1 /* 2 * Copyright (c) 1984, 1985, 1986, 1987 Regents of the University of California. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms are permitted 6 * provided that the above copyright notice and this paragraph are 7 * duplicated in all such forms and that any documentation, 8 * advertising materials, and other materials related to such 9 * distribution and use acknowledge that the software was developed 10 * by the University of California, Berkeley. The name of the 11 * University may not be used to endorse or promote products derived 12 * from this software without specific prior written permission. 13 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR 14 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED 15 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. 16 * 17 * @(#)spp_usrreq.c 7.8 (Berkeley) 06/29/88 18 */ 19 20 #include "param.h" 21 #include "systm.h" 22 #include "dir.h" 23 #include "user.h" 24 #include "mbuf.h" 25 #include "protosw.h" 26 #include "socket.h" 27 #include "socketvar.h" 28 #include "errno.h" 29 30 #include "../net/if.h" 31 #include "../net/route.h" 32 #include "../netinet/tcp_fsm.h" 33 34 #include "ns.h" 35 #include "ns_pcb.h" 36 #include "idp.h" 37 #include "idp_var.h" 38 #include "ns_error.h" 39 #include "sp.h" 40 #include "spidp.h" 41 #include "spp_timer.h" 42 #include "spp_var.h" 43 #include "spp_debug.h" 44 45 /* 46 * SP protocol implementation. 47 */ 48 spp_init() 49 { 50 51 spp_iss = 1; /* WRONG !! should fish it out of TODR */ 52 } 53 struct spidp spp_savesi; 54 int traceallspps = 0; 55 extern int sppconsdebug; 56 int spp_hardnosed; 57 int spp_use_delack = 0; 58 59 /*ARGSUSED*/ 60 spp_input(m, nsp, ifp) 61 register struct mbuf *m; 62 register struct nspcb *nsp; 63 struct ifnet *ifp; 64 { 65 register struct sppcb *cb; 66 register struct spidp *si = mtod(m, struct spidp *); 67 register struct socket *so; 68 short ostate; 69 int dropsocket = 0; 70 71 72 sppstat.spps_rcvtotal++; 73 if (nsp == 0) { 74 panic("No nspcb in spp_input\n"); 75 return; 76 } 77 78 cb = nstosppcb(nsp); 79 if (cb == 0) goto bad; 80 81 if (m->m_len < sizeof(*si)) { 82 if ((m = m_pullup(m, sizeof(*si))) == 0) { 83 sppstat.spps_rcvshort++; 84 return; 85 } 86 si = mtod(m, struct spidp *); 87 } 88 si->si_seq = ntohs(si->si_seq); 89 si->si_ack = ntohs(si->si_ack); 90 si->si_alo = ntohs(si->si_alo); 91 92 so = nsp->nsp_socket; 93 if (so->so_options & SO_DEBUG || traceallspps) { 94 ostate = cb->s_state; 95 spp_savesi = *si; 96 } 97 if (so->so_options & SO_ACCEPTCONN) { 98 struct sppcb *ocb = cb; 99 100 so = sonewconn(so); 101 if (so == 0) { 102 goto drop; 103 } 104 /* 105 * This is ugly, but .... 106 * 107 * Mark socket as temporary until we're 108 * committed to keeping it. The code at 109 * ``drop'' and ``dropwithreset'' check the 110 * flag dropsocket to see if the temporary 111 * socket created here should be discarded. 112 * We mark the socket as discardable until 113 * we're committed to it below in TCPS_LISTEN. 114 */ 115 dropsocket++; 116 nsp = (struct nspcb *)so->so_pcb; 117 nsp->nsp_laddr = si->si_dna; 118 cb = nstosppcb(nsp); 119 cb->s_mtu = ocb->s_mtu; /* preserve sockopts */ 120 cb->s_flags = ocb->s_flags; /* preserve sockopts */ 121 cb->s_state = TCPS_LISTEN; 122 } 123 124 /* 125 * Packet received on connection. 126 * reset idle time and keep-alive timer; 127 */ 128 cb->s_idle = 0; 129 cb->s_timer[SPPT_KEEP] = SPPTV_KEEP; 130 131 switch (cb->s_state) { 132 133 case TCPS_LISTEN:{ 134 struct mbuf *am; 135 register struct sockaddr_ns *sns; 136 struct ns_addr laddr; 137 138 /* 139 * If somebody here was carying on a conversation 140 * and went away, and his pen pal thinks he can 141 * still talk, we get the misdirected packet. 142 */ 143 if (spp_hardnosed && (si->si_did != 0 || si->si_seq != 0)) { 144 spp_istat.gonawy++; 145 goto dropwithreset; 146 } 147 am = m_get(M_DONTWAIT, MT_SONAME); 148 if (am == NULL) 149 goto drop; 150 am->m_len = sizeof (struct sockaddr_ns); 151 sns = mtod(am, struct sockaddr_ns *); 152 sns->sns_family = AF_NS; 153 sns->sns_addr = si->si_sna; 154 laddr = nsp->nsp_laddr; 155 if (ns_nullhost(laddr)) 156 nsp->nsp_laddr = si->si_dna; 157 if (ns_pcbconnect(nsp, am)) { 158 nsp->nsp_laddr = laddr; 159 (void) m_free(am); 160 spp_istat.noconn++; 161 goto drop; 162 } 163 (void) m_free(am); 164 spp_template(cb); 165 dropsocket = 0; /* committed to socket */ 166 cb->s_did = si->si_sid; 167 cb->s_rack = si->si_ack; 168 cb->s_ralo = si->si_alo; 169 #define THREEWAYSHAKE 170 #ifdef THREEWAYSHAKE 171 cb->s_state = TCPS_SYN_RECEIVED; 172 cb->s_force = 1 + SPPT_KEEP; 173 sppstat.spps_accepts++; 174 cb->s_timer[SPPT_KEEP] = SPPTV_KEEP; 175 } 176 break; 177 /* 178 * This state means that we have heard a response 179 * to our acceptance of their connection 180 * It is probably logically unnecessary in this 181 * implementation. 