1 /* 2 * Copyright (c) 1984, 1985, 1986, 1987 Regents of the University of California. 3 * All rights reserved. 4 * 5 * %sccs.include.redist.c% 6 * 7 * @(#)spp_usrreq.c 7.14 (Berkeley) 06/28/90 8 */ 9 10 #include "param.h" 11 #include "systm.h" 12 #include "user.h" 13 #include "malloc.h" 14 #include "mbuf.h" 15 #include "protosw.h" 16 #include "socket.h" 17 #include "socketvar.h" 18 #include "errno.h" 19 20 #include "../net/if.h" 21 #include "../net/route.h" 22 #include "../netinet/tcp_fsm.h" 23 24 #include "ns.h" 25 #include "ns_pcb.h" 26 #include "idp.h" 27 #include "idp_var.h" 28 #include "ns_error.h" 29 #include "sp.h" 30 #include "spidp.h" 31 #include "spp_timer.h" 32 #include "spp_var.h" 33 #include "spp_debug.h" 34 35 /* 36 * SP protocol implementation. 37 */ 38 spp_init() 39 { 40 41 spp_iss = 1; /* WRONG !! should fish it out of TODR */ 42 } 43 struct spidp spp_savesi; 44 int traceallspps = 0; 45 extern int sppconsdebug; 46 int spp_hardnosed; 47 int spp_use_delack = 0; 48 u_short spp_newchecks[50]; 49 50 /*ARGSUSED*/ 51 spp_input(m, nsp) 52 register struct mbuf *m; 53 register struct nspcb *nsp; 54 { 55 register struct sppcb *cb; 56 register struct spidp *si = mtod(m, struct spidp *); 57 register struct socket *so; 58 short ostate; 59 int dropsocket = 0; 60 61 62 sppstat.spps_rcvtotal++; 63 if (nsp == 0) { 64 panic("No nspcb in spp_input\n"); 65 return; 66 } 67 68 cb = nstosppcb(nsp); 69 if (cb == 0) goto bad; 70 71 if (m->m_len < sizeof(*si)) { 72 if ((m = m_pullup(m, sizeof(*si))) == 0) { 73 sppstat.spps_rcvshort++; 74 return; 75 } 76 si = mtod(m, struct spidp *); 77 } 78 si->si_seq = ntohs(si->si_seq); 79 si->si_ack = ntohs(si->si_ack); 80 si->si_alo = ntohs(si->si_alo); 81 82 so = nsp->nsp_socket; 83 if (so->so_options & SO_DEBUG || traceallspps) { 84 ostate = cb->s_state; 85 spp_savesi = *si; 86 } 87 if (so->so_options & SO_ACCEPTCONN) { 88 struct sppcb *ocb = cb; 89 90 so = sonewconn(so, 0); 91 if (so == 0) { 92 goto drop; 93 } 94 /* 95 * This is ugly, but .... 96 * 97 * Mark socket as temporary until we're 98 * committed to keeping it. The code at 99 * ``drop'' and ``dropwithreset'' check the 100 * flag dropsocket to see if the temporary 101 * socket created here should be discarded. 102 * We mark the socket as discardable until 103 * we're committed to it below in TCPS_LISTEN. 104 */ 105 dropsocket++; 106 nsp = (struct nspcb *)so->so_pcb; 107 nsp->nsp_laddr = si->si_dna; 108 cb = nstosppcb(nsp); 109 cb->s_mtu = ocb->s_mtu; /* preserve sockopts */ 110 cb->s_flags = ocb->s_flags; /* preserve sockopts */ 111 cb->s_flags2 = ocb->s_flags2; /* preserve sockopts */ 112 cb->s_state = TCPS_LISTEN; 113 } 114 115 /* 116 * Packet received on connection. 117 * reset idle time and keep-alive timer; 118 */ 119 cb->s_idle = 0; 120 cb->s_timer[SPPT_KEEP] = SPPTV_KEEP; 121 122 switch (cb->s_state) { 123 124 case TCPS_LISTEN:{ 125 struct mbuf *am; 126 register struct sockaddr_ns *sns; 127 struct ns_addr laddr; 128 129 /* 130 * If somebody here was carying on a conversation 131 * and went away, and his pen pal thinks he can 132 * still talk, we get the misdirected packet. 133 */ 134 if (spp_hardnosed && (si->si_did != 0 || si->si_seq != 0)) { 135 spp_istat.gonawy++; 136 goto dropwithreset; 137 } 138 am = m_get(M_DONTWAIT, MT_SONAME); 139 if (am == NULL) 140 goto drop; 141 am->m_len = sizeof (struct sockaddr_ns); 142 sns = mtod(am, struct sockaddr_ns *); 143 sns->sns_len = sizeof(*sns); 144 sns->sns_family = AF_NS; 145 sns->sns_addr = si->si_sna; 146 laddr = nsp->nsp_laddr; 147 if (ns_nullhost(laddr)) 148 nsp->nsp_laddr = si->si_dna; 149 if (ns_pcbconnect(nsp, am)) { 150 nsp->nsp_laddr = laddr; 151 (void) m_free(am); 152 spp_istat.noconn++; 153 goto drop; 154 } 155 (void) m_free(am); 156 spp_template(cb); 157 dropsocket = 0; /* committed to socket */ 158 cb->s_did = si->si_sid; 159 cb->s_rack = si->si_ack; 160 cb->s_ralo = si->si_alo; 161 #define THREEWAYSHAKE 162 #ifdef THREEWAYSHAKE 163 cb->s_state = TCPS_SYN_RECEIVED; 164 cb->s_force = 1 + SPPT_KEEP; 165 sppstat.spps_accepts++; 166 cb->s_timer[SPPT_KEEP] = SPPTV_KEEP; 167 } 168 break; 169 /* 170 * This state means that we have heard a response 171 * to our acceptance of their connection 172 * It is probably logically unnecessary in this 173 * implementation. 174 */ 175 case TCPS_SYN_RECEIVED: { 176 if (si->si_did!=cb->s_sid) { 177 spp_istat.wrncon++; 178 goto drop; 179 } 180 #endif 181 nsp->nsp_fport = si->si_sport; 182 cb->s_timer[SPPT_REXMT] = 0; 183 cb->s_timer[SPPT_KEEP] = SPPTV_KEEP; 184 soisconnected(so); 185 cb->s_state = TCPS_ESTABLISHED; 186 sppstat.spps_accepts++; 187 } 188 break; 189 190 /* 191 * This state means that we have gotten a response 192 * to our attempt to establish a connection. 193 * We fill in the data from the other side, 194 * telling us which port to respond to, instead of the well- 195 * known one we might have sent to in the first place. 196 * We also require that this is a response to our 197 * connection id. 198 */ 199 case TCPS_SYN_SENT: 200 if (si->si_did!