402 	error = sosend(so, sendnam, (struct uio *)0, top,
403 		(struct mbuf *)0, flags);
404 if(error) printf("nfssnd err=%d\n",error);
405 	if (error) {
406 		if (rep) {
407 			/*
408 			 * Deal with errors for the client side.
409 			 */
410 			if (rep->r_flags & R_SOFTTERM)
411 				error = EINTR;
412 			else
413 				rep->r_flags |= R_MUSTRESEND;
414 		}
415 
416 		/*
417 		 * Handle any recoverable (soft) socket errors here. (???)
418 		 */
419 		if (error != EINTR && error != ERESTART &&
420 			error != EWOULDBLOCK && error != EPIPE)
421 			error = 0;
422 	}
423 	return (error);
424 }
425 
426 /*
427  * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
428  * done by soreceive(), but for SOCK_STREAM we must deal with the Record
429  * Mark and consolidate the data into a new mbuf list.
430  * nb: Sometimes TCP passes the data up to soreceive() in long lists of
431  *     small mbufs.
432  * For SOCK_STREAM we must be very careful to read an entire record once
433  * we have read any of it, even if the system call has been interrupted.
434  */
435 nfs_receive(rep, aname, mp)
436 	register struct nfsreq *rep;
437 	struct mbuf **aname;
438 	struct mbuf **mp;
439 {
440 	register struct socket *so;
441 	struct uio auio;
442 	struct iovec aio;
443 	register struct mbuf *m;
444 	struct mbuf *control;
445 	u_long len;
446 	struct mbuf **getnam;
447 	int error, sotype, rcvflg;
448 
449 	/*
450 	 * Set up arguments for soreceive()
451 	 */
452 	*mp = (struct mbuf *)0;
453 	*aname = (struct mbuf *)0;
454 	sotype = rep->r_nmp->nm_sotype;
455 
456 	/*
457 	 * For reliable protocols, lock against other senders/receivers
458 	 * in case a reconnect is necessary.
459 	 * For SOCK_STREAM, first get the Record Mark to find out how much
460 	 * more there is to get.
461 	 * We must lock the socket against other receivers
462 	 * until we have an entire rpc request/reply.
463 	 */
464 	if (sotype != SOCK_DGRAM) {
465 		if (error = nfs_sndlock(&rep->r_nmp->nm_flag, rep))
466 			return (error);
467 tryagain:
468 		/*
469 		 * Check for fatal errors and resending request.
470 		 */
471 		/*
472 		 * Ugh: If a reconnect attempt just happened, nm_so
473 		 * would have changed. NULL indicates a failed
474 		 * attempt that has essentially shut down this
475 		 * mount point.
476 		 */
477 		if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) {
478 			nfs_sndunlock(&rep->r_nmp->nm_flag);
479 			return (EINTR);
480 		}
481 		if ((so = rep->r_nmp->nm_so) == NULL) {
482 			if (error = nfs_reconnect(rep)) {
483 				nfs_sndunlock(&rep->r_nmp->nm_flag);
484 				return (error);
485 			}
486 			goto tryagain;
487 		}
488 		while (rep->r_flags & R_MUSTRESEND) {
489 			m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
490 			nfsstats.rpcretries++;
491 			if (error = nfs_send(so, rep->r_nmp->nm_nam, m, rep)) {
492 				if (error == EINTR || error == ERESTART ||
493 				    (error = nfs_reconnect(rep))) {
494 					nfs_sndunlock(&rep->r_nmp->nm_flag);
495 					return (error);
496 				}
497 				goto tryagain;
498 			}
499 		}
500 		nfs_sndunlock(&rep->r_nmp->nm_flag);
501 		if (sotype == SOCK_STREAM) {
502 			aio.iov_base = (caddr_t) &len;
503 			aio.iov_len = sizeof(u_long);
504 			auio.uio_iov = &aio;
505 			auio.uio_iovcnt = 1;
506 			auio.uio_segflg = UIO_SYSSPACE;
507 			auio.uio_rw = UIO_READ;
508 			auio.uio_offset = 0;
509 			auio.uio_resid = sizeof(u_long);
510 			do {
511 			   rcvflg = MSG_WAITALL;
512 			   error = soreceive(so, (struct mbuf **)0, &auio,
513 				(struct mbuf **)0, (struct mbuf **)0, &rcvflg);
514 			   if (error == EWOULDBLOCK && rep) {
515 				if (rep->r_flags & R_SOFTTERM)
516 					return (EINTR);
517 			   }
518 			} while (error == EWOULDBLOCK);
519 			if (!error && auio.uio_resid > 0) {
520 			    if (rep)
521 				log(LOG_INFO,
522 				   "short receive (%d/%d) from nfs server %s\n",
523 				   sizeof(u_long) - auio.uio_resid,
524 				   sizeof(u_long),
525 				 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
526 			    error = EPIPE;
527 			}
528 			if (error)
529 				goto errout;
530 			len = ntohl(len) & ~0x80000000;
531 			/*
532 			 * This is SERIOUS! We are out of sync with the sender
533 			 * and forcing a disconnect/reconnect is all I can do.
534 			 */
535 			if (len > NFS_MAXPACKET) {
536 			    if (rep)
537 				log(LOG_ERR, "%s (%d) from nfs server %s\n",
538 				    "impossible packet length",
539 				    len,
540 				 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
541 			    error = EFBIG;
542 			    goto errout;
543 			}
544 			auio.uio_resid = len;
545 			do {
546 			    rcvflg = MSG_WAITALL;
547 			    error =  soreceive(so, (struct mbuf **)0,
548 				&auio, mp, (struct mbuf **)0, &rcvflg);
549 			} while (error == EWOULDBLOCK || error == EINTR ||
550 				 error == ERESTART);
551 			if (!error && auio.uio_resid > 0) {
552 			    if (rep)
553 				log(LOG_INFO,
554 				   "short receive (%d/%d) from nfs server %s\n",
555 				   len - auio.uio_resid, len,
556 				 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
557 			    error = EPIPE;
558 			}
559 		} else {
560 			/*
561 			 * NB: Since uio_resid is big, MSG_WAITALL is ignored
562 			 * and soreceive() will return when it has either a
563 			 * control msg or a data msg.
564 			 * We have no use for control msg., but must grab them
565 			 * and then throw them away so we know what is going
566 			 * on.
567 			 */
568 			auio.uio_resid = len = 100000000; /* Anything Big */
569 			do {
570 			    rcvflg = 0;
571 			    error =  soreceive(so, (struct mbuf **)0,
572 				&auio, mp, &control, &rcvflg);
573 			    if (control)
574 				m_freem(control);
575 			    if (error == EWOULDBLOCK && rep) {
576 				if (rep->r_flags & R_SOFTTERM)
577 					return (EINTR);
578 			    }
579 			} while (error == EWOULDBLOCK ||
580 				 (!error && *mp == NULL && control));
581 			if ((rcvflg & MSG_EOR) == 0)
582 				printf("Egad!!\n");
583 			if (!error && *mp == NULL)
584 				error = EPIPE;
585 			len -= auio.uio_resid;
586 		}
587 errout:
588 		if (error && error != EINTR && error != ERESTART) {
589 			m_freem(*mp);
590 			*mp = (struct mbuf *)0;
591 			if (error != EPIPE && rep)
592 				log(LOG_INFO,
593 				    "receive error %d from nfs server %s\n",
594 				    error,
595 				 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
596 			error = nfs_sndlock(&rep->r_nmp->nm_flag, rep);
597 			if (!error)
598 				error = nfs_reconnect(rep);
599 			if (!error)
600 				goto tryagain;
601 		}
602 	} else {
603 		if ((so = rep->r_nmp->nm_so) == NULL)
604 			return (EACCES);
605 		if (so->so_state & SS_ISCONNECTED)
606 			getnam = (struct mbuf **)0;
607 		else
608 			getnam = aname;
609 		auio.uio_resid = len = 1000000;
610 		do {
611 			rcvflg = 0;
612 			error =  soreceive(so, getnam, &auio, mp,
613 				(struct mbuf **)0, &rcvflg);
614 			if (error == EWOULDBLOCK &&
615 			    (rep->r_flags & R_SOFTTERM))
616 				return (EINTR);
617 		} while (error == EWOULDBLOCK);
618 		len -= auio.uio_resid;
619 	}
620 	if (error) {
621 		m_freem(*mp);
622 		*mp = (struct mbuf *)0;
623 	}
624 	/*
625 	 * Search for any mbufs that are not a multiple of 4 bytes long
626 	 * or with m_data not longword aligned.