182 */ 183 case TCPS_SYN_RECEIVED: { 184 if (si->si_did!=cb->s_sid) { 185 spp_istat.wrncon++; 186 goto drop; 187 } 188 #endif 189 nsp->nsp_fport = si->si_sport; 190 cb->s_timer[SPPT_REXMT] = 0; 191 cb->s_timer[SPPT_KEEP] = SPPTV_KEEP; 192 soisconnected(so); 193 cb->s_state = TCPS_ESTABLISHED; 194 sppstat.spps_accepts++; 195 } 196 break; 197 198 /* 199 * This state means that we have gotten a response 200 * to our attempt to establish a connection. 201 * We fill in the data from the other side, 202 * telling us which port to respond to, instead of the well- 203 * known one we might have sent to in the first place. 204 * We also require that this is a response to our 205 * connection id. 206 */ 207 case TCPS_SYN_SENT: 208 if (si->si_did!=cb->s_sid) { 209 spp_istat.notme++; 210 goto drop; 211 } 212 sppstat.spps_connects++; 213 cb->s_did = si->si_sid; 214 cb->s_rack = si->si_ack; 215 cb->s_ralo = si->si_alo; 216 cb->s_dport = nsp->nsp_fport = si->si_sport; 217 cb->s_timer[SPPT_REXMT] = 0; 218 cb->s_flags |= SF_ACKNOW; 219 soisconnected(so); 220 cb->s_state = TCPS_ESTABLISHED; 221 /* Use roundtrip time of connection request for initial rtt */ 222 if (cb->s_rtt) { 223 cb->s_srtt = cb->s_rtt << 3; 224 cb->s_rttvar = cb->s_rtt << 1; 225 SPPT_RANGESET(cb->s_rxtcur, 226 ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1, 227 SPPTV_MIN, SPPTV_REXMTMAX); 228 cb->s_rtt = 0; 229 } 230 } 231 if (so->so_options & SO_DEBUG || traceallspps) 232 spp_trace(SA_INPUT, (u_char)ostate, cb, &spp_savesi, 0); 233 234 m->m_len -= sizeof (struct idp); 235 m->m_off += sizeof (struct idp); 236 237 if (spp_reass(cb, si)) { 238 (void) m_freem(m); 239 } 240 if (cb->s_force || (cb->s_flags & (SF_ACKNOW|SF_WIN|SF_RXT))) 241 (void) spp_output(cb, (struct mbuf *)0); 242 cb->s_flags &= ~(SF_WIN|SF_RXT); 243 return; 244 245 dropwithreset: 246 if (dropsocket) 247 (void) soabort(so); 248 si->si_seq = ntohs(si->si_seq); 249 si->si_ack = ntohs(si->si_ack); 250 si->si_alo = ntohs(si->si_alo); 251 ns_error(dtom(si), NS_ERR_NOSOCK, 0); 252 if (cb->s_nspcb->nsp_socket->so_options & SO_DEBUG || traceallspps) 253 spp_trace(SA_DROP, (u_char)ostate, cb, &spp_savesi, 0); 254 return; 255 256 drop: 257 bad: 258 if (cb == 0 || cb->s_nspcb->nsp_socket->so_options & SO_DEBUG || 259 traceallspps) 260 spp_trace(SA_DROP, (u_char)ostate, cb, &spp_savesi, 0); 261 m_freem(m); 262 } 263 264 int spprexmtthresh = 3; 265 266 /* 267 * This is structurally similar to the tcp reassembly routine 268 * but its function is somewhat different: It merely queues 269 * packets up, and suppresses duplicates. 270 */ 271 spp_reass(cb, si) 272 register struct sppcb *cb; 273 register struct spidp *si; 274 { 275 register struct spidp_q *q; 276 register struct mbuf *m; 277 register struct socket *so = cb->s_nspcb->nsp_socket; 278 char packetp = cb->s_flags & SF_HI; 279 int incr; 280 char wakeup = 0; 281 282 if (si == SI(0)) 283 goto present; 284 /* 285 * Update our news from them. 286 */ 287 if (si->si_cc & SP_SA) 288 cb->s_flags |= (spp_use_delack ? SF_DELACK : SF_ACKNOW); 289 if (SSEQ_GT(si->si_alo, cb->s_ralo)) 290 cb->s_flags |= SF_WIN; 291 if (SSEQ_LEQ(si->si_ack, cb->s_rack)) { 292 if ((si->si_cc & SP_SP) && cb->s_rack != (cb->s_smax + 1)) { 293 sppstat.spps_rcvdupack++; 294 /* 295 * If this is a completely duplicate ack 296 * and other conditions hold, we assume 297 * a packet has been dropped and retransmit 298 * it exactly as in tcp_input(). 299 */ 300 if (si->si_ack != cb->s_rack || 301 si->si_alo != cb->s_ralo) 302 cb->s_dupacks = 0; 303 else if (++cb->s_dupacks == spprexmtthresh) { 304 u_short onxt = cb->s_snxt; 305 int cwnd = cb->s_cwnd; 306 307 cb->s_snxt = si->si_ack; 308 cb->s_cwnd = CUNIT; 309 cb->s_force = 1 + SPPT_REXMT; 310 (void) spp_output(cb, (struct mbuf *)0); 311 cb->s_timer[SPPT_REXMT] = cb->s_rxtcur; 312 cb->s_rtt = 0; 313 if (cwnd >= 4 * CUNIT) 314 cb->s_cwnd = cwnd / 2; 315 if (SSEQ_GT(onxt, cb->s_snxt)) 316 cb->s_snxt = onxt; 317 return (1); 318 } 319 } else 320 cb->s_dupacks = 0; 321 goto update_window; 322 } 323 cb->s_dupacks = 0; 324 /* 325 * If our correspondent acknowledges data we haven't sent 326 * TCP would drop the packet after acking. We'll be a little 327 * more permissive 328 */ 329 if (SSEQ_GT(si->si_ack, (cb->s_smax + 1))) { 330 sppstat.spps_rcvacktoomuch++; 331 si->si_ack = cb->s_smax + 1; 332 } 333 sppstat.spps_rcvackpack++; 334 /* 335 * If transmit timer is running and timed sequence 336 * number was acked, update smoothed round trip time. 337 * See discussion of algorithm in tcp_input.c 338 */ 339 if (cb->s_rtt && SSEQ_GT(si->si_ack, cb->s_rtseq)) { 340 sppstat.spps_rttupdated++; 341 if (cb->s_srtt != 0) { 342 register short delta; 343 delta = cb->s_rtt - (cb->s_srtt >> 3); 344 if ((cb->s_srtt += delta) <= 0) 345 cb->s_srtt = 1; 346 if (delta < 0) 347 delta = -delta; 348 delta -= (cb->s_rttvar >> 2); 349 if ((cb->s_rttvar += delta) <= 0) 350 cb->s_rttvar = 1; 351 } else { 352 /* 353 * No rtt measurement yet 354 */ 355 cb->s_srtt = cb->s_rtt << 3; 356 cb->s_rttvar = cb->s_rtt << 1; 357 } 358 cb->s_rtt = 0; 359 cb->s_rxtshift = 0; 360 SPPT_RANGESET(cb->s_rxtcur, 361 ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1, 362 SPPTV_MIN, SPPTV_REXMTMAX); 363 } 364 /* 365 * If all outstanding data is acked, stop retransmit 366 * timer and remember to restart (more output or persist). 