=cb->s_sid) { 201 spp_istat.notme++; 202 goto drop; 203 } 204 sppstat.spps_connects++; 205 cb->s_did = si->si_sid; 206 cb->s_rack = si->si_ack; 207 cb->s_ralo = si->si_alo; 208 cb->s_dport = nsp->nsp_fport = si->si_sport; 209 cb->s_timer[SPPT_REXMT] = 0; 210 cb->s_flags |= SF_ACKNOW; 211 soisconnected(so); 212 cb->s_state = TCPS_ESTABLISHED; 213 /* Use roundtrip time of connection request for initial rtt */ 214 if (cb->s_rtt) { 215 cb->s_srtt = cb->s_rtt << 3; 216 cb->s_rttvar = cb->s_rtt << 1; 217 SPPT_RANGESET(cb->s_rxtcur, 218 ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1, 219 SPPTV_MIN, SPPTV_REXMTMAX); 220 cb->s_rtt = 0; 221 } 222 } 223 if (so->so_options & SO_DEBUG || traceallspps) 224 spp_trace(SA_INPUT, (u_char)ostate, cb, &spp_savesi, 0); 225 226 m->m_len -= sizeof (struct idp); 227 m->m_pkthdr.len -= sizeof (struct idp); 228 m->m_data += sizeof (struct idp); 229 230 if (spp_reass(cb, si)) { 231 (void) m_freem(m); 232 } 233 if (cb->s_force || (cb->s_flags & (SF_ACKNOW|SF_WIN|SF_RXT))) 234 (void) spp_output(cb, (struct mbuf *)0); 235 cb->s_flags &= ~(SF_WIN|SF_RXT); 236 return; 237 238 dropwithreset: 239 if (dropsocket) 240 (void) soabort(so); 241 si->si_seq = ntohs(si->si_seq); 242 si->si_ack = ntohs(si->si_ack); 243 si->si_alo = ntohs(si->si_alo); 244 ns_error(dtom(si), NS_ERR_NOSOCK, 0); 245 if (cb->s_nspcb->nsp_socket->so_options & SO_DEBUG || traceallspps) 246 spp_trace(SA_DROP, (u_char)ostate, cb, &spp_savesi, 0); 247 return; 248 249 drop: 250 bad: 251 if (cb == 0 || cb->s_nspcb->nsp_socket->so_options & SO_DEBUG || 252 traceallspps) 253 spp_trace(SA_DROP, (u_char)ostate, cb, &spp_savesi, 0); 254 m_freem(m); 255 } 256 257 int spprexmtthresh = 3; 258 259 /* 260 * This is structurally similar to the tcp reassembly routine 261 * but its function is somewhat different: It merely queues 262 * packets up, and suppresses duplicates. 263 */ 264 spp_reass(cb, si) 265 register struct sppcb *cb; 266 register struct spidp *si; 267 { 268 register struct spidp_q *q; 269 register struct mbuf *m; 270 register struct socket *so = cb->s_nspcb->nsp_socket; 271 char packetp = cb->s_flags & SF_HI; 272 int incr; 273 char wakeup = 0; 274 275 if (si == SI(0)) 276 goto present; 277 /* 278 * Update our news from them. 279 */ 280 if (si->si_cc & SP_SA) 281 cb->s_flags |= (spp_use_delack ? SF_DELACK : SF_ACKNOW); 282 if (SSEQ_GT(si->si_alo, cb->s_ralo)) 283 cb->s_flags |= SF_WIN; 284 if (SSEQ_LEQ(si->si_ack, cb->s_rack)) { 285 if ((si->si_cc & SP_SP) && cb->s_rack != (cb->s_smax + 1)) { 286 sppstat.spps_rcvdupack++; 287 /* 288 * If this is a completely duplicate ack 289 * and other conditions hold, we assume 290 * a packet has been dropped and retransmit 291 * it exactly as in tcp_input(). 292 */ 293 if (si->si_ack != cb->s_rack || 294 si->si_alo != cb->s_ralo) 295 cb->s_dupacks = 0; 296 else if (++cb->s_dupacks == spprexmtthresh) { 297 u_short onxt = cb->s_snxt; 298 int cwnd = cb->s_cwnd; 299 300 cb->s_snxt = si->si_ack; 301 cb->s_cwnd = CUNIT; 302 cb->s_force = 1 + SPPT_REXMT; 303 (void) spp_output(cb, (struct mbuf *)0); 304 cb->s_timer[SPPT_REXMT] = cb->s_rxtcur; 305 cb->s_rtt = 0; 306 if (cwnd >= 4 * CUNIT) 307 cb->s_cwnd = cwnd / 2; 308 if (SSEQ_GT(onxt, cb->s_snxt)) 309 cb->s_snxt = onxt; 310 return (1); 311 } 312 } else 313 cb->s_dupacks = 0; 314 goto update_window; 315 } 316 cb->s_dupacks = 0; 317 /* 318 * If our correspondent acknowledges data we haven't sent 319 * TCP would drop the packet after acking. We'll be a little 320 * more permissive 321 */ 322 if (SSEQ_GT(si->si_ack, (cb->s_smax + 1))) { 323 sppstat.spps_rcvacktoomuch++; 324 si->si_ack = cb->s_smax + 1; 325 } 326 sppstat.spps_rcvackpack++; 327 /* 328 * If transmit timer is running and timed sequence 329 * number was acked, update smoothed round trip time. 330 * See discussion of algorithm in tcp_input.c 331 */ 332 if (cb->s_rtt && SSEQ_GT(si->si_ack, cb->s_rtseq)) { 333 sppstat.spps_rttupdated++; 334 if (cb->s_srtt != 0) { 335 register short delta; 336 delta = cb->s_rtt - (cb->s_srtt >> 3); 337 if ((cb->s_srtt += delta) <= 0) 338 cb->s_srtt = 1; 339 if (delta < 0) 340 delta = -delta; 341 delta -= (cb->s_rttvar >> 2); 342 if ((cb->s_rttvar += delta) <= 0) 343 cb->s_rttvar = 1; 344 } else { 345 /* 346 * No rtt measurement yet 347 */ 348 cb->s_srtt = cb->s_rtt << 3; 349 cb->s_rttvar = cb->s_rtt << 1; 350 } 351 cb->s_rtt = 0; 352 cb->s_rxtshift = 0; 353 SPPT_RANGESET(cb->s_rxtcur, 354 ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1, 355 SPPTV_MIN, SPPTV_REXMTMAX); 356 } 357 /* 358 * If all outstanding data is acked, stop retransmit 359 * timer and remember to restart (more output or persist). 360 * If there is more data to be acked, restart retransmit 361 * timer, using current (possibly backed-off) value; 362 */ 363 if (si->si_ack == cb->s_smax + 1) { 364 cb->s_timer[SPPT_REXMT] = 0; 365 cb->s_flags |= SF_RXT; 366 } else if (cb->s_timer[SPPT_PERSIST] == 0) 367 cb->s_timer[SPPT_REXMT] = cb->s_rxtcur; 368 /* 369 * When new data is acked, open the congestion window. 370 * If the window gives us less than ssthresh packets 371 * in flight, open exponentially (maxseg at a time). 372 * Otherwise open linearly (maxseg^2 / cwnd at a time). 373 */ 374 incr = CUNIT; 375 if (cb->s_cwnd > cb->s_ssthresh) 376 incr = max(incr * incr / cb->s_cwnd, 1); 377 cb->s_cwnd = min(cb->s_cwnd + incr, cb->s_cwmx); 378 /* 379 * Trim Acked data from output queue. 380 */ 381 while ((m = so->so_snd.sb_mb) != NULL) { 382 if (SSEQ_LT((mtod(m, struct spidp *))->si_seq, si->si_ack)) 383 sbdroprecord(&so->so_snd); 384 else 385 break; 386 } 387 sowwakeup(so); 388 cb->s_rack = si->si_ack; 389 update_window: 390 if (SSEQ_LT(cb->s_snxt, cb->s_rack)) 391 cb->s_snxt = cb->s_rack; 392 if (SSEQ_LT(cb->s_swl1, si->si_seq) || cb->s_swl1 == si->si_seq && 393 (SSEQ_LT(cb->s_swl2, si->si_ack) || 394 cb->s_swl2 == si->si_ack && SSEQ_LT(cb->s_ralo, si->si_alo))) { 395 /* keep track of pure window updates */ 396 if ((si->si_cc & SP_SP) && cb->s_swl2 == si->si_ack 397 && SSEQ_LT(cb->s_ralo, si->si_alo)) { 398 sppstat.spps_rcvwinupd++; 399 sppstat.spps_rcvdupack--; 400 } 401 cb->s_ralo = si->si_alo; 402 cb->s_swl1 = si->si_seq; 403 cb->s_swl2 = si->si_ack; 404 cb->s_swnd = (1 + si->si_alo - si->si_ack); 405 if (cb->s_swnd > cb->s_smxw) 406 cb->s_smxw = cb->s_swnd; 407 cb->s_flags |= SF_WIN; 408 } 409 /* 410 * If this packet number is higher