627 	 * These could cause pointer alignment problems, so copy them to
628 	 * well aligned mbufs.
629 	 */
630 	nfs_realign(*mp, 5 * NFSX_UNSIGNED);
631 	return (error);
632 }
633 
634 /*
635  * Implement receipt of reply on a socket.
636  * We must search through the list of received datagrams matching them
637  * with outstanding requests using the xid, until ours is found.
638  */
639 /* ARGSUSED */
640 nfs_reply(myrep)
641 	struct nfsreq *myrep;
642 {
643 	register struct nfsreq *rep;
644 	register struct nfsmount *nmp = myrep->r_nmp;
645 	register long t1;
646 	struct mbuf *mrep, *nam, *md;
647 	u_long rxid, *tl;
648 	caddr_t dpos, cp2;
649 	int error;
650 
651 	/*
652 	 * Loop around until we get our own reply
653 	 */
654 	for (;;) {
655 		/*
656 		 * Lock against other receivers so that I don't get stuck in
657 		 * sbwait() after someone else has received my reply for me.
658 		 * Also necessary for connection based protocols to avoid
659 		 * race conditions during a reconnect.
660 		 */
661 		if (error = nfs_rcvlock(myrep))
662 			return (error);
663 		/* Already received, bye bye */
664 		if (myrep->r_mrep != NULL) {
665 			nfs_rcvunlock(&nmp->nm_flag);
666 			return (0);
667 		}
668 		/*
669 		 * Get the next Rpc reply off the socket
670 		 */
671 		error = nfs_receive(myrep, &nam, &mrep);
672 		nfs_rcvunlock(&nmp->nm_flag);
673 if (error) printf("rcv err=%d\n",error);
674 		if (error) {
675 
676 			/*
677 			 * Ignore routing errors on connectionless protocols??
678 			 */
679 			if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
680 				nmp->nm_so->so_error = 0;
681 				continue;
682 			}
683 			return (error);
684 		}
685 		if (nam)
686 			m_freem(nam);
687 
688 		/*
689 		 * Get the xid and check that it is an rpc reply
690 		 */
691 		md = mrep;
692 		dpos = mtod(md, caddr_t);
693 		nfsm_dissect(tl, u_long *, 2*NFSX_UNSIGNED);
694 		rxid = *tl++;
695 		if (*tl != rpc_reply) {
696 			if (nmp->nm_flag & NFSMNT_NQNFS) {
697 				if (nqnfs_callback(nmp, mrep, md, dpos))
698 					nfsstats.rpcinvalid++;
699 			} else {
700 				nfsstats.rpcinvalid++;
701 				m_freem(mrep);
702 			}
703 nfsmout:
704 			continue;
705 		}
706 
707 		/*
708 		 * Loop through the request list to match up the reply
709 		 * Iff no match, just drop the datagram
710 		 */
711 		rep = nfsreqh.r_next;
712 		while (rep != &nfsreqh) {
713 			if (rep->r_mrep == NULL && rxid == rep->r_xid) {
714 				/* Found it.. */
715 				rep->r_mrep = mrep;
716 				rep->r_md = md;
717 				rep->r_dpos = dpos;
718 				if (nfsrtton) {
719 					struct rttl *rt;
720 
721 					rt = &nfsrtt.rttl[nfsrtt.pos];
722 					rt->proc = rep->r_procnum;
723 					rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]);
724 					rt->sent = nmp->nm_sent;
725 					rt->cwnd = nmp->nm_cwnd;
726 					rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
727 					rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
728 					rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid;
729 					rt->tstamp = time;
730 					if (rep->r_flags & R_TIMING)
731 						rt->rtt = rep->r_rtt;
732 					else
733 						rt->rtt = 1000000;
734 					nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
735 				}
736 				/*
737 				 * Update congestion window.
738 				 * Do the additive increase of
739 				 * one rpc/rtt.
740 				 */
741 				if (nmp->nm_cwnd <= nmp->nm_sent) {
742 					nmp->nm_cwnd +=
743 					   (NFS_CWNDSCALE * NFS_CWNDSCALE +
744 					   (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd;
745 					if (nmp->nm_cwnd > NFS_MAXCWND)
746 						nmp->nm_cwnd = NFS_MAXCWND;
747 				}
748 				nmp->nm_sent -= NFS_CWNDSCALE;
749 				/*
750 				 * Update rtt using a gain of 0.125 on the mean
751 				 * and a gain of 0.25 on the deviation.
752 				 */
753 				if (rep->r_flags & R_TIMING) {
754 					/*
755 					 * Since the timer resolution of
756 					 * NFS_HZ is so course, it can often
757 					 * result in r_rtt == 0. Since
758 					 * r_rtt == N means that the actual
759 					 * rtt is between N+dt and N+2-dt ticks,
760 					 * add 1.
761 					 */
762 					t1 = rep->r_rtt + 1;
763 					t1 -= (NFS_SRTT(rep) >> 3);
764 					NFS_SRTT(rep) += t1;
765 					if (t1 < 0)
766 						t1 = -t1;
767 					t1 -= (NFS_SDRTT(rep) >> 2);
768 					NFS_SDRTT(rep) += t1;
769 				}
770 				nmp->nm_timeouts = 0;
771 				break;
772 			}
773 			rep = rep->r_next;
774 		}
775 		/*
776 		 * If not matched to a request, drop it.
777 		 * If it's mine, get out.
778 		 */
779 		if (rep == &nfsreqh) {
780 			nfsstats.rpcunexpected++;
781 			m_freem(mrep);
782 		} else if (rep == myrep)
783 			return (0);
784 	}
785 }
786 
787 /*
788  * nfs_request - goes something like this
789  *	- fill in request struct
790  *	- links it into list
791  *	- calls nfs_send() for first transmit
792  *	- calls nfs_receive() to get reply
793  *	- break down rpc header and return with nfs reply pointed to
794  *	  by mrep or error
795  * nb: always frees up mreq mbuf list
796  */
797 nfs_request(vp, mrest, procnum, procp, cred, mrp, mdp, dposp)
798 	struct vnode *vp;
799 	struct mbuf *mrest;
800 	int procnum;
801 	struct proc *procp;
802 	struct ucred *cred;
803 	struct mbuf **mrp;
804 	struct mbuf **mdp;
805 	caddr_t *dposp;
806 {
807 	register struct mbuf *m, *mrep;
808 	register struct nfsreq *rep;
809 	register u_long *tl;
810 	register int i;
811 	struct nfsmount *nmp;
812 	struct mbuf *md, *mheadend;
813 	struct nfsreq *reph;
814 	struct nfsnode *tp, *np;
815 	time_t reqtime, waituntil;
816 	caddr_t dpos, cp2;
817 	int t1, nqlflag, cachable, s, error = 0, mrest_len, auth_len, auth_type;
818 	int trylater_delay = NQ_TRYLATERDEL, trylater_cnt = 0, failed_auth = 0;
819 	u_long xid;
820 	char *auth_str;
821 
822 	nmp = VFSTONFS(vp->v_mount);
823 	MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
824 	rep->r_nmp = nmp;
825 	rep->r_vp = vp;
826 	rep->r_procp = procp;
827 	rep->r_procnum = procnum;
828 	i = 0;
829 	m = mrest;
830 	while (m) {
831 		i += m->m_len;
832 		m = m->m_next;
833 	}
834 	mrest_len = i;
835 
836 	/*
837 	 * Get the RPC header with authorization.
838 	 */
839 kerbauth:
840 	auth_str = (char *)0;
841 	if (nmp->nm_flag & NFSMNT_KERB) {
842 		if (failed_auth) {
843 			error = nfs_getauth(nmp, rep, cred, &auth_type,
844 				&auth_str, &auth_len);
845 			if (error) {
846 				free((caddr_t)rep, M_NFSREQ);
847 				m_freem(mrest);
848 				return (error);
849 			}
850 		} else {
851 			auth_type = RPCAUTH_UNIX;
852 			auth_len = 5 * NFSX_UNSIGNED;
853 		}
854 	} else {
855 		auth_type = RPCAUTH_UNIX;
856 		auth_len = ((((cred->cr_ngroups - 1) > nmp->nm_numgrps) ?
857 			nmp->nm_numgrps : (cred->cr_ngroups - 1)) << 2) +
858 			5 * NFSX_UNSIGNED;
859 	}
860 	m = nfsm_rpchead(cred, (nmp->nm_flag & NFSMNT_NQNFS), procnum,
861 	     auth_type, auth_len, auth_str, mrest, mrest_len, &mheadend, &xid);
862 	if (auth_str)
863 		free(auth_str, M_TEMP);
864 
865 	/*
866 	 * For stream protocols, insert a Sun RPC Record Mark.