367 * If there is more data to be acked, restart retransmit 368 * timer, using current (possibly backed-off) value; 369 */ 370 if (si->si_ack == cb->s_smax + 1) { 371 cb->s_timer[SPPT_REXMT] = 0; 372 cb->s_flags |= SF_RXT; 373 } else if (cb->s_timer[SPPT_PERSIST] == 0) 374 cb->s_timer[SPPT_REXMT] = cb->s_rxtcur; 375 /* 376 * When new data is acked, open the congestion window. 377 * If the window gives us less than ssthresh packets 378 * in flight, open exponentially (maxseg at a time). 379 * Otherwise open linearly (maxseg^2 / cwnd at a time). 380 */ 381 incr = CUNIT; 382 if (cb->s_cwnd > cb->s_ssthresh) 383 incr = MAX(incr * incr / cb->s_cwnd, 1); 384 cb->s_cwnd = MIN(cb->s_cwnd + incr, cb->s_cwmx); 385 /* 386 * Trim Acked data from output queue. 387 */ 388 while ((m = so->so_snd.sb_mb) != NULL) { 389 if (SSEQ_LT((mtod(m, struct spidp *))->si_seq, si->si_ack)) 390 sbdroprecord(&so->so_snd); 391 else 392 break; 393 } 394 if ((so->so_snd.sb_flags & SB_WAIT) || so->so_snd.sb_sel) 395 sowwakeup(so); 396 cb->s_rack = si->si_ack; 397 update_window: 398 if (SSEQ_LT(cb->s_snxt, cb->s_rack)) 399 cb->s_snxt = cb->s_rack; 400 if (SSEQ_LT(cb->s_swl1, si->si_seq) || cb->s_swl1 == si->si_seq && 401 (SSEQ_LT(cb->s_swl2, si->si_ack) || 402 cb->s_swl2 == si->si_ack && SSEQ_LT(cb->s_ralo, si->si_alo))) { 403 /* keep track of pure window updates */ 404 if ((si->si_cc & SP_SP) && cb->s_swl2 == si->si_ack 405 && SSEQ_LT(cb->s_ralo, si->si_alo)) { 406 sppstat.spps_rcvwinupd++; 407 sppstat.spps_rcvdupack--; 408 } 409 cb->s_ralo = si->si_alo; 410 cb->s_swl1 = si->si_seq; 411 cb->s_swl2 = si->si_ack; 412 cb->s_swnd = (1 + si->si_alo - si->si_ack); 413 if (cb->s_swnd > cb->s_smxw) 414 cb->s_smxw = cb->s_swnd; 415 cb->s_flags |= SF_WIN; 416 } 417 /* 418 * If this packet number is higher than that which 419 * we have allocated refuse it, unless urgent 420 */ 421 if (SSEQ_GT(si->si_seq, cb->s_alo)) { 422 if (si->si_cc & SP_SP) { 423 sppstat.spps_rcvwinprobe++; 424 return (1); 425 } else 426 sppstat.spps_rcvpackafterwin++; 427 if (si->si_cc & SP_OB) { 428 if (SSEQ_GT(si->si_seq, cb->s_alo + 60)) { 429 ns_error(dtom(si), NS_ERR_FULLUP, 0); 430 return (0); 431 } /* else queue this packet; */ 432 } else { 433 /*register struct socket *so = cb->s_nspcb->nsp_socket; 434 if (so->so_state && SS_NOFDREF) { 435 ns_error(dtom(si), NS_ERR_NOSOCK, 0); 436 (void)spp_close(cb); 437 } else 438 would crash system*/ 439 spp_istat.notyet++; 440 ns_error(dtom(si), NS_ERR_FULLUP, 0); 441 return (0); 442 } 443 } 444 /* 445 * If this is a system packet, we don't need to 446 * queue it up, and won't update acknowledge # 447 */ 448 if (si->si_cc & SP_SP) { 449 return (1); 450 } 451 /* 452 * We have already seen this packet, so drop. 453 */ 454 if (SSEQ_LT(si->si_seq, cb->s_ack)) { 455 spp_istat.bdreas++; 456 sppstat.spps_rcvduppack++; 457 if (si->si_seq == cb->s_ack - 1) 458 spp_istat.lstdup++; 459 return (1); 460 } 461 /* 462 * Loop through all packets queued up to insert in 463 * appropriate sequence. 464 */ 465 for (q = cb->s_q.si_next; q!=&cb->s_q; q = q->si_next) { 466 if (si->si_seq == SI(q)->si_seq) { 467 sppstat.spps_rcvduppack++; 468 return (1); 469 } 470 if (SSEQ_LT(si->si_seq, SI(q)->si_seq)) { 471 sppstat.spps_rcvoopack++; 472 break; 473 } 474 } 475 insque(si, q->si_prev); 476 /* 477 * If this packet is urgent, inform process 478 */ 479 if (si->si_cc & SP_OB) { 480 cb->s_iobc = ((char *)si)[1 + sizeof(*si)]; 481 sohasoutofband(so); 482 cb->s_oobflags |= SF_IOOB; 483 } 484 present: 485 #define SPINC sizeof(struct sphdr) 486 /* 487 * Loop through all packets queued up to update acknowledge 488 * number, and present all acknowledged data to user; 489 * If in packet interface mode, show packet headers. 490 */ 491 for (q = cb->s_q.si_next; q!