than that which 411 * we have allocated refuse it, unless urgent 412 */ 413 if (SSEQ_GT(si->si_seq, cb->s_alo)) { 414 if (si->si_cc & SP_SP) { 415 sppstat.spps_rcvwinprobe++; 416 return (1); 417 } else 418 sppstat.spps_rcvpackafterwin++; 419 if (si->si_cc & SP_OB) { 420 if (SSEQ_GT(si->si_seq, cb->s_alo + 60)) { 421 ns_error(dtom(si), NS_ERR_FULLUP, 0); 422 return (0); 423 } /* else queue this packet; */ 424 } else { 425 /*register struct socket *so = cb->s_nspcb->nsp_socket; 426 if (so->so_state && SS_NOFDREF) { 427 ns_error(dtom(si), NS_ERR_NOSOCK, 0); 428 (void)spp_close(cb); 429 } else 430 would crash system*/ 431 spp_istat.notyet++; 432 ns_error(dtom(si), NS_ERR_FULLUP, 0); 433 return (0); 434 } 435 } 436 /* 437 * If this is a system packet, we don't need to 438 * queue it up, and won't update acknowledge # 439 */ 440 if (si->si_cc & SP_SP) { 441 return (1); 442 } 443 /* 444 * We have already seen this packet, so drop. 445 */ 446 if (SSEQ_LT(si->si_seq, cb->s_ack)) { 447 spp_istat.bdreas++; 448 sppstat.spps_rcvduppack++; 449 if (si->si_seq == cb->s_ack - 1) 450 spp_istat.lstdup++; 451 return (1); 452 } 453 /* 454 * Loop through all packets queued up to insert in 455 * appropriate sequence. 456 */ 457 for (q = cb->s_q.si_next; q!=&cb->s_q; q = q->si_next) { 458 if (si->si_seq == SI(q)->si_seq) { 459 sppstat.spps_rcvduppack++; 460 return (1); 461 } 462 if (SSEQ_LT(si->si_seq, SI(q)->si_seq)) { 463 sppstat.spps_rcvoopack++; 464 break; 465 } 466 } 467 insque(si, q->si_prev); 468 /* 469 * If this packet is urgent, inform process 470 */ 471 if (si->si_cc & SP_OB) { 472 cb->s_iobc = ((char *)si)[1 + sizeof(*si)]; 473 sohasoutofband(so); 474 cb->s_oobflags |= SF_IOOB; 475 } 476 present: 477 #define SPINC sizeof(struct sphdr) 478 /* 479 * Loop through all packets queued up to update acknowledge 480 * number, and present all acknowledged data to user; 481 * If in packet interface mode, show packet headers. 482 */ 483 for (q = cb->s_q.si_next; q!=&cb->s_q; q = q->si_next) { 484 if (SI(q)->si_seq == cb->s_ack) { 485 cb->s_ack++; 486 m = dtom(q); 487 if (SI(q)->si_cc & SP_OB) { 488 cb->s_oobflags &= ~SF_IOOB; 489 if (so->so_rcv.sb_cc) 490 so->so_oobmark = so->so_rcv.sb_cc; 491 else 492 so->so_state |= SS_RCVATMARK; 493 } 494 q = q->si_prev; 495 remque(q->si_next); 496 wakeup = 1; 497 sppstat.spps_rcvpack++; 498 #ifdef SF_NEWCALL 499 if (cb->s_flags2 & SF_NEWCALL) { 500 struct sphdr *sp = mtod(m, struct sphdr *); 501 u_char dt = sp->sp_dt; 502 spp_newchecks[4]++; 503 if (dt != cb->s_rhdr.sp_dt) { 504 struct mbuf *mm = 505 m_getclr(M_DONTWAIT, MT_CONTROL); 506 spp_newchecks[0]++; 507 if (mm != NULL) { 508 u_short *s = 509 mtod(mm, u_short *); 510 cb->s_rhdr.sp_dt = dt; 511 mm->m_len = 5; /*XXX*/ 512 s[0] = 5; 513 s[1] = 1; 514 *(u_char *)(&s[2]) = dt; 515 sbappend(&so->so_rcv, mm); 516 } 517 } 518 if (sp->sp_cc & SP_OB) { 519 MCHTYPE(m, MT_OOBDATA); 520 spp_newchecks[1]++; 521 so->so_oobmark = 0; 522 so->so_state &= ~SS_RCVATMARK; 523 } 524 if (packetp == 0) { 525 m->m_data += SPINC; 526 m->m_len -= SPINC; 527 m->m_pkthdr.len -= SPINC; 528 } 529 if ((sp->sp_cc & SP_EM) || packetp) { 530 sbappendrecord(&so->so_rcv, m); 531 spp_newchecks[9]++; 532 } else 533 sbappend(&so->so_rcv, m); 534 } else 535 #endif 536 if (packetp) { 537 sbappendrecord(&so->so_rcv, m); 538 } else { 539 cb->s_rhdr = *mtod(m, struct sphdr *); 540 m->m_data += SPINC; 541 m->m_len -= SPINC; 542 m->m_pkthdr.len -= SPINC; 543 sbappend(&so->so_rcv, m); 544 } 545 } else 546 break; 547 } 548 if (wakeup) sorwakeup(so); 549 return (0); 550 } 551 552 spp_ctlinput(cmd, arg) 553 int cmd; 554 caddr_t arg; 555 { 556 struct ns_addr *na; 557 extern u_char nsctlerrmap[]; 558 extern spp_abort(), spp_quench(); 559 extern struct nspcb *idp_drop(); 560 struct ns_errp *errp; 561 struct nspcb *nsp; 562 struct sockaddr_ns *sns; 563 int type; 564 565 if (cmd < 0 || cmd > PRC_NCMDS) 566 return; 567 type = NS_ERR_UNREACH_HOST; 568 569 switch (cmd) { 570 571 case PRC_ROUTEDEAD: 572 return; 573 574 case PRC_IFDOWN: 575 case PRC_HOSTDEAD: 576 case PRC_HOSTUNREACH: 577 sns = (struct sockaddr_ns *)arg; 578 if (sns->sns_family != AF_NS) 579 return; 580 na = &sns->sns_addr; 581 break; 582 583 default: 584 errp = (struct ns_errp *)arg; 585 na = &errp->ns_err_idp.idp_dna; 586 type = errp->ns_err_num; 587 type = ntohs((u_short)type); 588 } 589 switch (type) { 590 591 case NS_ERR_UNREACH_HOST: 592 ns_pcbnotify(na, (int)nsctlerrmap[cmd], spp_abort, (long) 0); 593 break; 594 595 case NS_ERR_TOO_BIG: 596 case NS_ERR_NOSOCK: 597 nsp = ns_pcblookup(na, errp->ns_err_idp.idp_sna.x_port, 598 NS_WILDCARD); 599 if (nsp) { 600 if(nsp->nsp_pcb) 601 (void) spp_drop((struct sppcb *)nsp->nsp_pcb, 602 (int)nsctlerrmap[cmd]); 603 else 604 (void) idp_drop(nsp, (int)nsctlerrmap[cmd]); 605 } 606 break; 607 608 case NS_ERR_FULLUP: 609 ns_pcbnotify(na, 0, spp_quench, (long) 0); 610 } 611 } 612 /* 613 * When a source quench is received, close congestion window 614 * to one packet. We will gradually open it again as we proceed. 615 */ 616 spp_quench(nsp) 617 struct nspcb *nsp; 618 { 619 struct sppcb *cb = nstosppcb(nsp); 620 621 if (cb) 622 cb->s_cwnd = CUNIT; 623 } 624 625 #ifdef notdef 626 int 627 spp_fixmtu(nsp) 628 register struct nspcb *nsp; 629 { 630 register struct sppcb *cb = (struct sppcb *)(nsp->nsp_pcb); 631 register struct mbuf *m; 632 register struct spidp *si; 633 struct ns_errp *ep; 634 struct sockbuf *sb; 635 int badseq, len; 636 struct mbuf *firstbad, *m0; 637 638 if (cb) { 639 /* 640 * The notification that we have sent 641 * too much is bad news -- we will 642 * have to go through queued up so far 643 * splitting ones which are too big and 644 * reassigning sequence numbers and checksums. 