867 	 */
868 	if (nmp->nm_sotype == SOCK_STREAM) {
869 		M_PREPEND(m, NFSX_UNSIGNED, M_WAIT);
870 		*mtod(m, u_long *) = htonl(0x80000000 |
871 			 (m->m_pkthdr.len - NFSX_UNSIGNED));
872 	}
873 	rep->r_mreq = m;
874 	rep->r_xid = xid;
875 tryagain:
876 	if (nmp->nm_flag & NFSMNT_SOFT)
877 		rep->r_retry = nmp->nm_retry;
878 	else
879 		rep->r_retry = NFS_MAXREXMIT + 1;	/* past clip limit */
880 	rep->r_rtt = rep->r_rexmit = 0;
881 	if (proct[procnum] > 0)
882 		rep->r_flags = R_TIMING;
883 	else
884 		rep->r_flags = 0;
885 	rep->r_mrep = NULL;
886 
887 	/*
888 	 * Do the client side RPC.
889 	 */
890 	nfsstats.rpcrequests++;
891 	/*
892 	 * Chain request into list of outstanding requests. Be sure
893 	 * to put it LAST so timer finds oldest requests first.
894 	 */
895 	s = splsoftclock();
896 	reph = &nfsreqh;
897 	reph->r_prev->r_next = rep;
898 	rep->r_prev = reph->r_prev;
899 	reph->r_prev = rep;
900 	rep->r_next = reph;
901 
902 	/* Get send time for nqnfs */
903 	reqtime = time.tv_sec;
904 
905 	/*
906 	 * If backing off another request or avoiding congestion, don't
907 	 * send this one now but let timer do it. If not timing a request,
908 	 * do it now.
909 	 */
910 	if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM ||
911 		(nmp->nm_flag & NFSMNT_DUMBTIMR) ||
912 		nmp->nm_sent < nmp->nm_cwnd)) {
913 		splx(s);
914 		if (nmp->nm_soflags & PR_CONNREQUIRED)
915 			error = nfs_sndlock(&nmp->nm_flag, rep);
916 		if (!error) {
917 			m = m_copym(m, 0, M_COPYALL, M_WAIT);
918 			error = nfs_send(nmp->nm_so, nmp->nm_nam, m, rep);
919 			if (nmp->nm_soflags & PR_CONNREQUIRED)
920 				nfs_sndunlock(&nmp->nm_flag);
921 		}
922 		if (!error && (rep->r_flags & R_MUSTRESEND) == 0) {
923 			nmp->nm_sent += NFS_CWNDSCALE;
924 			rep->r_flags |= R_SENT;
925 		}
926 	} else {
927 		splx(s);
928 		rep->r_rtt = -1;
929 	}
930 
931 	/*
932 	 * Wait for the reply from our send or the timer's.
933 	 */
934 	if (!error)
935 		error = nfs_reply(rep);
936 
937 	/*
938 	 * RPC done, unlink the request.
939 	 */
940 	s = splsoftclock();
941 	rep->r_prev->r_next = rep->r_next;
942 	rep->r_next->r_prev = rep->r_prev;
943 	splx(s);
944 
945 	/*
946 	 * If there was a successful reply and a tprintf msg.
947 	 * tprintf a response.
948 	 */
949 	if (!error && (rep->r_flags & R_TPRINTFMSG))
950 		nfs_msg(rep->r_procp, nmp->nm_mountp->mnt_stat.f_mntfromname,
951 		    "is alive again");
952 	mrep = rep->r_mrep;
953 	md = rep->r_md;
954 	dpos = rep->r_dpos;
955 	if (error) {
956 		m_freem(rep->r_mreq);
957 		free((caddr_t)rep, M_NFSREQ);
958 		return (error);
959 	}
960 
961 	/*
962 	 * break down the rpc header and check if ok
963 	 */
964 	nfsm_dissect(tl, u_long *, 3*NFSX_UNSIGNED);
965 	if (*tl++ == rpc_msgdenied) {
966 		if (*tl == rpc_mismatch)
967 			error = EOPNOTSUPP;
968 		else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) {
969 			if (*tl == rpc_rejectedcred && failed_auth == 0) {
970 				failed_auth++;
971 				mheadend->m_next = (struct mbuf *)0;
972 				m_freem(mrep);
973 				m_freem(rep->r_mreq);
974 				goto kerbauth;
975 			} else
976 				error = EAUTH;
977 		} else
978 			error = EACCES;
979 		m_freem(mrep);
980 		m_freem(rep->r_mreq);
981 		free((caddr_t)rep, M_NFSREQ);
982 		return (error);
983 	}
984 
985 	/*
986 	 * skip over the auth_verf, someday we may want to cache auth_short's
987 	 * for nfs_reqhead(), but for now just dump it
988 	 */
989 	if (*++tl != 0) {
990 		i = nfsm_rndup(fxdr_unsigned(long, *tl));
991 		nfsm_adv(i);
992 	}
993 	nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
994 	/* 0 == ok */
995 	if (*tl == 0) {
996 		nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
997 		if (*tl != 0) {
998 			error = fxdr_unsigned(int, *tl);
999 			m_freem(mrep);
1000 			if ((nmp->nm_flag & NFSMNT_NQNFS) &&
1001 			    error == NQNFS_TRYLATER) {
1002 				error = 0;
1003 				waituntil = time.tv_sec + trylater_delay;
1004 				while (time.tv_sec < waituntil)
1005 					(void) tsleep((caddr_t)&lbolt,
1006 						PSOCK, "nqnfstry", 0);
1007 				trylater_delay *= nfs_backoff[trylater_cnt];
1008 				if (trylater_cnt < 7)
1009 					trylater_cnt++;
1010 				goto tryagain;
1011 			}
1012 			m_freem(rep->r_mreq);
1013 			free((caddr_t)rep, M_NFSREQ);
1014 			return (error);
1015 		}
1016 
1017 		/*
1018 		 * For nqnfs, get any lease in reply
1019 		 */
1020 		if (nmp->nm_flag & NFSMNT_NQNFS) {
1021 			nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
1022 			if (*tl) {
1023 				np = VTONFS(vp);
1024 				nqlflag = fxdr_unsigned(int, *tl);
1025 				nfsm_dissect(tl, u_long *, 4*NFSX_UNSIGNED);
1026 				cachable = fxdr_unsigned(int, *tl++);
1027 				reqtime += fxdr_unsigned(int, *tl++);
1028 				if (reqtime > time.tv_sec) {
1029 				    if (np->n_tnext) {
1030 					if (np->n_tnext == (struct nfsnode *)nmp)
1031 					    nmp->nm_tprev = np->n_tprev;
1032 					else
1033 					    np->n_tnext->n_tprev = np->n_tprev;
1034 					if (np->n_tprev == (struct nfsnode *)nmp)
1035 					    nmp->nm_tnext = np->n_tnext;
1036 					else
1037 					    np->n_tprev->n_tnext = np->n_tnext;
1038 					if (nqlflag == NQL_WRITE)
1039 					    np->n_flag |= NQNFSWRITE;
1040 				    } else if (nqlflag == NQL_READ)
1041 					np->n_flag &= ~NQNFSWRITE;
1042 				    else
1043 					np->n_flag |= NQNFSWRITE;
1044 				    if (cachable)
1045 					np->n_flag &= ~NQNFSNONCACHE;
1046 				    else
1047 					np->n_flag |= NQNFSNONCACHE;
1048 				    np->n_expiry = reqtime;
1049 				    fxdr_hyper(tl, &np->n_lrev);
1050 				    tp = nmp->nm_tprev;
1051 				    while (tp != (struct nfsnode *)nmp &&
1052 				           tp->n_expiry > np->n_expiry)
1053 						tp = tp->n_tprev;
1054 				    if (tp == (struct nfsnode *)nmp) {
1055 					np->n_tnext = nmp->nm_tnext;
1056 					nmp->nm_tnext = np;
1057 				    } else {
1058 					np->n_tnext = tp->n_tnext;
1059 					tp->n_tnext = np;
1060 				    }
1061 				    np->n_tprev = tp;
1062 				    if (np->n_tnext == (struct nfsnode *)nmp)
1063 					nmp->nm_tprev = np;
1064 				    else
1065 					np->n_tnext->n_tprev = np;
1066 				}
1067 			}
1068 		}
1069 		*mrp = mrep;
1070 		*mdp = md;
1071 		*dposp = dpos;
1072 		m_freem(rep->r_mreq);
1073 		FREE((caddr_t)rep, M_NFSREQ);
1074 		return (0);
1075 	}
1076 	m_freem(mrep);
1077 	m_freem(rep->r_mreq);
1078 	free((caddr_t)rep, M_NFSREQ);
1079 	error = EPROTONOSUPPORT;
1080 nfsmout:
1081 	return (error);
1082 }
1083 
1084 /*
1085  * Generate the rpc reply header
1086  * siz arg. is used to decide if adding a cluster is worthwhile
1087  */
1088 nfs_rephead(siz, nd, err, cache, frev, mrq, mbp, bposp)
1089 	int siz;
1090 	struct nfsd *nd;
1091 	int err;
1092 	int cache;
1093 	u_quad_t *frev;
1094 	struct mbuf **mrq;
1095 	struct mbuf **mbp;
1096 	caddr_t *bposp;
1097 {
1098 	register u_long *tl;
1099 	register struct mbuf *mreq;
1100 	caddr_t bpos;
1101 	struct mbuf *mb, *mb2;
1102 
1103 	MGETHDR(mreq, M_WAIT, MT_DATA);
1104 	mb = mreq;
1105 	/*
1106 	 * If this is a big reply, use a cluster else
1107 	 * try and leave leading space for the lower level headers.