=&cb->s_q; q = q->si_next) { 492 if (SI(q)->si_seq == cb->s_ack) { 493 cb->s_ack++; 494 m = dtom(q); 495 if (SI(q)->si_cc & SP_OB) { 496 cb->s_oobflags &= ~SF_IOOB; 497 if (so->so_rcv.sb_cc) 498 so->so_oobmark = so->so_rcv.sb_cc; 499 else 500 so->so_state |= SS_RCVATMARK; 501 } 502 q = q->si_prev; 503 remque(q->si_next); 504 wakeup = 1; 505 sppstat.spps_rcvpack++; 506 if (packetp) { 507 sbappendrecord(&so->so_rcv, m); 508 } else { 509 cb->s_rhdr = *mtod(m, struct sphdr *); 510 m->m_off += SPINC; 511 m->m_len -= SPINC; 512 sbappend(&so->so_rcv, m); 513 } 514 } else 515 break; 516 } 517 if (wakeup) sorwakeup(so); 518 return (0); 519 } 520 521 spp_ctlinput(cmd, arg) 522 int cmd; 523 caddr_t arg; 524 { 525 struct ns_addr *na; 526 extern u_char nsctlerrmap[]; 527 extern spp_abort(), spp_quench(); 528 extern struct nspcb *idp_drop(); 529 struct ns_errp *errp; 530 struct nspcb *nsp; 531 struct sockaddr_ns *sns; 532 int type; 533 534 if (cmd < 0 || cmd > PRC_NCMDS) 535 return; 536 type = NS_ERR_UNREACH_HOST; 537 538 switch (cmd) { 539 540 case PRC_ROUTEDEAD: 541 return; 542 543 case PRC_IFDOWN: 544 case PRC_HOSTDEAD: 545 case PRC_HOSTUNREACH: 546 sns = (struct sockaddr_ns *)arg; 547 if (sns->sns_family != AF_NS) 548 return; 549 na = &sns->sns_addr; 550 break; 551 552 default: 553 errp = (struct ns_errp *)arg; 554 na = &errp->ns_err_idp.idp_dna; 555 type = errp->ns_err_num; 556 type = ntohs((u_short)type); 557 } 558 switch (type) { 559 560 case NS_ERR_UNREACH_HOST: 561 ns_pcbnotify(na, (int)nsctlerrmap[cmd], spp_abort, (long) 0); 562 break; 563 564 case NS_ERR_TOO_BIG: 565 case NS_ERR_NOSOCK: 566 nsp = ns_pcblookup(na, errp->ns_err_idp.idp_sna.x_port, 567 NS_WILDCARD); 568 if (nsp) { 569 if(nsp->nsp_pcb) 570 (void) spp_drop((struct sppcb *)nsp->nsp_pcb, 571 (int)nsctlerrmap[cmd]); 572 else 573 (void) idp_drop(nsp, (int)nsctlerrmap[cmd]); 574 } 575 break; 576 577 case NS_ERR_FULLUP: 578 ns_pcbnotify(na, 0, spp_quench, (long) 0); 579 } 580 } 581 /* 582 * When a source quench is received, close congestion window 583 * to one packet. We will gradually open it again as we proceed. 584 */ 585 spp_quench(nsp) 586 struct nspcb *nsp; 587 { 588 struct sppcb *cb = nstosppcb(nsp); 589 590 if (cb) 591 cb->s_cwnd = CUNIT; 592 } 593 594 #ifdef notdef 595 int 596 spp_fixmtu(nsp) 597 register struct nspcb *nsp; 598 { 599 register struct sppcb *cb = (struct sppcb *)(nsp->nsp_pcb); 600 register struct mbuf *m; 601 register struct spidp *si; 602 struct ns_errp *ep; 603 struct sockbuf *sb; 604 int badseq, len; 605 struct mbuf *firstbad, *m0; 606 607 if (cb) { 608 /* 609 * The notification that we have sent 610 * too much is bad news -- we will 611 * have to go through queued up so far 612 * splitting ones which are too big and 613 * reassigning sequence numbers and checksums. 614 * we should then retransmit all packets from 615 * one above the offending packet to the last one 616 * we had sent (or our allocation) 617 * then the offending one so that the any queued 618 * data at our destination will be discarded. 619 */ 620 ep = (struct ns_errp *)nsp->nsp_notify_param; 621 sb = &nsp->nsp_socket->so_snd; 622 cb->s_mtu = ep->ns_err_param; 623 badseq = SI(&ep->ns_err_idp)->si_seq; 624 for (m = sb->sb_mb; m; m = m->m_act) { 625 si = mtod(m, struct spidp *); 626 if (si->si_seq == badseq) 627 break; 628 } 629 if (m == 0) return; 630 firstbad = m; 631 /*for (;;) {*/ 632 /* calculate length */ 633 for (m0 = m, len = 0; m ; m = m->m_next) 634 len += m->m_len; 635 if (len > cb->s_mtu) { 636 } 637 /* FINISH THIS 638 } */ 639 } 640 } 641 #endif 642 643 spp_output(cb, m0) 644 register struct sppcb *cb; 645 struct mbuf *m0; 646 { 647 struct socket *so = cb->s_nspcb->nsp_socket; 648 register struct mbuf *m; 649 register struct spidp *si = (struct spidp *) 0; 650 register struct sockbuf *sb = &so->so_snd; 651 int len = 0, win, rcv_win; 652 short span, off; 653 u_short alo; 654 int error = 0, sendalot; 655 #ifdef notdef 656 int idle; 657 #endif 658 struct mbuf *mprev; 659 extern int idpcksum; 660 661 if (m0) { 662 int mtu = cb->s_mtu; 663 int datalen; 664 /* 665 * Make sure that packet isn't too big. 666 */ 667 for (m = m0; m ; m = m->m_next) { 668 mprev = m; 669 len += m->m_len; 670 } 671 datalen = (cb->s_flags & SF_HO) ? 672 len - sizeof (struct sphdr) : len; 673 if (datalen > mtu) { 674 if (cb->s_flags & SF_PI) { 675 m_freem(m0); 676 return (EMSGSIZE); 677 } else { 678 int oldEM = cb->s_cc & SP_EM; 679 680 cb->s_cc &= ~SP_EM; 681 while (len > mtu) { 682 m = m_copy(m0, 0, mtu); 683 if (m == NULL) { 684 error = ENOBUFS; 685 goto bad_copy; 686 } 687 error = spp_output(cb, m); 688 if (error) { 689 bad_copy: 690 cb->s_cc |= oldEM; 691 m_freem(m0); 692 return(error); 693 } 694 m_adj(m0, mtu); 695 len -= mtu; 696 } 697 cb->s_cc |= oldEM; 698 } 699 } 700 /* 701 * Force length even, by adding a "garbage byte" if 702 * necessary. 703 */ 704 if (len & 1) { 705 m = mprev; 706 if (m->m_len + m->m_off < MMAXOFF) 707 m->m_len++; 708 else { 709 struct mbuf *m1 = m_get(M_DONTWAIT, MT_DATA); 710 711 if (m1 == 0) { 712 m_freem(m0); 713 return (ENOBUFS); 714 } 715 m1->m_len = 1; 716 m1->m_off = MMAXOFF - 1; 717 m->m_next = m1; 718 } 719 } 720 m = m_get(M_DONTWAIT, MT_HEADER); 721 if (m == 0) { 722 m_freem(m0); 723 return (ENOBUFS); 724 } 725 /* 726 * Fill in mbuf with extended SP header 727 * and addresses and length put into network format. 