645 * we should then retransmit all packets from 646 * one above the offending packet to the last one 647 * we had sent (or our allocation) 648 * then the offending one so that the any queued 649 * data at our destination will be discarded. 650 */ 651 ep = (struct ns_errp *)nsp->nsp_notify_param; 652 sb = &nsp->nsp_socket->so_snd; 653 cb->s_mtu = ep->ns_err_param; 654 badseq = SI(&ep->ns_err_idp)->si_seq; 655 for (m = sb->sb_mb; m; m = m->m_act) { 656 si = mtod(m, struct spidp *); 657 if (si->si_seq == badseq) 658 break; 659 } 660 if (m == 0) return; 661 firstbad = m; 662 /*for (;;) {*/ 663 /* calculate length */ 664 for (m0 = m, len = 0; m ; m = m->m_next) 665 len += m->m_len; 666 if (len > cb->s_mtu) { 667 } 668 /* FINISH THIS 669 } */ 670 } 671 } 672 #endif 673 674 spp_output(cb, m0) 675 register struct sppcb *cb; 676 struct mbuf *m0; 677 { 678 struct socket *so = cb->s_nspcb->nsp_socket; 679 register struct mbuf *m; 680 register struct spidp *si = (struct spidp *) 0; 681 register struct sockbuf *sb = &so->so_snd; 682 int len = 0, win, rcv_win; 683 short span, off, recordp = 0; 684 u_short alo; 685 int error = 0, sendalot; 686 #ifdef notdef 687 int idle; 688 #endif 689 struct mbuf *mprev; 690 extern int idpcksum; 691 692 if (m0) { 693 int mtu = cb->s_mtu; 694 int datalen; 695 /* 696 * Make sure that packet isn't too big. 697 */ 698 for (m = m0; m ; m = m->m_next) { 699 mprev = m; 700 len += m->m_len; 701 if (m->m_flags & M_EOR) 702 recordp = 1; 703 } 704 datalen = (cb->s_flags & SF_HO) ? 705 len - sizeof (struct sphdr) : len; 706 if (datalen > mtu) { 707 if (cb->s_flags & SF_PI) { 708 m_freem(m0); 709 return (EMSGSIZE); 710 } else { 711 int oldEM = cb->s_cc & SP_EM; 712 713 cb->s_cc &= ~SP_EM; 714 while (len > mtu) { 715 /* 716 * Here we are only being called 717 * from usrreq(), so it is OK to 718 * block. 719 */ 720 m = m_copym(m0, 0, mtu, M_WAIT); 721 if (cb->s_flags & SF_NEWCALL) { 722 struct mbuf *mm = m; 723 spp_newchecks[7]++; 724 while (mm) { 725 mm->m_flags &= ~M_EOR; 726 mm = mm->m_next; 727 } 728 } 729 error = spp_output(cb, m); 730 if (error) { 731 cb->s_cc |= oldEM; 732 m_freem(m0); 733 return(error); 734 } 735 m_adj(m0, mtu); 736 len -= mtu; 737 } 738 cb->s_cc |= oldEM; 739 } 740 } 741 /* 742 * Force length even, by adding a "garbage byte" if 743 * necessary. 744 */ 745 if (len & 1) { 746 m = mprev; 747 if (M_TRAILINGSPACE(m) >= 1) 748 m->m_len++; 749 else { 750 struct mbuf *m1 = m_get(M_DONTWAIT, MT_DATA); 751 752 if (m1 == 0) { 753 m_freem(m0); 754 return (ENOBUFS); 755 } 756 m1->m_len = 1; 757 *(mtod(m1, u_char *)) = 0; 758 m->m_next = m1; 759 } 760 } 761 m = m_gethdr(M_DONTWAIT, MT_HEADER); 762 if (m == 0) { 763 m_freem(m0); 764 return (ENOBUFS); 765 } 766 /* 767 * Fill in mbuf with extended SP header 768 * and addresses and length put into network format. 769 */ 770 MH_ALIGN(m, sizeof (struct spidp)); 771 m->m_len = sizeof (struct spidp); 772 m->m_next = m0; 773 si = mtod(m, struct spidp *); 774 si->si_i = *cb->s_idp; 775 si->si_s = cb->s_shdr; 776 if ((cb->s_flags & SF_PI) && (cb->s_flags & SF_HO)) { 777 register struct sphdr *sh; 778 if (m0->m_len < sizeof (*sh)) { 779 if((m0 = m_pullup(m0, sizeof(*sh))) == NULL) { 780 (void) m_free(m); 781 m_freem(m0); 782 return (EINVAL); 783 } 784 m->m_next = m0; 785 } 786 sh = mtod(m0, struct sphdr *); 787 si->si_dt = sh->sp_dt; 788 si->si_cc |= sh->sp_cc & SP_EM; 789 m0->m_len -= sizeof (*sh); 790 m0->m_data += sizeof (*sh); 791 len -= sizeof (*sh); 792 } 793 len += sizeof(*si); 794 if ((cb->s_flags2 & SF_NEWCALL) && recordp) { 795 si->si_cc |= SP_EM; 796 spp_newchecks[8]++; 797 } 798 if (cb->s_oobflags & SF_SOOB) { 799 /* 800 * Per jqj@cornell: 801 * make sure OB packets convey exactly 1 byte. 802 * If the packet is 1 byte or larger, we 803 * have already guaranted there to be at least 804 * one garbage byte for the checksum, and 805 * extra bytes shouldn't hurt! 806 */ 807 if (len > sizeof(*si)) { 808 si->si_cc |= SP_OB; 809 len = (1 + sizeof(*si)); 810 } 811 } 812 si->si_len = htons((u_short)len); 813 m->m_pkthdr.len = ((len - 1) | 1) + 1; 814 /* 815 * queue stuff up for output 816 */ 817 sbappendrecord(sb, m); 818 cb->s_seq++; 819 } 820 #ifdef notdef 821 idle = (cb->s_smax == (cb->s_rack - 1)); 822 #endif 823 again: 824 sendalot = 0; 825 off = cb->s_snxt - cb->s_rack; 826 win = min(cb->s_swnd, (cb->s_cwnd/CUNIT)); 827 828 /* 829 * If in persist timeout with window of 0, send a probe. 830 * Otherwise, if window is small but nonzero 831 * and timer expired, send what we can and go into 832 * transmit state. 833 */ 834 if (cb->s_force == 1 + SPPT_PERSIST) { 835 if (win != 0) { 836 cb->s_timer[SPPT_PERSIST] = 0; 837 cb->s_rxtshift = 0; 838 } 839 } 840 span = cb->s_seq - cb->s_rack; 841 len = min(span, win) - off; 842 843 if (len < 0) { 844 /* 845 * Window shrank after we went into it. 846 * If window shrank to 0, cancel pending 847 * restransmission and pull s_snxt back 848 * to (closed) window. We will enter persist 849 * state below. If the widndow didn't close completely, 850 * just wait for an ACK. 851 */ 852 len = 0; 853 if (win == 0) { 854 cb->s_timer[SPPT_REXMT] = 0; 855 cb->s_snxt = cb->s_rack; 856 } 857 } 858 if (len > 1) 859 sendalot = 1; 860 rcv_win = sbspace(&so->so_rcv); 861 862 /* 863 * Send if we owe peer an ACK. 864 */ 865 if (cb->s_oobflags & SF_SOOB) { 866 /* 867 * must transmit this out of band packet 868 */ 869 cb->s_oobflags &= ~ SF_SOOB; 870 sendalot = 1; 871 sppstat.spps_sndurg++; 872 goto found; 873 } 874 if (cb->s_flags & SF_ACKNOW) 875 goto send; 876 if (cb->s_state < TCPS_ESTABLISHED) 877 goto send; 878 /* 879 * Silly window can't happen in spp. 880 * Code from tcp deleted. 