1108 	 */
1109 	siz += RPC_REPLYSIZ;
1110 	if (siz >= MINCLSIZE) {
1111 		MCLGET(mreq, M_WAIT);
1112 	} else
1113 		mreq->m_data += max_hdr;
1114 	tl = mtod(mreq, u_long *);
1115 	mreq->m_len = 6*NFSX_UNSIGNED;
1116 	bpos = ((caddr_t)tl)+mreq->m_len;
1117 	*tl++ = nd->nd_retxid;
1118 	*tl++ = rpc_reply;
1119 	if (err == ERPCMISMATCH || err == NQNFS_AUTHERR) {
1120 		*tl++ = rpc_msgdenied;
1121 		if (err == NQNFS_AUTHERR) {
1122 			*tl++ = rpc_autherr;
1123 			*tl = rpc_rejectedcred;
1124 			mreq->m_len -= NFSX_UNSIGNED;
1125 			bpos -= NFSX_UNSIGNED;
1126 		} else {
1127 			*tl++ = rpc_mismatch;
1128 			*tl++ = txdr_unsigned(2);
1129 			*tl = txdr_unsigned(2);
1130 		}
1131 	} else {
1132 		*tl++ = rpc_msgaccepted;
1133 		*tl++ = 0;
1134 		*tl++ = 0;
1135 		switch (err) {
1136 		case EPROGUNAVAIL:
1137 			*tl = txdr_unsigned(RPC_PROGUNAVAIL);
1138 			break;
1139 		case EPROGMISMATCH:
1140 			*tl = txdr_unsigned(RPC_PROGMISMATCH);
1141 			nfsm_build(tl, u_long *, 2*NFSX_UNSIGNED);
1142 			*tl++ = txdr_unsigned(2);
1143 			*tl = txdr_unsigned(2);	/* someday 3 */
1144 			break;
1145 		case EPROCUNAVAIL:
1146 			*tl = txdr_unsigned(RPC_PROCUNAVAIL);
1147 			break;
1148 		default:
1149 			*tl = 0;
1150 			if (err != VNOVAL) {
1151 				nfsm_build(tl, u_long *, NFSX_UNSIGNED);
1152 				if (err)
1153 					*tl = txdr_unsigned(nfsrv_errmap[err - 1]);
1154 				else
1155 					*tl = 0;
1156 			}
1157 			break;
1158 		};
1159 	}
1160 
1161 	/*
1162 	 * For nqnfs, piggyback lease as requested.
1163 	 */
1164 	if (nd->nd_nqlflag != NQL_NOVAL && err == 0) {
1165 		if (nd->nd_nqlflag) {
1166 			nfsm_build(tl, u_long *, 5*NFSX_UNSIGNED);
1167 			*tl++ = txdr_unsigned(nd->nd_nqlflag);
1168 			*tl++ = txdr_unsigned(cache);
1169 			*tl++ = txdr_unsigned(nd->nd_duration);
1170 			txdr_hyper(frev, tl);
1171 		} else {
1172 			if (nd->nd_nqlflag != 0)
1173 				panic("nqreph");
1174 			nfsm_build(tl, u_long *, NFSX_UNSIGNED);
1175 			*tl = 0;
1176 		}
1177 	}
1178 	*mrq = mreq;
1179 	*mbp = mb;
1180 	*bposp = bpos;
1181 	if (err != 0 && err != VNOVAL)
1182 		nfsstats.srvrpc_errs++;
1183 	return (0);
1184 }
1185 
1186 /*
1187  * Nfs timer routine
1188  * Scan the nfsreq list and retranmit any requests that have timed out
1189  * To avoid retransmission attempts on STREAM sockets (in the future) make
1190  * sure to set the r_retry field to 0 (implies nm_retry == 0).
1191  */
1192 nfs_timer()
1193 {
1194 	register struct nfsreq *rep;
1195 	register struct mbuf *m;
1196 	register struct socket *so;
1197 	register struct nfsmount *nmp;
1198 	register int timeo;
1199 	static long lasttime = 0;
1200 	int s, error;
1201 
1202 	s = splnet();
1203 	for (rep = nfsreqh.r_next; rep != &nfsreqh; rep = rep->r_next) {
1204 		nmp = rep->r_nmp;
1205 		if (rep->r_mrep || (rep->r_flags & R_SOFTTERM))
1206 			continue;
1207 		if (nfs_sigintr(nmp, rep, rep->r_procp)) {
1208 			rep->r_flags |= R_SOFTTERM;
1209 			continue;
1210 		}
1211 		if (rep->r_rtt >= 0) {
1212 			rep->r_rtt++;
1213 			if (nmp->nm_flag & NFSMNT_DUMBTIMR)
1214 				timeo = nmp->nm_timeo;
1215 			else
1216 				timeo = NFS_RTO(nmp, proct[rep->r_procnum]);
1217 			if (nmp->nm_timeouts > 0)
1218 				timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1219 			if (rep->r_rtt <= timeo)
1220 				continue;
1221 			if (nmp->nm_timeouts < 8)
1222 				nmp->nm_timeouts++;
1223 		}
1224 		/*
1225 		 * Check for server not responding
1226 		 */
1227 		if ((rep->r_flags & R_TPRINTFMSG) == 0 &&
1228 		     rep->r_rexmit > nmp->nm_deadthresh) {
1229 			nfs_msg(rep->r_procp,
1230 			    nmp->nm_mountp->mnt_stat.f_mntfromname,
1231 			    "not responding");
1232 			rep->r_flags |= R_TPRINTFMSG;
1233 		}
1234 		if (rep->r_rexmit >= rep->r_retry) {	/* too many */
1235 			nfsstats.rpctimeouts++;
1236 			rep->r_flags |= R_SOFTTERM;
1237 			continue;
1238 		}
1239 		if (nmp->nm_sotype != SOCK_DGRAM) {
1240 			if (++rep->r_rexmit > NFS_MAXREXMIT)
1241 				rep->r_rexmit = NFS_MAXREXMIT;
1242 			continue;
1243 		}
1244 		if ((so = nmp->nm_so) == NULL)
1245 			continue;
1246 
1247 		/*
1248 		 * If there is enough space and the window allows..
1249 		 *	Resend it
1250 		 * Set r_rtt to -1 in case we fail to send it now.
1251 		 */
1252 		rep->r_rtt = -1;
1253 		if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
1254 		   ((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1255 		    (rep->r_flags & R_SENT) ||
1256 		    nmp->nm_sent < nmp->nm_cwnd) &&
1257 		   (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){
1258 			if ((nmp->nm_flag & NFSMNT_NOCONN) == 0)
1259 			    error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1260 			    (struct mbuf *)0, (struct mbuf *)0);
1261 			else
1262 			    error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1263 			    nmp->nm_nam, (struct mbuf *)0);
1264 			if (error) {
1265 				if (NFSIGNORE_SOERROR(nmp->nm_soflags, error))
1266 					so->so_error = 0;
1267 			} else {
1268 				/*
1269 				 * Iff first send, start timing
1270 				 * else turn timing off, backoff timer
1271 				 * and divide congestion window by 2.