728 * Long align so prepended ip headers will work on Gould. 729 */ 730 m->m_off = MMAXOFF - sizeof (struct spidp) - 2; 731 m->m_len = sizeof (struct spidp); 732 m->m_next = m0; 733 si = mtod(m, struct spidp *); 734 si->si_i = *cb->s_idp; 735 si->si_s = cb->s_shdr; 736 if ((cb->s_flags & SF_PI) && (cb->s_flags & SF_HO)) { 737 register struct sphdr *sh; 738 if (m0->m_len < sizeof (*sh)) { 739 if((m0 = m_pullup(m0, sizeof(*sh))) == NULL) { 740 (void) m_free(m); 741 m_freem(m0); 742 return (EINVAL); 743 } 744 m->m_next = m0; 745 } 746 sh = mtod(m0, struct sphdr *); 747 si->si_dt = sh->sp_dt; 748 si->si_cc |= sh->sp_cc & SP_EM; 749 m0->m_len -= sizeof (*sh); 750 m0->m_off += sizeof (*sh); 751 len -= sizeof (*sh); 752 } 753 len += sizeof(*si); 754 if (cb->s_oobflags & SF_SOOB) { 755 /* 756 * Per jqj@cornell: 757 * make sure OB packets convey exactly 1 byte. 758 * If the packet is 1 byte or larger, we 759 * have already guaranted there to be at least 760 * one garbage byte for the checksum, and 761 * extra bytes shouldn't hurt! 762 */ 763 if (len > sizeof(*si)) { 764 si->si_cc |= SP_OB; 765 len = (1 + sizeof(*si)); 766 } 767 } 768 si->si_len = htons((u_short)len); 769 /* 770 * queue stuff up for output 771 */ 772 sbappendrecord(sb, m); 773 cb->s_seq++; 774 } 775 #ifdef notdef 776 idle = (cb->s_smax == (cb->s_rack - 1)); 777 #endif 778 again: 779 sendalot = 0; 780 off = cb->s_snxt - cb->s_rack; 781 win = MIN(cb->s_swnd, (cb->s_cwnd/CUNIT)); 782 783 /* 784 * If in persist timeout with window of 0, send a probe. 785 * Otherwise, if window is small but nonzero 786 * and timer expired, send what we can and go into 787 * transmit state. 788 */ 789 if (cb->s_force == 1 + SPPT_PERSIST) { 790 if (win != 0) { 791 cb->s_timer[SPPT_PERSIST] = 0; 792 cb->s_rxtshift = 0; 793 } 794 } 795 span = cb->s_seq - cb->s_rack; 796 len = MIN(span, win) - off; 797 798 if (len < 0) { 799 /* 800 * Window shrank after we went into it. 801 * If window shrank to 0, cancel pending 802 * restransmission and pull s_snxt back 803 * to (closed) window. We will enter persist 804 * state below. If the widndow didn't close completely, 805 * just wait for an ACK. 806 */ 807 len = 0; 808 if (win == 0) { 809 cb->s_timer[SPPT_REXMT] = 0; 810 cb->s_snxt = cb->s_rack; 811 } 812 } 813 if (len > 1) 814 sendalot = 1; 815 rcv_win = sbspace(&so->so_rcv); 816 817 /* 818 * Send if we owe peer an ACK. 819 */ 820 if (cb->s_oobflags & SF_SOOB) { 821 /* 822 * must transmit this out of band packet 823 */ 824 cb->s_oobflags &= ~ SF_SOOB; 825 sendalot = 1; 826 sppstat.spps_sndurg++; 827 goto found; 828 } 829 if (cb->s_flags & SF_ACKNOW) 830 goto send; 831 if (cb->s_state < TCPS_ESTABLISHED) 832 goto send; 833 /* 834 * Silly window can't happen in spp. 835 * Code from tcp deleted. 836 */ 837 if (len) 838 goto send; 839 /* 840 * Compare available window to amount of window 841 * known to peer (as advertised window less 842 * next expected input.) If the difference is at least two 843 * packets or at least 35% of the mximum possible window, 844 * then want to send a window update to peer. 845 */ 846 if (rcv_win > 0) { 847 u_short delta = 1 + cb->s_alo - cb->s_ack; 848 int adv = rcv_win - (delta * cb->s_mtu); 849 850 if ((so->so_rcv.sb_cc == 0 && adv >= (2 * cb->s_mtu)) || 851 (100 * adv / so->so_rcv.sb_hiwat >= 35)) { 852 sppstat.spps_sndwinup++; 853 cb->s_flags |= SF_ACKNOW; 854 goto send; 855 } 856 857 } 858 /* 859 * Many comments from tcp_output.c are appropriate here 860 * including . . . 861 * If send window is too small, there is data to transmit, and no 862 * retransmit or persist is pending, then go to persist state. 863 * If nothing happens soon, send when timer expires: 864 * if window is nonzero, transmit what we can, 865 * otherwise send a probe. 866 */ 867 if (so->so_snd.sb_cc && cb->s_timer[SPPT_REXMT] == 0 && 868 cb->s_timer[SPPT_PERSIST] == 0) { 869 cb->s_rxtshift = 0; 870 spp_setpersist(cb); 871 } 872 /* 873 * No reason to send a packet, just return. 874 */ 875 cb->s_outx = 1; 876 return (0); 877 878 send: 879 /* 880 * Find requested packet. 881 */ 882 si = 0; 883 if (len > 0) { 884 cb->s_want = cb->s_snxt; 885 for (m = sb->sb_mb; m; m = m->m_act) { 886 si = mtod(m, struct spidp *); 887 if (SSEQ_LEQ(cb->s_snxt, si->si_seq)) 888 break; 889 } 890 found: 891 if (si) { 892 if (si->si_seq == cb->s_snxt) 893 cb->s_snxt++; 894 else 895 sppstat.spps_sndvoid++, si = 0; 896 } 897 } 898 /* 899 * update window 900 */ 901 if (rcv_win < 0) 902 rcv_win = 0; 903 alo = cb->s_ack - 1 + (rcv_win / ((short)cb->s_mtu)); 904 if (SSEQ_LT(alo, cb->s_alo)) 905 alo = cb->s_alo; 906 907 if (si) { 908 /* 909 * must make a copy of this packet for 910 * idp_output to monkey with 911 */ 912 m = m_copy(dtom(si), 0, (int)M_COPYALL); 913 if (m == NULL) { 914 return (ENOBUFS); 915 } 916 m0 = m; 917 si = mtod(m, struct spidp *); 918 if (SSEQ_LT(si->si_seq, cb->s_smax)) 919 sppstat.spps_sndrexmitpack++; 920 else 921 sppstat.spps_sndpack++; 922 } else if (cb->s_force || cb->s_flags & SF_ACKNOW) { 923 /* 924 * Must send an acknowledgement or a probe 925 */ 926 if (cb->s_force) 927 sppstat.spps_sndprobe++; 928 if (cb->s_flags & SF_ACKNOW) 929 sppstat.spps_sndacks++; 930 m = m_get(M_DONTWAIT, MT_HEADER); 931 if (m == 0) { 932 return (ENOBUFS); 933 } 934 /* 935 * Fill in mbuf with extended SP header 936 * and addresses and length put into network format. 