881 */ 882 if (len) 883 goto send; 884 /* 885 * Compare available window to amount of window 886 * known to peer (as advertised window less 887 * next expected input.) If the difference is at least two 888 * packets or at least 35% of the mximum possible window, 889 * then want to send a window update to peer. 890 */ 891 if (rcv_win > 0) { 892 u_short delta = 1 + cb->s_alo - cb->s_ack; 893 int adv = rcv_win - (delta * cb->s_mtu); 894 895 if ((so->so_rcv.sb_cc == 0 && adv >= (2 * cb->s_mtu)) || 896 (100 * adv / so->so_rcv.sb_hiwat >= 35)) { 897 sppstat.spps_sndwinup++; 898 cb->s_flags |= SF_ACKNOW; 899 goto send; 900 } 901 902 } 903 /* 904 * Many comments from tcp_output.c are appropriate here 905 * including . . . 906 * If send window is too small, there is data to transmit, and no 907 * retransmit or persist is pending, then go to persist state. 908 * If nothing happens soon, send when timer expires: 909 * if window is nonzero, transmit what we can, 910 * otherwise send a probe. 911 */ 912 if (so->so_snd.sb_cc && cb->s_timer[SPPT_REXMT] == 0 && 913 cb->s_timer[SPPT_PERSIST] == 0) { 914 cb->s_rxtshift = 0; 915 spp_setpersist(cb); 916 } 917 /* 918 * No reason to send a packet, just return. 919 */ 920 cb->s_outx = 1; 921 return (0); 922 923 send: 924 /* 925 * Find requested packet. 926 */ 927 si = 0; 928 if (len > 0) { 929 cb->s_want = cb->s_snxt; 930 for (m = sb->sb_mb; m; m = m->m_act) { 931 si = mtod(m, struct spidp *); 932 if (SSEQ_LEQ(cb->s_snxt, si->si_seq)) 933 break; 934 } 935 found: 936 if (si) { 937 if (si->si_seq == cb->s_snxt) 938 cb->s_snxt++; 939 else 940 sppstat.spps_sndvoid++, si = 0; 941 } 942 } 943 /* 944 * update window 945 */ 946 if (rcv_win < 0) 947 rcv_win = 0; 948 alo = cb->s_ack - 1 + (rcv_win / ((short)cb->s_mtu)); 949 if (SSEQ_LT(alo, cb->s_alo)) 950 alo = cb->s_alo; 951 952 if (si) { 953 /* 954 * must make a copy of this packet for 955 * idp_output to monkey with 956 */ 957 m = m_copy(dtom(si), 0, (int)M_COPYALL); 958 if (m == NULL) { 959 return (ENOBUFS); 960 } 961 si = mtod(m, struct spidp *); 962 if (SSEQ_LT(si->si_seq, cb->s_smax)) 963 sppstat.spps_sndrexmitpack++; 964 else 965 sppstat.spps_sndpack++; 966 } else if (cb->s_force || cb->s_flags & SF_ACKNOW) { 967 /* 968 * Must send an acknowledgement or a probe 969 */ 970 if (cb->s_force) 971 sppstat.spps_sndprobe++; 972 if (cb->s_flags & SF_ACKNOW) 973 sppstat.spps_sndacks++; 974 m = m_gethdr(M_DONTWAIT, MT_HEADER); 975 if (m == 0) 976 return (ENOBUFS); 977 /* 978 * Fill in mbuf with extended SP header 979 * and addresses and length put into network format. 980 */ 981 MH_ALIGN(m, sizeof (struct spidp)); 982 m->m_len = sizeof (*si); 983 m->m_pkthdr.len = sizeof (*si); 984 si = mtod(m, struct spidp *); 985 si->si_i = *cb->s_idp; 986 si->si_s = cb->s_shdr; 987 si->si_seq = cb->s_smax + 1; 988 si->si_len = htons(sizeof (*si)); 989 si->si_cc |= SP_SP; 990 } else { 991 cb->s_outx = 3; 992 if (so->so_options & SO_DEBUG || traceallspps) 993 spp_trace(SA_OUTPUT, cb->s_state, cb, si, 0); 994 return (0); 995 } 996 /* 997 * Stuff checksum and output datagram. 998 */ 999 if ((si->si_cc & SP_SP) == 0) { 1000 if (cb->s_force != (1 + SPPT_PERSIST) || 1001 cb->s_timer[SPPT_PERSIST] == 0) { 1002 /* 1003 * If this is a new packet and we are not currently 1004 * timing anything, time this one. 1005 */ 1006 if (SSEQ_LT(cb->s_smax, si->si_seq)) { 1007 cb->s_smax = si->si_seq; 1008 if (cb->s_rtt == 0) { 1009 sppstat.spps_segstimed++; 1010 cb->s_rtseq = si->si_seq; 1011 cb->s_rtt = 1; 1012 } 1013 } 1014 /* 1015 * Set rexmt timer if not currently set, 1016 * Initial value for retransmit timer is smoothed 1017 * round-trip time + 2 * round-trip time variance. 1018 * Initialize shift counter which is used for backoff 1019 * of retransmit time. 1020 */ 1021 if (cb->s_timer[SPPT_REXMT] == 0 && 1022 cb->s_snxt != cb->s_rack) { 1023 cb->s_timer[SPPT_REXMT] = cb->s_rxtcur; 1024 if (cb->s_timer[SPPT_PERSIST]) { 1025 cb->s_timer[SPPT_PERSIST] = 0; 1026 cb->s_rxtshift = 0; 1027 } 1028 } 1029 } else if (SSEQ_LT(cb->s_smax, si->si_seq)) { 1030 cb->s_smax = si->si_seq; 1031 } 1032 } else if (cb->s_state < TCPS_ESTABLISHED) { 1033 if (cb->s_rtt == 0) 1034 cb->s_rtt = 1; /* Time initial handshake */ 1035 if (cb->s_timer[SPPT_REXMT] == 0) 1036 cb->s_timer[SPPT_REXMT] = cb->s_rxtcur; 1037 } 1038 { 1039 /* 1040 * Do not request acks when we ack their data packets or 1041 * when we do a gratuitous window update. 1042 */ 1043 if (((si->si_cc & SP_SP) == 0) || cb->s_force) 1044 si->si_cc |= SP_SA; 1045 si->si_seq = htons(si->si_seq); 1046 si->si_alo = htons(alo); 1047 si->si_ack = htons(cb->s_ack); 1048 1049 if (idpcksum) { 1050 si->si_sum = 0; 1051 len = ntohs(si->si_len); 1052 if (len & 1) 1053 len++; 1054 si->si_sum = ns_cksum(m, len); 1055 } else 1056 si->si_sum = 0xffff; 1057 1058 cb->s_outx = 4; 1059 if (so->so_options & SO_DEBUG || traceallspps) 1060 spp_trace(SA_OUTPUT, cb->s_state, cb, si, 0); 1061 1062 if (so->so_options & SO_DONTROUTE) 1063 error = ns_output(m, (struct route *)0, NS_ROUTETOIF); 1064 else 1065 error = ns_output(m, &cb->s_nspcb->nsp_route, 0); 1066 } 1067 if (error) { 1068 return (error); 1069 } 1070 sppstat.spps_sndtotal++; 1071 /* 1072 * Data sent (as far as we can tell). 1073 * If this advertises a larger window than any other segment, 1074 * then remember the size of the advertized window. 1075 * Any pending ACK has now been sent. 1076 */ 1077 cb->s_force = 0; 1078 cb->s_flags &= ~(SF_ACKNOW|SF_DELACK); 1079 if (SSEQ_GT(alo, cb->s_alo)) 1080 cb->s_alo = alo; 1081 if (sendalot) 1082 goto again; 1083 cb->s_outx = 5; 1084 return (0); 1085 } 1086 1087 int spp_do_persist_panics = 0; 1088 1089 spp_setpersist(cb) 1090 register struct sppcb *cb; 1091 { 1092 register t = ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1; 1093 extern int spp_backoff[]; 1094 1095 if (cb->s_timer[SPPT_REXMT] && spp_do_persist_panics) 1096 panic("spp_output REXMT"); 1097 /* 1098 * Start/restart persistance timer. 