1272 				 */
1273 				if (rep->r_flags & R_SENT) {
1274 					rep->r_flags &= ~R_TIMING;
1275 					if (++rep->r_rexmit > NFS_MAXREXMIT)
1276 						rep->r_rexmit = NFS_MAXREXMIT;
1277 					nmp->nm_cwnd >>= 1;
1278 					if (nmp->nm_cwnd < NFS_CWNDSCALE)
1279 						nmp->nm_cwnd = NFS_CWNDSCALE;
1280 					nfsstats.rpcretries++;
1281 				} else {
1282 					rep->r_flags |= R_SENT;
1283 					nmp->nm_sent += NFS_CWNDSCALE;
1284 				}
1285 				rep->r_rtt = 0;
1286 			}
1287 		}
1288 	}
1289 
1290 	/*
1291 	 * Call the nqnfs server timer once a second to handle leases.
1292 	 */
1293 	if (lasttime != time.tv_sec) {
1294 		lasttime = time.tv_sec;
1295 		nqnfs_serverd();
1296 	}
1297 	splx(s);
1298 	timeout(nfs_timer, (caddr_t)0, hz/NFS_HZ);
1299 }
1300 
1301 /*
1302  * Test for a termination condition pending on the process.
1303  * This is used for NFSMNT_INT mounts.
1304  */
1305 nfs_sigintr(nmp, rep, p)
1306 	struct nfsmount *nmp;
1307 	struct nfsreq *rep;
1308 	register struct proc *p;
1309 {
1310 
1311 	if (rep && (rep->r_flags & R_SOFTTERM))
1312 		return (EINTR);
1313 	if (!(nmp->nm_flag & NFSMNT_INT))
1314 		return (0);
1315 	if (p && p->p_sig && (((p->p_sig &~ p->p_sigmask) &~ p->p_sigignore) &
1316 	    NFSINT_SIGMASK))
1317 		return (EINTR);
1318 	return (0);
1319 }
1320 
1321 /*
1322  * Lock a socket against others.
1323  * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
1324  * and also to avoid race conditions between the processes with nfs requests
1325  * in progress when a reconnect is necessary.
1326  */
1327 nfs_sndlock(flagp, rep)
1328 	register int *flagp;
1329 	struct nfsreq *rep;
1330 {
1331 	struct proc *p;
1332 
1333 	if (rep)
1334 		p = rep->r_procp;
1335 	else
1336 		p = (struct proc *)0;
1337 	while (*flagp & NFSMNT_SNDLOCK) {
1338 		if (nfs_sigintr(rep->r_nmp, rep, p))
1339 			return (EINTR);
1340 		*flagp |= NFSMNT_WANTSND;
1341 		(void) tsleep((caddr_t)flagp, PZERO-1, "nfsndlck", 0);
1342 	}
1343 	*flagp |= NFSMNT_SNDLOCK;
1344 	return (0);
1345 }
1346 
1347 /*
1348  * Unlock the stream socket for others.
1349  */
1350 void
1351 nfs_sndunlock(flagp)
1352 	register int *flagp;
1353 {
1354 
1355 	if ((*flagp & NFSMNT_SNDLOCK) == 0)
1356 		panic("nfs sndunlock");
1357 	*flagp &= ~NFSMNT_SNDLOCK;
1358 	if (*flagp & NFSMNT_WANTSND) {
1359 		*flagp &= ~NFSMNT_WANTSND;
1360 		wakeup((caddr_t)flagp);
1361 	}
1362 }
1363 
1364 nfs_rcvlock(rep)
1365 	register struct nfsreq *rep;
1366 {
1367 	register int *flagp = &rep->r_nmp->nm_flag;
1368 
1369 	while (*flagp & NFSMNT_RCVLOCK) {
1370 		if (nfs_sigintr(rep->r_nmp, rep, rep->r_procp))
1371 			return (EINTR);
1372 		*flagp |= NFSMNT_WANTRCV;
1373 		(void) tsleep((caddr_t)flagp, PZERO-1, "nfsrcvlck", 0);
1374 	}
1375 	*flagp |= NFSMNT_RCVLOCK;
1376 	return (0);
1377 }
1378 
1379 /*
1380  * Unlock the stream socket for others.
1381  */
1382 void
1383 nfs_rcvunlock(flagp)
1384 	register int *flagp;
1385 {
1386 
1387 	if ((*flagp & NFSMNT_RCVLOCK) == 0)
1388 		panic("nfs rcvunlock");
1389 	*flagp &= ~NFSMNT_RCVLOCK;
1390 	if (*flagp & NFSMNT_WANTRCV) {
1391 		*flagp &= ~NFSMNT_WANTRCV;
1392 		wakeup((caddr_t)flagp);
1393 	}
1394 }
1395 
1396 /*
1397  * This function compares two net addresses by family and returns TRUE
1398  * if they are the same host.
1399  * If there is any doubt, return FALSE.
1400  * The AF_INET family is handled as a special case so that address mbufs
1401  * don't need to be saved to store "struct in_addr", which is only 4 bytes.
1402  */
1403 nfs_netaddr_match(family, haddr, hmask, nam)
1404 	int family;
1405 	union nethostaddr *haddr;
1406 	union nethostaddr *hmask;
1407 	struct mbuf *nam;
1408 {
1409 	register struct sockaddr_in *inetaddr;
1410 #ifdef ISO
1411 	register struct sockaddr_iso *isoaddr1, *isoaddr2;
1412 #endif
1413 
1414 
1415 	switch (family) {
1416 	case AF_INET:
1417 		inetaddr = mtod(nam, struct sockaddr_in *);
1418 		if (inetaddr->sin_family != AF_INET)
1419 			return (0);
1420 		if (hmask) {
1421 			if ((inetaddr->sin_addr.s_addr & hmask->had_inetaddr) ==
1422 			    (haddr->had_inetaddr & hmask->had_inetaddr))
1423 				return (1);
1424 		} else if (inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
1425 			return (1);
1426 		break;
1427 #ifdef ISO
1428 	case AF_ISO:
1429 		isoaddr1 = mtod(nam, struct sockaddr_iso *);
1430 		if (isoaddr1->siso_family != AF_ISO)
1431 			return (0);
1432 		isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
1433 		if (isoaddr1->siso_nlen > 0 &&
1434 		    isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
1435 		    SAME_ISOADDR(isoaddr1, isoaddr2))
1436 			return (1);
1437 		break;
1438 #endif	/* ISO */
1439 	default:
1440 		break;
1441 	};
1442 	return (0);
1443 }
1444 
1445 /*
1446  * Build hash lists of net addresses and hang them off the mount point.
1447  * Called by ufs_mount() to set up the lists of export addresses.
1448  */
1449 hang_addrlist(mp, argp)
1450 	struct mount *mp;
1451 	struct ufs_args *argp;
1452 {
1453 	register struct netaddrhash *np, **hnp;
1454 	register int i;
1455 	struct ufsmount *ump;
1456 	struct sockaddr *saddr;
1457 	struct mbuf *nam, *msk = (struct mbuf *)0;
1458 	union nethostaddr netmsk;
1459 	int error;
1460 
1461 	if (error = sockargs(&nam, (caddr_t)argp->saddr, argp->slen,
1462 	    MT_SONAME))
1463 	    return (error);
1464 	saddr = mtod(nam, struct sockaddr *);
1465 	ump = VFSTOUFS(mp);
1466 	if (saddr->sa_family == AF_INET &&
1467 	    ((struct sockaddr_in *)saddr)->sin_addr.s_addr == INADDR_ANY) {
1468 	    m_freem(nam);
1469 	    if (mp->mnt_flag & MNT_DEFEXPORTED)
1470 		return (EPERM);
1471 	    np = &ump->um_defexported;
1472 	    np->neth_exflags = argp->exflags;
1473 	    np->neth_anon = argp->anon;
1474 	    np->neth_anon.cr_ref = 1;
1475 	    mp->mnt_flag |= MNT_DEFEXPORTED;
1476 	    return (0);
1477 	}
1478 	if (argp->msklen > 0) {
1479 	    if (error = sockargs(&msk, (caddr_t)argp->smask, argp->msklen,
1480 		MT_SONAME)) {
1481 		m_freem(nam);
1482 		return (error);
1483 	    }
1484 
1485 	    /*
1486 	     * Scan all the hash lists to check against duplications.
1487 	     * For the net list, try both masks to catch a subnet
1488 	     * of another network.