937 * Allign beginning of packet to long to prepend 938 * ifp's on loopback, or NSIP encaspulation for fussy cpu's. 939 */ 940 m->m_off = MMAXOFF - sizeof (struct spidp) - 2; 941 m->m_len = sizeof (*si); 942 m->m_next = 0; 943 si = mtod(m, struct spidp *); 944 si->si_i = *cb->s_idp; 945 si->si_s = cb->s_shdr; 946 si->si_seq = cb->s_smax + 1; 947 si->si_len = htons(sizeof (*si)); 948 si->si_cc |= SP_SP; 949 } else { 950 cb->s_outx = 3; 951 if (so->so_options & SO_DEBUG || traceallspps) 952 spp_trace(SA_OUTPUT, cb->s_state, cb, si, 0); 953 return (0); 954 } 955 /* 956 * Stuff checksum and output datagram. 957 */ 958 if ((si->si_cc & SP_SP) == 0) { 959 if (cb->s_force != (1 + SPPT_PERSIST) || 960 cb->s_timer[SPPT_PERSIST] == 0) { 961 /* 962 * If this is a new packet and we are not currently 963 * timing anything, time this one. 964 */ 965 if (SSEQ_LT(cb->s_smax, si->si_seq)) { 966 cb->s_smax = si->si_seq; 967 if (cb->s_rtt == 0) { 968 sppstat.spps_segstimed++; 969 cb->s_rtseq = si->si_seq; 970 cb->s_rtt = 1; 971 } 972 } 973 /* 974 * Set rexmt timer if not currently set, 975 * Initial value for retransmit timer is smoothed 976 * round-trip time + 2 * round-trip time variance. 977 * Initialize shift counter which is used for backoff 978 * of retransmit time. 979 */ 980 if (cb->s_timer[SPPT_REXMT] == 0 && 981 cb->s_snxt != cb->s_rack) { 982 cb->s_timer[SPPT_REXMT] = cb->s_rxtcur; 983 if (cb->s_timer[SPPT_PERSIST]) { 984 cb->s_timer[SPPT_PERSIST] = 0; 985 cb->s_rxtshift = 0; 986 } 987 } 988 } else if (SSEQ_LT(cb->s_smax, si->si_seq)) { 989 cb->s_smax = si->si_seq; 990 } 991 } else if (cb->s_state < TCPS_ESTABLISHED) { 992 if (cb->s_rtt == 0) 993 cb->s_rtt = 1; /* Time initial handshake */ 994 if (cb->s_timer[SPPT_REXMT] == 0) 995 cb->s_timer[SPPT_REXMT] = cb->s_rxtcur; 996 } 997 { 998 /* 999 * Do not request acks when we ack their data packets or 1000 * when we do a gratuitous window update. 1001 */ 1002 if (((si->si_cc & SP_SP) == 0) || cb->s_force) 1003 si->si_cc |= SP_SA; 1004 si->si_seq = htons(si->si_seq); 1005 si->si_alo = htons(alo); 1006 si->si_ack = htons(cb->s_ack); 1007 1008 if (idpcksum) { 1009 si->si_sum = 0; 1010 len = ntohs(si->si_len); 1011 if (len & 1) 1012 len++; 1013 si->si_sum = ns_cksum(dtom(si), len); 1014 } else 1015 si->si_sum = 0xffff; 1016 1017 cb->s_outx = 4; 1018 if (so->so_options & SO_DEBUG || traceallspps) 1019 spp_trace(SA_OUTPUT, cb->s_state, cb, si, 0); 1020 1021 if (so->so_options & SO_DONTROUTE) 1022 error = ns_output(m, (struct route *)0, NS_ROUTETOIF); 1023 else 1024 error = ns_output(m, &cb->s_nspcb->nsp_route, 0); 1025 } 1026 if (error) { 1027 return (error); 1028 } 1029 sppstat.spps_sndtotal++; 1030 /* 1031 * Data sent (as far as we can tell). 1032 * If this advertises a larger window than any other segment, 1033 * then remember the size of the advertized window. 1034 * Any pending ACK has now been sent. 1035 */ 1036 cb->s_force = 0; 1037 cb->s_flags &= ~(SF_ACKNOW|SF_DELACK); 1038 if (SSEQ_GT(alo, cb->s_alo)) 1039 cb->s_alo = alo; 1040 if (sendalot) 1041 goto again; 1042 cb->s_outx = 5; 1043 return (0); 1044 } 1045 1046 int spp_do_persist_panics = 0; 1047 1048 spp_setpersist(cb) 1049 register struct sppcb *cb; 1050 { 1051 register t = ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1; 1052 extern int spp_backoff[]; 1053 1054 if (cb->s_timer[SPPT_REXMT] && spp_do_persist_panics) 1055 panic("spp_output REXMT"); 1056 /* 1057 * Start/restart persistance timer. 1058 */ 1059 SPPT_RANGESET(cb->s_timer[SPPT_PERSIST], 1060 t*spp_backoff[cb->s_rxtshift], 1061 SPPTV_PERSMIN, SPPTV_PERSMAX); 1062 if (cb->s_rxtshift < SPP_MAXRXTSHIFT) 1063 cb->s_rxtshift++; 1064 } 1065 /*ARGSUSED*/ 1066 spp_ctloutput(req, so, level, name, value) 1067 int req; 1068 struct socket *so; 1069 int name; 1070 struct mbuf **value; 1071 { 1072 register struct mbuf *m; 1073 struct nspcb *nsp = sotonspcb(so); 1074 register struct sppcb *cb; 1075 int mask, error = 0; 1076 1077 if (level != NSPROTO_SPP) { 1078 /* This will have to be changed when we do more general 1079 stacking of protocols */ 1080 return (idp_ctloutput(req, so, level, name, value)); 1081 } 1082 if (nsp == NULL) { 1083 error = EINVAL; 1084 goto release; 1085 } else 1086 cb = nstosppcb(nsp); 1087 1088 switch (req) { 1089 1090 case PRCO_GETOPT: 1091 if (value == NULL) 1092 return (EINVAL); 1093 m = m_get(M_DONTWAIT, MT_DATA); 1094 if (m == NULL) 1095 return (ENOBUFS); 1096 switch (name) { 1097 1098 case SO_HEADERS_ON_INPUT: 1099 mask = SF_HI; 1100 goto get_flags; 1101 1102 case SO_HEADERS_ON_OUTPUT: 1103 mask = SF_HO; 1104 get_flags: 1105 m->m_len = sizeof(short); 1106 m->m_off = MMAXOFF - sizeof(short); 1107 *mtod(m, short *) = cb->s_flags & mask; 1108 break; 1109 1110 case SO_MTU: 1111 m->m_len = sizeof(u_short); 1112 m->m_off = MMAXOFF - sizeof(short); 1113 *mtod(m, short *) = cb->s_mtu; 1114 break; 1115 1116 case SO_LAST_HEADER: 1117 m->m_len = sizeof(struct sphdr); 1118 m->m_off = MMAXOFF - sizeof(struct sphdr); 1119 *mtod(m, struct sphdr *) = cb->s_rhdr; 1120 break; 1121 1122 case SO_DEFAULT_HEADERS: 1123 m->m_len = sizeof(struct spidp); 1124 m->m_off = MMAXOFF - sizeof(struct sphdr); 1125 *mtod(m, struct sphdr *) = cb->s_shdr; 1126 break; 1127 1128 default: 1129 error = EINVAL; 1130 } 1131 *value = m; 1132 break; 1133 1134 case PRCO_SETOPT: 1135 if (value == 0 || *value == 0) { 1136 error = EINVAL; 1137 break; 1138 } 1139 switch (name) { 1140 int *ok; 1141 1142 case SO_HEADERS_ON_INPUT: 1143 mask = SF_HI; 1144 goto set_head; 1145 1146 case SO_HEADERS_ON_OUTPUT: 1147 mask = SF_HO; 1148 set_head: 1149 if (cb->s_flags & SF_PI) { 1150 ok = mtod(*value, int *); 1151 if (*ok) 1152 cb->s_flags |= mask; 1153 else 1154 cb->s_flags &= ~mask; 1155 } else error = EINVAL; 1156 break; 1157 1158 case SO_MTU: 1159 cb->s_mtu = *(mtod(*value, u_short *)); 1160 break; 1161 1162 case SO_DEFAULT_HEADERS: 1163 { 1164 register struct sphdr *sp 1165 = mtod(*value, struct sphdr *); 1166 cb->s_dt = sp->sp_dt; 1167 cb->s_cc = sp->sp_cc & SP_EM; 1168 } 1169 break; 1170 1171 default: 1172 error = EINVAL; 1173 } 1174 m_freem(*value); 1175 break; 1176 } 1177 release: 1178 return (error); 1179 } 1180 1181 /*ARGSUSED*/ 1182 spp_usrreq(so, req, m, nam, rights) 1183 struct socket *so; 1184 int req; 1185 struct mbuf *m, *nam, *rights; 1186 { 1187 struct nspcb *nsp = sotonspcb(so); 1188 register struct sppcb *cb; 1189 int s = splnet(); 1190 int error = 0, ostate; 1191 struct mbuf *mm; 1192 register struct sockbuf *sb; 1193 1194 if (req == PRU_CONTROL) 1195 return (ns_control(so, (int)m, (caddr_t)nam, 1196 (struct ifnet *)rights)); 1197 if (rights && rights->m_len) { 1198 error = EINVAL; 1199 goto release; 1200 } 1201 if (nsp == NULL) { 1202 if (req != PRU_ATTACH) { 1203 error = EINVAL; 1204 goto release; 1205 } 1206 } else 1207 cb = nstosppcb(nsp); 1208 1209 ostate = cb ? cb->s_state : 0; 1210 1211 switch (req) { 1212 1213 case PRU_ATTACH: 1214 if (nsp != NULL) { 1215 error = EISCONN; 1216 break; 1217 } 1218 error = ns_pcballoc(so, &nspcb); 1219 if (error) 1220 break; 1221 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { 1222 error = soreserve(so, (u_long) 3072, (u_long) 3072); 1223 if (error) 1224 break; 1225 } 1226 nsp = sotonspcb(so); 1227 1228 mm = m_getclr(M_DONTWAIT, MT_PCB); 1229 sb = &so->so_snd; 1230 1231 if (mm == NULL) { 1232 error = ENOBUFS; 1233 break; 1234 } 1235 cb = mtod(mm, struct sppcb *); 1236 mm = m_getclr(M_DONTWAIT, MT_HEADER); 1237 if (mm == NULL) { 1238 (void) m_free(dtom(m)); 1239 error = ENOBUFS; 1240 break; 1241 } 1242 cb->s_idp = mtod(mm, struct idp *); 1243 cb->s_state = TCPS_LISTEN; 1244 cb->s_smax = -1; 1245 cb->s_swl1 = -1; 1246 cb->s_q.si_next = cb->s_q.si_prev = &cb->s_q; 1247 cb->s_nspcb = nsp; 1248 cb->s_mtu = 576 - sizeof (struct spidp); 1249 cb->s_cwnd = sbspace(sb) * CUNIT / cb->s_mtu; 1250 cb->s_ssthresh = cb->s_cwnd; 1251 cb->s_cwmx = sb->sb_mbmax * CUNIT / 1252 (2 * sizeof (struct spidp)); 1253 /* Above is recomputed when connecting to account 1254 for changed buffering or mtu's */ 1255 cb->s_rtt = SPPTV_SRTTBASE; 1256 cb->s_rttvar = SPPTV_SRTTDFLT << 2; 1257 SPPT_RANGESET(cb->s_rxtcur, 1258 ((SPPTV_SRTTBASE >> 2) + (SPPTV_SRTTDFLT << 2)) >> 1, 1259 SPPTV_MIN, SPPTV_REXMTMAX); 1260 nsp->nsp_pcb = (caddr_t) cb; 1261 break; 1262 1263 case PRU_DETACH: 1264 if (nsp == NULL) { 1265 error = ENOTCONN; 1266 break; 1267 } 1268 if (cb->s_state > TCPS_LISTEN) 1269 cb = spp_disconnect(cb); 1270 else 1271 cb = spp_close(cb); 1272 break; 1273 1274 case PRU_BIND: 1275 error = ns_pcbbind(nsp, nam); 1276 break; 1277 1278 case PRU_LISTEN: 1279 if (nsp->nsp_lport == 0) 1280 error = ns_pcbbind(nsp, (struct mbuf *)0); 1281 if (error == 0) 1282 cb->s_state = TCPS_LISTEN; 1283 break; 1284 1285 /* 1286 * Initiate connection to peer. 1287 * Enter SYN_SENT state, and mark socket as connecting. 1288 * Start keep-alive timer, setup prototype header, 1289 * Send initial system packet requesting connection. 