1099 */ 1100 SPPT_RANGESET(cb->s_timer[SPPT_PERSIST], 1101 t*spp_backoff[cb->s_rxtshift], 1102 SPPTV_PERSMIN, SPPTV_PERSMAX); 1103 if (cb->s_rxtshift < SPP_MAXRXTSHIFT) 1104 cb->s_rxtshift++; 1105 } 1106 /*ARGSUSED*/ 1107 spp_ctloutput(req, so, level, name, value) 1108 int req; 1109 struct socket *so; 1110 int name; 1111 struct mbuf **value; 1112 { 1113 register struct mbuf *m; 1114 struct nspcb *nsp = sotonspcb(so); 1115 register struct sppcb *cb; 1116 int mask, error = 0; 1117 1118 if (level != NSPROTO_SPP) { 1119 /* This will have to be changed when we do more general 1120 stacking of protocols */ 1121 return (idp_ctloutput(req, so, level, name, value)); 1122 } 1123 if (nsp == NULL) { 1124 error = EINVAL; 1125 goto release; 1126 } else 1127 cb = nstosppcb(nsp); 1128 1129 switch (req) { 1130 1131 case PRCO_GETOPT: 1132 if (value == NULL) 1133 return (EINVAL); 1134 m = m_get(M_DONTWAIT, MT_DATA); 1135 if (m == NULL) 1136 return (ENOBUFS); 1137 switch (name) { 1138 1139 case SO_HEADERS_ON_INPUT: 1140 mask = SF_HI; 1141 goto get_flags; 1142 1143 case SO_HEADERS_ON_OUTPUT: 1144 mask = SF_HO; 1145 get_flags: 1146 m->m_len = sizeof(short); 1147 *mtod(m, short *) = cb->s_flags & mask; 1148 break; 1149 1150 case SO_MTU: 1151 m->m_len = sizeof(u_short); 1152 *mtod(m, short *) = cb->s_mtu; 1153 break; 1154 1155 case SO_LAST_HEADER: 1156 m->m_len = sizeof(struct sphdr); 1157 *mtod(m, struct sphdr *) = cb->s_rhdr; 1158 break; 1159 1160 case SO_DEFAULT_HEADERS: 1161 m->m_len = sizeof(struct spidp); 1162 *mtod(m, struct sphdr *) = cb->s_shdr; 1163 break; 1164 1165 default: 1166 error = EINVAL; 1167 } 1168 *value = m; 1169 break; 1170 1171 case PRCO_SETOPT: 1172 if (value == 0 || *value == 0) { 1173 error = EINVAL; 1174 break; 1175 } 1176 switch (name) { 1177 int *ok; 1178 1179 case SO_HEADERS_ON_INPUT: 1180 mask = SF_HI; 1181 goto set_head; 1182 1183 case SO_HEADERS_ON_OUTPUT: 1184 mask = SF_HO; 1185 set_head: 1186 if (cb->s_flags & SF_PI) { 1187 ok = mtod(*value, int *); 1188 if (*ok) 1189 cb->s_flags |= mask; 1190 else 1191 cb->s_flags &= ~mask; 1192 } else error = EINVAL; 1193 break; 1194 1195 case SO_MTU: 1196 cb->s_mtu = *(mtod(*value, u_short *)); 1197 break; 1198 1199 #ifdef SF_NEWCALL 1200 case SO_NEWCALL: 1201 ok = mtod(*value, int *); 1202 if (*ok) { 1203 cb->s_flags2 |= SF_NEWCALL; 1204 spp_newchecks[5]++; 1205 } else { 1206 cb->s_flags2 &= ~SF_NEWCALL; 1207 spp_newchecks[6]++; 1208 } 1209 break; 1210 #endif 1211 1212 case SO_DEFAULT_HEADERS: 1213 { 1214 register struct sphdr *sp 1215 = mtod(*value, struct sphdr *); 1216 cb->s_dt = sp->sp_dt; 1217 cb->s_cc = sp->sp_cc & SP_EM; 1218 } 1219 break; 1220 1221 default: 1222 error = EINVAL; 1223 } 1224 m_freem(*value); 1225 break; 1226 } 1227 release: 1228 return (error); 1229 } 1230 1231 /*ARGSUSED*/ 1232 spp_usrreq(so, req, m, nam, controlp) 1233 struct socket *so; 1234 int req; 1235 struct mbuf *m, *nam, *controlp; 1236 { 1237 struct nspcb *nsp = sotonspcb(so); 1238 register struct sppcb *cb; 1239 int s = splnet(); 1240 int error = 0, ostate; 1241 struct mbuf *mm; 1242 register struct sockbuf *sb; 1243 1244 if (req == PRU_CONTROL) 1245 return (ns_control(so, (int)m, (caddr_t)nam, 1246 (struct ifnet *)controlp)); 1247 if (nsp == NULL) { 1248 if (req != PRU_ATTACH) { 1249 error = EINVAL; 1250 goto release; 1251 } 1252 } else 1253 cb = nstosppcb(nsp); 1254 1255 ostate = cb ? cb->s_state : 0; 1256 1257 switch (req) { 1258 1259 case PRU_ATTACH: 1260 if (nsp != NULL) { 1261 error = EISCONN; 1262 break; 1263 } 1264 error = ns_pcballoc(so, &nspcb); 1265 if (error) 1266 break; 1267 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { 1268 error = soreserve(so, (u_long) 3072, (u_long) 3072); 1269 if (error) 1270 break; 1271 } 1272 nsp = sotonspcb(so); 1273 1274 mm = m_getclr(M_DONTWAIT, MT_PCB); 1275 sb = &so->so_snd; 1276 1277 if (mm == NULL) { 1278 error = ENOBUFS; 1279 break; 1280 } 1281 cb = mtod(mm, struct sppcb *); 1282 mm = m_getclr(M_DONTWAIT, MT_HEADER); 1283 if (mm == NULL) { 1284 (void) m_free(dtom(m)); 1285 error = ENOBUFS; 1286 break; 1287 } 1288 cb->s_idp = mtod(mm, struct idp *); 1289 cb->s_state = TCPS_LISTEN; 1290 cb->s_smax = -1; 1291 cb->s_swl1 = -1; 1292 cb->s_q.si_next = cb->s_q.si_prev = &cb->s_q; 1293 cb->s_nspcb = nsp; 1294 cb->s_mtu = 576 - sizeof (struct spidp); 1295 cb->s_cwnd = sbspace(sb) * CUNIT / cb->s_mtu; 1296 cb->s_ssthresh = cb->s_cwnd; 1297 cb->s_cwmx = sbspace(sb) * CUNIT / 1298 (2 * sizeof (struct spidp)); 1299 /* Above is recomputed when connecting to account 1300 for changed buffering or mtu's */ 1301 cb->s_rtt = SPPTV_SRTTBASE; 1302 cb->s_rttvar = SPPTV_SRTTDFLT << 2; 1303 SPPT_RANGESET(cb->s_rxtcur, 1304 ((SPPTV_SRTTBASE >> 2) + (SPPTV_SRTTDFLT << 2)) >> 1, 1305 SPPTV_MIN, SPPTV_REXMTMAX); 1306 nsp->nsp_pcb = (caddr_t) cb; 1307 break; 1308 1309 case PRU_DETACH: 1310 if (nsp == NULL) { 1311 error = ENOTCONN; 1312 break; 1313 } 1314 if (cb->s_state > TCPS_LISTEN) 1315 cb = spp_disconnect(cb); 1316 else 1317 cb = spp_close(cb); 1318 break; 1319 1320 case PRU_BIND: 1321 error = ns_pcbbind(nsp, nam); 1322 break; 1323 1324 case PRU_LISTEN: 1325 if (nsp->nsp_lport == 0) 1326 error = ns_pcbbind(nsp, (struct mbuf *)0); 1327 if (error == 0) 1328 cb->s_state = TCPS_LISTEN; 1329 break; 1330 1331 /* 1332 * Initiate connection to peer. 1333 * Enter SYN_SENT state, and mark socket as connecting. 1334 * Start keep-alive timer, setup prototype header, 1335 * Send initial system packet requesting connection. 