1489 	     */
1490 	    hnp = &ump->um_netaddr[NETMASK_HASH];
1491 	    np = *hnp;
1492 	    if (saddr->sa_family == AF_INET)
1493 		netmsk.had_inetaddr =
1494 		    mtod(msk, struct sockaddr_in *)->sin_addr.s_addr;
1495 	    else
1496 		netmsk.had_nam = msk;
1497 	    while (np) {
1498 		if (nfs_netaddr_match(np->neth_family, &np->neth_haddr,
1499 		    &np->neth_hmask, nam) ||
1500 		    nfs_netaddr_match(np->neth_family, &np->neth_haddr,
1501 		    &netmsk, nam)) {
1502 			m_freem(nam);
1503 			m_freem(msk);
1504 			return (EPERM);
1505 		}
1506 		np = np->neth_next;
1507 	    }
1508 	    for (i = 0; i < NETHASHSZ; i++) {
1509 		np = ump->um_netaddr[i];
1510 		while (np) {
1511 		    if (nfs_netaddr_match(np->neth_family, &np->neth_haddr,
1512 			&netmsk, nam)) {
1513 			m_freem(nam);
1514 			m_freem(msk);
1515 			return (EPERM);
1516 		    }
1517 		    np = np->neth_next;
1518 		}
1519 	    }
1520 	} else {
1521 	    hnp = &ump->um_netaddr[NETADDRHASH(saddr)];
1522 	    np = ump->um_netaddr[NETMASK_HASH];
1523 	    while (np) {
1524 		if (nfs_netaddr_match(np->neth_family, &np->neth_haddr,
1525 		    &np->neth_hmask, nam)) {
1526 		    m_freem(nam);
1527 		    return (EPERM);
1528 		}
1529 		np = np->neth_next;
1530 	    }
1531 	    np = *hnp;
1532 	    while (np) {
1533 		if (nfs_netaddr_match(np->neth_family, &np->neth_haddr,
1534 		    (union nethostaddr *)0, nam)) {
1535 		    m_freem(nam);
1536 		    return (EPERM);
1537 		}
1538 		np = np->neth_next;
1539 	    }
1540 	}
1541 	np = (struct netaddrhash *) malloc(sizeof(struct netaddrhash), M_NETADDR,
1542 	    M_WAITOK);
1543 	np->neth_family = saddr->sa_family;
1544 	if (saddr->sa_family == AF_INET) {
1545 		np->neth_inetaddr = ((struct sockaddr_in *)saddr)->sin_addr.s_addr;
1546 		m_freem(nam);
1547 		if (msk) {
1548 			np->neth_inetmask = netmsk.had_inetaddr;
1549 			m_freem(msk);
1550 			if (np->neth_inetaddr &~ np->neth_inetmask)
1551 				return (EPERM);
1552 		} else
1553 			np->neth_inetmask = 0xffffffff;
1554 	} else {
1555 		np->neth_nam = nam;
1556 		np->neth_msk = msk;
1557 	}
1558 	np->neth_exflags = argp->exflags;
1559 	np->neth_anon = argp->anon;
1560 	np->neth_anon.cr_ref = 1;
1561 	np->neth_next = *hnp;
1562 	*hnp = np;
1563 	return (0);
1564 }
1565 
1566 /*
1567  * Free the net address hash lists that are hanging off the mount points.
1568  */
1569 free_addrlist(ump)
1570 	struct ufsmount *ump;
1571 {
1572 	register struct netaddrhash *np, *onp;
1573 	register int i;
1574 
1575 	for (i = 0; i <= NETHASHSZ; i++) {
1576 		np = ump->um_netaddr[i];
1577 		ump->um_netaddr[i] = (struct netaddrhash *)0;
1578 		while (np) {
1579 			onp = np;
1580 			np = np->neth_next;
1581 			if (onp->neth_family != AF_INET) {
1582 				m_freem(onp->neth_nam);
1583 				m_freem(onp->neth_msk);
1584 			}
1585 			free((caddr_t)onp, M_NETADDR);
1586 		}
1587 	}
1588 }
1589 
1590 /*
1591  * Generate a hash code for an iso host address. Used by NETADDRHASH() for
1592  * iso addresses.
1593  */
1594 iso_addrhash(saddr)
1595 	struct sockaddr *saddr;
1596 {
1597 #ifdef ISO
1598 	register struct sockaddr_iso *siso;
1599 	register int i, sum;
1600 
1601 	sum = 0;
1602 	for (i = 0; i < siso->siso_nlen; i++)
1603 		sum += siso->siso_data[i];
1604 	return (sum & (NETHASHSZ - 1));
1605 #else
1606 	return (0);
1607 #endif	/* ISO */
1608 }
1609 
1610 /*
1611  * Check for badly aligned mbuf data areas and
1612  * realign data in an mbuf list by copying the data areas up, as required.
1613  */
1614 void
1615 nfs_realign(m, hsiz)
1616 	register struct mbuf *m;
1617 	int hsiz;
1618 {
1619 	register struct mbuf *m2;
1620 	register int siz, mlen, olen;
1621 	register caddr_t tcp, fcp;
1622 	struct mbuf *mnew;
1623 
1624 	while (m) {
1625 	    /*
1626 	     * This never happens for UDP, rarely happens for TCP
1627 	     * but frequently happens for iso transport.
1628 	     */
1629 	    if ((m->m_len & 0x3) || (mtod(m, int) & 0x3)) {
1630 		olen = m->m_len;
1631 		fcp = mtod(m, caddr_t);
1632 		m->m_flags &= ~M_PKTHDR;
1633 		if (m->m_flags & M_EXT)
1634 			m->m_data = m->m_ext.ext_buf;
1635 		else
1636 			m->m_data = m->m_dat;
1637 		m->m_len = 0;
1638 		tcp = mtod(m, caddr_t);
1639 		mnew = m;
1640 		m2 = m->m_next;
1641 
1642 		/*
1643 		 * If possible, only put the first invariant part
1644 		 * of the RPC header in the first mbuf.
1645 		 */
1646 		if (olen <= hsiz)
1647 			mlen = hsiz;
1648 		else
1649 			mlen = M_TRAILINGSPACE(m);
1650 
1651 		/*
1652 		 * Loop through the mbuf list consolidating data.
1653 		 */
1654 		while (m) {
1655 			while (olen > 0) {
1656 				if (mlen == 0) {
1657 					m2->m_flags &= ~M_PKTHDR;
1658 					if (m2->m_flags & M_EXT)
1659 						m2->m_data = m2->m_ext.ext_buf;
1660 					else
1661 						m2->m_data = m2->m_dat;
1662 					m2->m_len = 0;
1663 					mlen = M_TRAILINGSPACE(m2);
1664 					tcp = mtod(m2, caddr_t);
1665 					mnew = m2;
1666 					m2 = m2->m_next;
1667 				}
1668 				siz = MIN(mlen, olen);
1669 				if (tcp != fcp)
1670 					bcopy(fcp, tcp, siz);
1671 				mnew->m_len += siz;
1672 				mlen -= siz;
1673 				olen -= siz;
1674 				tcp += siz;
1675 				fcp += siz;
1676 			}
1677 			m = m->m_next;
1678 			if (m) {
1679 				olen = m->m_len;
1680 				fcp = mtod(m, caddr_t);
1681 			}
1682 		}
1683 
1684 		/*
1685 		 * Finally, set m_len == 0 for any trailing mbufs that have
1686 		 * been copied out of.
1687 		 */
1688 		while (m2) {
1689 			m2->m_len = 0;
1690 			m2 = m2->m_next;
1691 		}
1692 		return;
1693 	    }
1694 	    m = m->m_next;
1695 	}
1696 }
1697 
1698 /*
1699  * Socket upcall routine for the nfsd sockets.
1700  * The caddr_t arg is a pointer to the "struct nfssvc_sock".
1701  * Essentially do as much as possible non-blocking, else punt and it will
1702  * be called with M_WAIT from an nfsd.
1703  */
1704 void
1705 nfsrv_rcv(so, arg, waitflag)
1706 	struct socket *so;
1707 	caddr_t arg;
1708 	int waitflag;
1709 {
1710 	register struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
1711 	register struct mbuf *m;
1712 	struct mbuf *mp, *nam;
1713 	struct uio auio;
1714 	int flags, error;
1715 
1716 	if ((slp->ns_flag & SLP_VALID) == 0)
1717 		return;
1718 #ifdef notdef
1719 	/*
1720 	 * Define this to test for nfsds handling this under heavy load.