1336 */ 1337 case PRU_CONNECT: 1338 if (nsp->nsp_lport == 0) { 1339 error = ns_pcbbind(nsp, (struct mbuf *)0); 1340 if (error) 1341 break; 1342 } 1343 error = ns_pcbconnect(nsp, nam); 1344 if (error) 1345 break; 1346 soisconnecting(so); 1347 sppstat.spps_connattempt++; 1348 cb->s_state = TCPS_SYN_SENT; 1349 cb->s_did = 0; 1350 spp_template(cb); 1351 cb->s_timer[SPPT_KEEP] = SPPTV_KEEP; 1352 cb->s_force = 1 + SPPTV_KEEP; 1353 /* 1354 * Other party is required to respond to 1355 * the port I send from, but he is not 1356 * required to answer from where I am sending to, 1357 * so allow wildcarding. 1358 * original port I am sending to is still saved in 1359 * cb->s_dport. 1360 */ 1361 nsp->nsp_fport = 0; 1362 error = spp_output(cb, (struct mbuf *) 0); 1363 break; 1364 1365 case PRU_CONNECT2: 1366 error = EOPNOTSUPP; 1367 break; 1368 1369 /* 1370 * We may decide later to implement connection closing 1371 * handshaking at the spp level optionally. 1372 * here is the hook to do it: 1373 */ 1374 case PRU_DISCONNECT: 1375 cb = spp_disconnect(cb); 1376 break; 1377 1378 /* 1379 * Accept a connection. Essentially all the work is 1380 * done at higher levels; just return the address 1381 * of the peer, storing through addr. 1382 */ 1383 case PRU_ACCEPT: { 1384 struct sockaddr_ns *sns = mtod(nam, struct sockaddr_ns *); 1385 1386 nam->m_len = sizeof (struct sockaddr_ns); 1387 sns->sns_family = AF_NS; 1388 sns->sns_addr = nsp->nsp_faddr; 1389 break; 1390 } 1391 1392 case PRU_SHUTDOWN: 1393 socantsendmore(so); 1394 cb = spp_usrclosed(cb); 1395 if (cb) 1396 error = spp_output(cb, (struct mbuf *) 0); 1397 break; 1398 1399 /* 1400 * After a receive, possibly send acknowledgment 1401 * updating allocation. 1402 */ 1403 case PRU_RCVD: 1404 cb->s_flags |= SF_RVD; 1405 (void) spp_output(cb, (struct mbuf *) 0); 1406 cb->s_flags &= ~SF_RVD; 1407 break; 1408 1409 case PRU_ABORT: 1410 (void) spp_drop(cb, ECONNABORTED); 1411 break; 1412 1413 case PRU_SENSE: 1414 case PRU_CONTROL: 1415 m = NULL; 1416 error = EOPNOTSUPP; 1417 break; 1418 1419 case PRU_RCVOOB: 1420 if ((cb->s_oobflags & SF_IOOB) || so->so_oobmark || 1421 (so->so_state & SS_RCVATMARK)) { 1422 m->m_len = 1; 1423 *mtod(m, caddr_t) = cb->s_iobc; 1424 break; 1425 } 1426 error = EINVAL; 1427 break; 1428 1429 case PRU_SENDOOB: 1430 if (sbspace(&so->so_snd) < -512) { 1431 error = ENOBUFS; 1432 break; 1433 } 1434 cb->s_oobflags |= SF_SOOB; 1435 /* fall into */ 1436 case PRU_SEND: 1437 if (controlp) { 1438 u_short *p = mtod(controlp, u_short *); 1439 spp_newchecks[2]++; 1440 if ((p[0] == 5) && p[1] == 1) { /* XXXX, for testing */ 1441 cb->s_shdr.sp_dt = *(u_char *)(&p[2]); 1442 spp_newchecks[3]++; 1443 } 1444 m_freem(controlp); 1445 } 1446 controlp = NULL; 1447 error = spp_output(cb, m); 1448 m = NULL; 1449 break; 1450 1451 case PRU_SOCKADDR: 1452 ns_setsockaddr(nsp, nam); 1453 break; 1454 1455 case PRU_PEERADDR: 1456 ns_setpeeraddr(nsp, nam); 1457 break; 1458 1459 case PRU_SLOWTIMO: 1460 cb = spp_timers(cb, (int)nam); 1461 req |= ((int)nam) << 8; 1462 break; 1463 1464 case PRU_FASTTIMO: 1465 case PRU_PROTORCV: 1466 case PRU_PROTOSEND: 1467 error = EOPNOTSUPP; 1468 break; 1469 1470 default: 1471 panic("sp_usrreq"); 1472 } 1473 if (cb && (so->so_options & SO_DEBUG || traceallspps)) 1474 spp_trace(SA_USER, (u_char)ostate, cb, (struct spidp *)0, req); 1475 release: 1476 if (controlp != NULL) 1477 m_freem(controlp); 1478 if (m != NULL) 1479 m_freem(m); 1480 splx(s); 1481 return (error); 1482 } 1483 1484 spp_usrreq_sp(so, req, m, nam, controlp) 1485 struct socket *so; 1486 int req; 1487 struct mbuf *m, *nam, *controlp; 1488 { 1489 int error = spp_usrreq(so, req, m, nam, controlp); 1490 1491 if (req == PRU_ATTACH && error == 0) { 1492 struct nspcb *nsp = sotonspcb(so); 1493 ((struct sppcb *)nsp->nsp_pcb)->s_flags |= 1494 (SF_HI | SF_HO | SF_PI); 1495 } 1496 return (error); 1497 } 1498 1499 /* 1500 * Create template to be used to send spp packets on a connection. 1501 * Called after host entry created, fills 1502 * in a skeletal spp header (choosing connection id), 1503 * minimizing the amount of work necessary when the connection is used. 1504 */ 1505 spp_template(cb) 1506 register struct sppcb *cb; 1507 { 1508 register struct nspcb *nsp = cb->s_nspcb; 1509 register struct idp *idp = cb->s_idp; 1510 register struct sockbuf *sb = &(nsp->nsp_socket->so_snd); 1511 1512 idp->idp_pt = NSPROTO_SPP; 1513 idp->idp_sna = nsp->nsp_laddr; 1514 idp->idp_dna = nsp->nsp_faddr; 1515 cb->s_sid = htons(spp_iss); 1516 spp_iss += SPP_ISSINCR/2; 1517 cb->s_alo = 1; 1518 cb->s_cwnd = (sbspace(sb) * CUNIT) / cb->s_mtu; 1519 cb->s_ssthresh = cb->s_cwnd; /* Try to expand fast to full complement 1520 of large packets */ 1521 cb->s_cwmx = (sbspace(sb) * CUNIT) / (2 * sizeof(struct spidp)); 1522 cb->s_cwmx = max(cb->s_cwmx, cb->s_cwnd); 1523 /* But allow for lots of little packets as well */ 1524 } 1525 1526 /* 1527 * Close a SPIP control block: 1528 * discard spp control block itself 1529 * discard ns protocol control block 1530 * wake up any sleepers 1531 */ 1532 struct sppcb * 1533 spp_close(cb) 1534 register struct sppcb *cb; 1535 { 1536 register struct spidp_q *s; 1537 struct nspcb *nsp = cb->s_nspcb; 1538 struct socket *so = nsp->nsp_socket; 1539 register struct mbuf *m; 1540 1541 s = cb->s_q.si_next; 1542 while (s != &(cb->s_q)) { 1543 s = s->si_next; 1544 m = dtom(s->si_prev); 1545 remque(s->si_prev); 1546 m_freem(m); 1547 } 1548 (void) m_free(dtom(cb->s_idp)); 1549 (void) m_free(dtom(cb)); 1550 nsp->nsp_pcb = 0; 1551 soisdisconnected(so); 1552 ns_pcbdetach(nsp); 1553 sppstat.spps_closed++; 1554 return ((struct sppcb *)0); 1555 } 1556 /* 1557 * Someday we may do level 3 handshaking 1558 * to close a connection or send a xerox style error. 1559 * For now, just close. 1560 */ 1561 struct sppcb * 1562 spp_usrclosed(cb) 1563 register struct sppcb *cb; 1564 { 1565 return (spp_close(cb)); 1566 } 1567 struct sppcb * 1568 spp_disconnect(cb) 1569 register struct sppcb *cb; 1570 { 1571 return (spp_close(cb)); 1572 } 1573 /* 1574 * Drop connection, reporting 1575 * the specified error. 1576 */ 1577 struct sppcb * 1578 spp_drop(cb, errno) 1579 register struct sppcb *cb; 1580 int errno; 1581 { 1582 struct socket *so = cb->s_nspcb->nsp_socket; 1583 1584 /* 1585 * someday, in the xerox world 1586 * we will generate error protocol packets 1587 * announcing that the socket has gone away. 1588 */ 1589 if (TCPS_HAVERCVDSYN(cb->s_state)) { 1590 sppstat.spps_drops++; 1591 cb->s_state = TCPS_CLOSED; 1592 /*(void) tcp_output(cb);*/ 1593 } else 1594 sppstat.spps_conndrops++; 1595 so->so_error = errno; 1596 return (spp_close(cb)); 1597 } 1598 1599 spp_abort(nsp) 1600 struct nspcb *nsp; 1601 { 1602 1603 (void) spp_close((struct sppcb *)nsp->nsp_pcb); 1604 } 1605 1606 int spp_backoff[SPP_MAXRXTSHIFT+1] = 1607 { 1, 2, 4, 8, 16, 32, 64, 64, 64, 64, 64, 64, 64 }; 1608 /* 1609 * Fast timeout routine for processing delayed acks 1610 */ 1611 spp_fasttimo() 1612 { 1613 register struct nspcb *nsp; 1614 register struct sppcb *cb; 1615 int s = splnet(); 1616 1617 nsp = nspcb.nsp_next; 1618 if (nsp) 1619 for (; nsp != &nspcb; nsp = nsp->nsp_next) 1620 if ((cb = (struct sppcb *)nsp->nsp_pcb) && 1621 (cb->s_flags & SF_DELACK)) { 1622 cb->s_flags &= ~SF_DELACK; 1623 cb->s_flags |= SF_ACKNOW; 1624 sppstat.spps_delack++; 1625 (void) spp_output(cb, (struct mbuf *) 0); 1626 } 1627 splx(s); 1628 } 1629 1630 /* 1631 * spp protocol timeout routine called every 500 ms. 1632 * Updates the timers in all active pcb's and 1633 * causes finite state machine actions if timers expire. 1634 */ 1635 spp_slowtimo() 1636 { 1637 register struct nspcb *ip, *ipnxt; 1638 register struct sppcb *cb; 1639 int s = splnet(); 1640 register int i; 1641 1642 /* 1643 * Search through tcb's and update active timers. 1644 */ 1645 ip = nspcb.nsp_next; 1646 if (ip == 0) { 1647 splx(s); 1648 return; 1649 } 1650 while (ip != &nspcb) { 1651 cb = nstosppcb(ip); 1652 ipnxt = ip->nsp_next; 1653 if (cb == 0) 1654 goto tpgone; 1655 for (i = 0; i < SPPT_NTIMERS; i++) { 1656 if (cb->s_timer[i] && --cb->s_timer[i] == 0) { 1657 (void) spp_usrreq(cb->s_nspcb->nsp_socket, 1658 PRU_SLOWTIMO, (struct mbuf *)0, 1659 (struct mbuf *)i, (struct mbuf *)0, 1660 (struct mbuf *)0); 1661 if (ipnxt->nsp_prev != ip) 1662 goto tpgone; 1663 } 1664 } 1665 cb->s_idle++; 1666 if (cb->s_rtt) 1667 cb->s_rtt++; 1668 tpgone: 1669 ip = ipnxt; 1670 } 1671 spp_iss += SPP_ISSINCR/PR_SLOWHZ; /* increment iss */ 1672 splx(s); 1673 } 1674 /* 1675 * SPP timer processing. 1676 */ 1677 struct sppcb * 1678 spp_timers(cb, timer) 1679 register struct sppcb *cb; 1680 int timer; 1681 { 1682 long rexmt; 1683 int win; 1684 1685 cb->s_force = 1 + timer; 1686 switch (timer) { 1687 1688 /* 1689 * 2 MSL timeout in shutdown went off. TCP deletes connection 1690 * control block. 1691 */ 1692 case SPPT_2MSL: 1693 printf("spp: SPPT_2MSL went off for no reason\n"); 1694 cb->s_timer[timer] = 0; 1695 break; 1696 1697 /* 1698 * Retransmission timer went off. Message has not 1699 * been acked within retransmit interval. Back off 1700 * to a longer retransmit interval and retransmit one packet. 1701 */ 1702 case SPPT_REXMT: 1703 if (++cb->s_rxtshift > SPP_MAXRXTSHIFT) { 1704 cb->s_rxtshift = SPP_MAXRXTSHIFT; 1705 sppstat.spps_timeoutdrop++; 1706 cb = spp_drop(cb, ETIMEDOUT); 1707 break; 1708 } 1709 sppstat.spps_rexmttimeo++; 1710 rexmt = ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1; 1711 rexmt *= spp_backoff[cb->s_rxtshift]; 1712 SPPT_RANGESET(cb->s_rxtcur, rexmt, SPPTV_MIN, SPPTV_REXMTMAX); 1713 cb->s_timer[SPPT_REXMT] = cb->s_rxtcur; 1714 /* 1715 * If we have backed off fairly far, our srtt 1716 * estimate is probably bogus. Clobber it 1717 * so we'll take the next rtt measurement as our srtt; 1718 * move the current srtt into rttvar to keep the current 1719 * retransmit times until then. 1720 */ 1721 if (cb->s_rxtshift > SPP_MAXRXTSHIFT / 4 ) { 1722 cb->s_rttvar += (cb->s_srtt >> 2); 1723 cb->s_srtt = 0; 1724 } 1725 cb->s_snxt = cb->s_rack; 1726 /* 1727 * If timing a packet, stop the timer. 1728 */ 1729 cb->s_rtt = 0; 1730 /* 1731 * See very long discussion in tcp_timer.c about congestion 1732 * window and sstrhesh 1733 */ 1734 win = min(cb->s_swnd, (cb->s_cwnd/CUNIT)) / 2; 1735 if (win < 2) 1736 win = 2; 1737 cb->s_cwnd = CUNIT; 1738 cb->s_ssthresh = win * CUNIT; 1739 (void) spp_output(cb, (struct mbuf *) 0); 1740 break; 1741 1742 /* 1743 * Persistance timer into zero window. 1744 * Force a probe to be sent. 1745 */ 1746 case SPPT_PERSIST: 1747 sppstat.spps_persisttimeo++; 1748 spp_setpersist(cb); 1749 (void) spp_output(cb, (struct mbuf *) 0); 1750 break; 1751 1752 /* 1753 * Keep-alive timer went off; send something 1754 * or drop connection if idle for too long. 1755 */ 1756 case SPPT_KEEP: 1757 sppstat.spps_keeptimeo++; 1758 if (cb->s_state < TCPS_ESTABLISHED) 1759 goto dropit; 1760 if (cb->s_nspcb->nsp_socket->so_options & SO_KEEPALIVE) { 1761 if (cb->s_idle >= SPPTV_MAXIDLE) 1762 goto dropit; 1763 sppstat.spps_keepprobe++; 1764 (void) spp_output(cb, (struct mbuf *) 0); 1765 } else 1766 cb->s_idle = 0; 1767 cb->s_timer[SPPT_KEEP] = SPPTV_KEEP; 1768 break; 1769 dropit: 1770 sppstat.spps_keepdrops++; 1771 cb = spp_drop(cb, ETIMEDOUT); 1772 break; 1773 } 1774 return (cb); 1775 } 1776 #ifndef lint 1777 int SppcbSize = sizeof (struct sppcb); 1778 int NspcbSize = sizeof (struct nspcb); 1779 #endif lint 1780