1721 	 */
1722 	if (waitflag == M_DONTWAIT) {
1723 		slp->ns_flag |= SLP_NEEDQ; goto dorecs;
1724 	}
1725 #endif
1726 	if (so->so_type == SOCK_STREAM) {
1727 		/*
1728 		 * If there are already records on the queue, defer soreceive()
1729 		 * to an nfsd so that there is feedback to the TCP layer that
1730 		 * the nfs servers are heavily loaded.
1731 		 */
1732 		if (slp->ns_rec && waitflag == M_DONTWAIT) {
1733 			slp->ns_flag |= SLP_NEEDQ;
1734 			goto dorecs;
1735 		}
1736 
1737 		/*
1738 		 * Do soreceive().
1739 		 */
1740 		auio.uio_resid = 1000000000;
1741 		flags = MSG_DONTWAIT;
1742 		error = soreceive(so, &nam, &auio, &mp, (struct mbuf **)0, &flags);
1743 		if (error || mp == (struct mbuf *)0) {
1744 			if (error == EWOULDBLOCK)
1745 				slp->ns_flag |= SLP_NEEDQ;
1746 			else
1747 				slp->ns_flag |= SLP_DISCONN;
1748 			goto dorecs;
1749 		}
1750 		m = mp;
1751 		if (slp->ns_rawend) {
1752 			slp->ns_rawend->m_next = m;
1753 			slp->ns_cc += 1000000000 - auio.uio_resid;
1754 		} else {
1755 			slp->ns_raw = m;
1756 			slp->ns_cc = 1000000000 - auio.uio_resid;
1757 		}
1758 		while (m->m_next)
1759 			m = m->m_next;
1760 		slp->ns_rawend = m;
1761 
1762 		/*
1763 		 * Now try and parse record(s) out of the raw stream data.
1764 		 */
1765 		if (error = nfsrv_getstream(slp, waitflag)) {
1766 			if (error == EPERM)
1767 				slp->ns_flag |= SLP_DISCONN;
1768 			else
1769 				slp->ns_flag |= SLP_NEEDQ;
1770 		}
1771 	} else {
1772 		do {
1773 			auio.uio_resid = 1000000000;
1774 			flags = MSG_DONTWAIT;
1775 			error = soreceive(so, &nam, &auio, &mp,
1776 						(struct mbuf **)0, &flags);
1777 			if (mp) {
1778 				nfs_realign(mp, 10 * NFSX_UNSIGNED);
1779 				if (nam) {
1780 					m = nam;
1781 					m->m_next = mp;
1782 				} else
1783 					m = mp;
1784 				if (slp->ns_recend)
1785 					slp->ns_recend->m_nextpkt = m;
1786 				else
1787 					slp->ns_rec = m;
1788 				slp->ns_recend = m;
1789 				m->m_nextpkt = (struct mbuf *)0;
1790 			}
1791 			if (error) {
1792 				if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
1793 					&& error != EWOULDBLOCK) {
1794 					slp->ns_flag |= SLP_DISCONN;
1795 					goto dorecs;
1796 				}
1797 			}
1798 		} while (mp);
1799 	}
1800 
1801 	/*
1802 	 * Now try and process the request records, non-blocking.
1803 	 */
1804 dorecs:
1805 	if (waitflag == M_DONTWAIT &&
1806 		(slp->ns_rec || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN))))
1807 		nfsrv_wakenfsd(slp);
1808 }
1809 
1810 /*
1811  * Try and extract an RPC request from the mbuf data list received on a
1812  * stream socket. The "waitflag" argument indicates whether or not it
1813  * can sleep.
1814  */
1815 nfsrv_getstream(slp, waitflag)
1816 	register struct nfssvc_sock *slp;
1817 	int waitflag;
1818 {
1819 	register struct mbuf *m;
1820 	register char *cp1, *cp2;
1821 	register int len;
1822 	struct mbuf *om, *m2, *recm;
1823 	u_long recmark;
1824 
1825 	if (slp->ns_flag & SLP_GETSTREAM)
1826 		panic("nfs getstream");
1827 	slp->ns_flag |= SLP_GETSTREAM;
1828 	for (;;) {
1829 	    if (slp->ns_reclen == 0) {
1830 		if (slp->ns_cc < NFSX_UNSIGNED) {
1831 			slp->ns_flag &= ~SLP_GETSTREAM;
1832 			return (0);
1833 		}
1834 		m = slp->ns_raw;
1835 		if (m->m_len >= NFSX_UNSIGNED) {
1836 			bcopy(mtod(m, caddr_t), (caddr_t)&recmark, NFSX_UNSIGNED);
1837 			m->m_data += NFSX_UNSIGNED;
1838 			m->m_len -= NFSX_UNSIGNED;
1839 		} else {
1840 			cp1 = (caddr_t)&recmark;
1841 			cp2 = mtod(m, caddr_t);
1842 			while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) {
1843 				while (m->m_len == 0) {
1844 					m = m->m_next;
1845 					cp2 = mtod(m, caddr_t);
1846 				}
1847 				*cp1++ = *cp2++;
1848 				m->m_data++;
1849 				m->m_len--;
1850 			}
1851 		}
1852 		slp->ns_cc -= NFSX_UNSIGNED;
1853 		slp->ns_reclen = ntohl(recmark) & ~0x80000000;
1854 		if (slp->ns_reclen < NFS_MINPACKET || slp->ns_reclen > NFS_MAXPACKET) {
1855 			slp->ns_flag &= ~SLP_GETSTREAM;
1856 			return (EPERM);
1857 		}
1858 	    }
1859 
1860 	    /*
1861 	     * Now get the record part.
1862 	     */
1863 	    if (slp->ns_cc == slp->ns_reclen) {
1864 		recm = slp->ns_raw;
1865 		slp->ns_raw = slp->ns_rawend = (struct mbuf *)0;
1866 		slp->ns_cc = slp->ns_reclen = 0;
1867 	    } else if (slp->ns_cc > slp->ns_reclen) {
1868 		len = 0;
1869 		m = slp->ns_raw;
1870 		om = (struct mbuf *)0;
1871 		while (len < slp->ns_reclen) {
1872 			if ((len + m->m_len) > slp->ns_reclen) {
1873 				m2 = m_copym(m, 0, slp->ns_reclen - len,
1874 					waitflag);
1875 				if (m2) {
1876 					if (om) {
1877 						om->m_next = m2;
1878 						recm = slp->ns_raw;
1879 					} else
1880 						recm = m2;
1881 					m->m_data += slp->ns_reclen - len;
1882 					m->m_len -= slp->ns_reclen - len;
1883 					len = slp->ns_reclen;
1884 				} else {
1885 					slp->ns_flag &= ~SLP_GETSTREAM;
1886 					return (EWOULDBLOCK);
1887 				}
1888 			} else if ((len + m->m_len) == slp->ns_reclen) {
1889 				om = m;
1890 				len += m->m_len;
1891 				m = m->m_next;
1892 				recm = slp->ns_raw;
1893 				om->m_next = (struct mbuf *)0;
1894 			} else {
1895 				om = m;
1896 				len += m->m_len;
1897 				m = m->m_next;
1898 			}
1899 		}
1900 		slp->ns_raw = m;
1901 		slp->ns_cc -= len;
1902 		slp->ns_reclen = 0;
1903 	    } else {
1904 		slp->ns_flag &= ~SLP_GETSTREAM;
1905 		return (0);
1906 	    }
1907 	    nfs_realign(recm, 10 * NFSX_UNSIGNED);
1908 	    if (slp->ns_recend)
1909 		slp->ns_recend->m_nextpkt = recm;
1910 	    else
1911 		slp->ns_rec = recm;
1912 	    slp->ns_recend = recm;
1913 	}
1914 }
1915 
1916 /*
1917  * Parse an RPC header.
1918  */
1919 nfsrv_dorec(slp, nd)
1920 	register struct nfssvc_sock *slp;
1921 	register struct nfsd *nd;
1922 {
1923 	register struct mbuf *m;
1924 	int error;
1925 
1926 	if ((slp->ns_flag & SLP_VALID) == 0 ||
1927 	    (m = slp->ns_rec) == (struct mbuf *)0)
1928 		return (ENOBUFS);
1929 	if (slp->ns_rec = m->m_nextpkt)
1930 		m->m_nextpkt = (struct mbuf *)0;
1931 	else
1932 		slp->ns_recend = (struct mbuf *)0;
1933 	if (m->m_type == MT_SONAME) {
1934 		nd->nd_nam = m;
1935 		nd->nd_md = nd->nd_mrep = m->m_next;
1936 		m->m_next = (struct mbuf *)0;
1937 	} else {
1938 		nd->nd_nam = (struct mbuf *)0;
1939 		nd->nd_md = nd->nd_mrep = m;
1940 	}
1941 	nd->nd_dpos = mtod(nd->nd_md, caddr_t);
1942 	if (error = nfs_getreq(nd, TRUE)) {
1943 		m_freem(nd->nd_nam);
1944 		return (error);
1945 	}
1946 	return (0);
1947 }
1948 
1949 /*
1950  * Parse an RPC request
1951  * - verify it
1952  * - fill in the cred struct.
1953  */
1954 nfs_getreq(nd, has_header)
1955 	register struct nfsd *nd;
1956 	int has_header;
1957 {
1958 	register int len, i;
1959 	register u_long *tl;
1960 	register long t1;
1961 	struct uio uio;
1962 	struct iovec iov;
1963 	caddr_t dpos, cp2;
1964 	u_long nfsvers, auth_type;
1965 	int error = 0, nqnfs = 0;
1966 	struct mbuf *mrep, *md;
1967 
1968 	mrep = nd->nd_mrep;
1969 	md = nd->nd_md;
1970 	dpos = nd->nd_dpos;
1971 	if (has_header) {
1972 		nfsm_dissect(tl, u_long *, 10*NFSX_UNSIGNED);
1973 		nd->nd_retxid = *tl++;
1974 		if (*tl++ != rpc_call) {
1975 			m_freem(mrep);
1976 			return (EBADRPC);
1977 		}
1978 	} else {
1979 		nfsm_dissect(tl, u_long *, 8*NFSX_UNSIGNED);
1980 	}
1981 	nd->nd_repstat = 0;
1982 	if (*tl++ != rpc_vers) {
1983 		nd->nd_repstat = ERPCMISMATCH;
1984 		nd->nd_procnum = NFSPROC_NOOP;
1985 		return (0);
1986 	}
1987 	nfsvers = nfs_vers;
1988 	if (*tl != nfs_prog) {
1989 		if (*tl == nqnfs_prog) {
1990 			nqnfs++;
1991 			nfsvers = nqnfs_vers;
1992 		} else {
1993 			nd->nd_repstat = EPROGUNAVAIL;
1994 			nd->nd_procnum = NFSPROC_NOOP;
1995 			return (0);
1996 		}
1997 	}
1998 	tl++;
1999 	if (*tl++ != nfsvers) {
2000 		nd->nd_repstat = EPROGMISMATCH;
2001 		nd->nd_procnum = NFSPROC_NOOP;
2002 		return (0);
2003 	}
2004 	nd->nd_procnum = fxdr_unsigned(u_long, *tl++);
2005 	if (nd->nd_procnum == NFSPROC_NULL)
2006 		return (0);
2007 	if (nd->nd_procnum >= NFS_NPROCS ||
2008 		(!nqnfs && nd->nd_procnum > NFSPROC_STATFS) ||
2009 		(*tl != rpc_auth_unix && *tl != rpc_auth_kerb)) {
2010 		nd->nd_repstat = EPROCUNAVAIL;
2011 		nd->nd_procnum = NFSPROC_NOOP;
2012 		return (0);
2013 	}
2014 	auth_type = *tl++;
2015 	len = fxdr_unsigned(int, *tl++);
2016 	if (len < 0 || len > RPCAUTH_MAXSIZ) {
2017 		m_freem(mrep);
2018 		return (EBADRPC);
2019 	}
2020 
2021 	/*
2022 	 * Handle auth_unix or auth_kerb.
2023 	 */
2024 	if (auth_type == rpc_auth_unix) {
2025 		len = fxdr_unsigned(int, *++tl);
2026 		if (len < 0 || len > NFS_MAXNAMLEN) {
2027 			m_freem(mrep);
2028 			return (EBADRPC);
2029 		}
2030 		nfsm_adv(nfsm_rndup(len));
2031 		nfsm_dissect(tl, u_long *, 3*NFSX_UNSIGNED);
2032 		nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
2033 		nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++);
2034 		len = fxdr_unsigned(int, *tl);
2035 		if (len < 0 || len > RPCAUTH_UNIXGIDS) {
2036 			m_freem(mrep);
2037 			return (EBADRPC);
2038 		}
2039 		nfsm_dissect(tl, u_long *, (len + 2)*NFSX_UNSIGNED);
2040 		for (i = 1; i <= len; i++)
2041 			if (i < NGROUPS)
2042 				nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++);
2043 			else
2044 				tl++;
2045 		nd->nd_cr.cr_ngroups = (len >= NGROUPS) ? NGROUPS : (len + 1);
2046 	} else if (auth_type == rpc_auth_kerb) {
2047 		nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
2048 		nd->nd_authlen = fxdr_unsigned(int, *tl);
2049 		iov.iov_len = uio.uio_resid = nfsm_rndup(nd->nd_authlen);
2050 		if (uio.uio_resid > (len - 2*NFSX_UNSIGNED)) {
2051 			m_freem(mrep);
2052 			return (EBADRPC);
2053 		}
2054 		uio.uio_offset = 0;
2055 		uio.uio_iov = &iov;
2056 		uio.uio_iovcnt = 1;
2057 		uio.uio_segflg = UIO_SYSSPACE;
2058 		iov.iov_base = (caddr_t)nd->nd_authstr;
2059 		nfsm_mtouio(&uio, uio.uio_resid);
2060 		nfsm_dissect(tl, u_long *, 2*NFSX_UNSIGNED);
2061 		nd->nd_flag |= NFSD_NEEDAUTH;
2062 	}
2063 
2064 	/*
2065 	 * Do we have any use for the verifier.
2066 	 * According to the "Remote Procedure Call Protocol Spec." it
2067 	 * should be AUTH_NULL, but some clients make it AUTH_UNIX?
2068 	 * For now, just skip over it
2069 	 */
2070 	len = fxdr_unsigned(int, *++tl);
2071 	if (len < 0 || len > RPCAUTH_MAXSIZ) {
2072 		m_freem(mrep);
2073 		return (EBADRPC);
2074 	}
2075 	if (len > 0) {
2076 		nfsm_adv(nfsm_rndup(len));
2077 	}
2078 
2079 	/*
2080 	 * For nqnfs, get piggybacked lease request.
2081 	 */
2082 	if (nqnfs && nd->nd_procnum != NQNFSPROC_EVICTED) {
2083 		nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
2084 		nd->nd_nqlflag = fxdr_unsigned(int, *tl);
2085 		if (nd->nd_nqlflag) {
2086 			nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
2087 			nd->nd_duration = fxdr_unsigned(int, *tl);
2088 		} else
2089 			nd->nd_duration = NQ_MINLEASE;
2090 	} else {
2091 		nd->nd_nqlflag = NQL_NOVAL;
2092 		nd->nd_duration = NQ_MINLEASE;
2093 	}
2094 	nd->nd_md = md;
2095 	nd->nd_dpos = dpos;
2096 	return (0);
2097 nfsmout:
2098 	return (error);
2099 }
2100 
2101 /*
2102  * Search for a sleeping nfsd and wake it up.
2103  * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the
2104  * running nfsds will go look for the work in the nfssvc_sock list.
2105  */
2106 void
2107 nfsrv_wakenfsd(slp)
2108 	struct nfssvc_sock *slp;
2109 {
2110 	register struct nfsd *nd = nfsd_head.nd_next;
2111 
2112 	if ((slp->ns_flag & SLP_VALID) == 0)
2113 		return;
2114 	while (nd != (struct nfsd *)&nfsd_head) {
2115 		if (nd->nd_flag & NFSD_WAITING) {
2116 			nd->nd_flag &= ~NFSD_WAITING;
2117 			if (nd->nd_slp)
2118 				panic("nfsd wakeup");
2119 			nd->nd_slp = slp;
2120 			wakeup((caddr_t)nd);
2121 			return;
2122 		}
2123 		nd = nd->nd_next;
2124 	}
2125 	slp->ns_flag |= SLP_DOREC;
2126 	nfsd_head.nd_flag |= NFSD_CHECKSLP;
2127 }
2128 
2129 nfs_msg(p, server, msg)
2130 	struct proc *p;
2131 	char *server, *msg;
2132 {
2133 	tpr_t tpr;
2134 
2135 	if (p)
2136 		tpr = tprintf_open(p);
2137 	else
2138 		tpr = NULL;
2139 	tprintf(tpr, "nfs server %s: %s\n", server, msg);
2140 	tprintf_close(tpr);
2141 }
2142