1290 */ 1291 case PRU_CONNECT: 1292 if (nsp->nsp_lport == 0) { 1293 error = ns_pcbbind(nsp, (struct mbuf *)0); 1294 if (error) 1295 break; 1296 } 1297 error = ns_pcbconnect(nsp, nam); 1298 if (error) 1299 break; 1300 soisconnecting(so); 1301 sppstat.spps_connattempt++; 1302 cb->s_state = TCPS_SYN_SENT; 1303 cb->s_did = 0; 1304 spp_template(cb); 1305 cb->s_timer[SPPT_KEEP] = SPPTV_KEEP; 1306 cb->s_force = 1 + SPPTV_KEEP; 1307 /* 1308 * Other party is required to respond to 1309 * the port I send from, but he is not 1310 * required to answer from where I am sending to, 1311 * so allow wildcarding. 1312 * original port I am sending to is still saved in 1313 * cb->s_dport. 1314 */ 1315 nsp->nsp_fport = 0; 1316 error = spp_output(cb, (struct mbuf *) 0); 1317 break; 1318 1319 case PRU_CONNECT2: 1320 error = EOPNOTSUPP; 1321 break; 1322 1323 /* 1324 * We may decide later to implement connection closing 1325 * handshaking at the spp level optionally. 1326 * here is the hook to do it: 1327 */ 1328 case PRU_DISCONNECT: 1329 cb = spp_disconnect(cb); 1330 break; 1331 1332 /* 1333 * Accept a connection. Essentially all the work is 1334 * done at higher levels; just return the address 1335 * of the peer, storing through addr. 1336 */ 1337 case PRU_ACCEPT: { 1338 struct sockaddr_ns *sns = mtod(nam, struct sockaddr_ns *); 1339 1340 nam->m_len = sizeof (struct sockaddr_ns); 1341 sns->sns_family = AF_NS; 1342 sns->sns_addr = nsp->nsp_faddr; 1343 break; 1344 } 1345 1346 case PRU_SHUTDOWN: 1347 socantsendmore(so); 1348 cb = spp_usrclosed(cb); 1349 if (cb) 1350 error = spp_output(cb, (struct mbuf *) 0); 1351 break; 1352 1353 /* 1354 * After a receive, possibly send acknowledgment 1355 * updating allocation. 1356 */ 1357 case PRU_RCVD: 1358 cb->s_flags |= SF_RVD; 1359 (void) spp_output(cb, (struct mbuf *) 0); 1360 cb->s_flags &= ~SF_RVD; 1361 break; 1362 1363 case PRU_ABORT: 1364 (void) spp_drop(cb, ECONNABORTED); 1365 break; 1366 1367 case PRU_SENSE: 1368 case PRU_CONTROL: 1369 m = NULL; 1370 error = EOPNOTSUPP; 1371 break; 1372 1373 case PRU_RCVOOB: 1374 if ((cb->s_oobflags & SF_IOOB) || so->so_oobmark || 1375 (so->so_state & SS_RCVATMARK)) { 1376 m->m_len = 1; 1377 *mtod(m, caddr_t) = cb->s_iobc; 1378 break; 1379 } 1380 error = EINVAL; 1381 break; 1382 1383 case PRU_SENDOOB: 1384 if (sbspace(&so->so_snd) < -512) { 1385 error = ENOBUFS; 1386 break; 1387 } 1388 cb->s_oobflags |= SF_SOOB; 1389 /* fall into */ 1390 case PRU_SEND: 1391 error = spp_output(cb, m); 1392 m = NULL; 1393 break; 1394 1395 case PRU_SOCKADDR: 1396 ns_setsockaddr(nsp, nam); 1397 break; 1398 1399 case PRU_PEERADDR: 1400 ns_setpeeraddr(nsp, nam); 1401 break; 1402 1403 case PRU_SLOWTIMO: 1404 cb = spp_timers(cb, (int)nam); 1405 req |= ((int)nam) << 8; 1406 break; 1407 1408 case PRU_FASTTIMO: 1409 case PRU_PROTORCV: 1410 case PRU_PROTOSEND: 1411 error = EOPNOTSUPP; 1412 break; 1413 1414 default: 1415 panic("sp_usrreq"); 1416 } 1417 if (cb && (so->so_options & SO_DEBUG || traceallspps)) 1418 spp_trace(SA_USER, (u_char)ostate, cb, (struct spidp *)0, req); 1419 release: 1420 if (m != NULL) 1421 m_freem(m); 1422 splx(s); 1423 return (error); 1424 } 1425 1426 spp_usrreq_sp(so, req, m, nam, rights) 1427 struct socket *so; 1428 int req; 1429 struct mbuf *m, *nam, *rights; 1430 { 1431 int error = spp_usrreq(so, req, m, nam, rights); 1432 1433 if (req == PRU_ATTACH && error == 0) { 1434 struct nspcb *nsp = sotonspcb(so); 1435 ((struct sppcb *)nsp->nsp_pcb)->s_flags |= 1436 (SF_HI | SF_HO | SF_PI); 1437 } 1438 return (error); 1439 } 1440 1441 /* 1442 * Create template to be used to send spp packets on a connection. 1443 * Called after host entry created, fills 1444 * in a skeletal spp header (choosing connection id), 1445 * minimizing the amount of work necessary when the connection is used. 1446 */ 1447 spp_template(cb) 1448 register struct sppcb *cb; 1449 { 1450 register struct nspcb *nsp = cb->s_nspcb; 1451 register struct idp *idp = cb->s_idp; 1452 register struct sockbuf *sb = &(nsp->nsp_socket->so_snd); 1453 1454 idp->idp_pt = NSPROTO_SPP; 1455 idp->idp_sna = nsp->nsp_laddr; 1456 idp->idp_dna = nsp->nsp_faddr; 1457 cb->s_sid = htons(spp_iss); 1458 spp_iss += SPP_ISSINCR/2; 1459 cb->s_alo = 1; 1460 cb->s_cwnd = (sbspace(sb) * CUNIT) / cb->s_mtu; 1461 cb->s_ssthresh = cb->s_cwnd; /* Try to expand fast to full complement 1462 of large packets */ 1463 cb->s_cwmx = (sb->sb_mbmax * CUNIT) / (2 * sizeof(struct spidp)); 1464 cb->s_cwmx = MAX(cb->s_cwmx, cb->s_cwnd); 1465 /* But allow for lots of little packets as well */ 1466 } 1467 1468 /* 1469 * Close a SPIP control block: 1470 * discard spp control block itself 1471 * discard ns protocol control block 1472 * wake up any sleepers 1473 */ 1474 struct sppcb * 1475 spp_close(cb) 1476 register struct sppcb *cb; 1477 { 1478 register struct spidp_q *s; 1479 struct nspcb *nsp = cb->s_nspcb; 1480 struct socket *so = nsp->nsp_socket; 1481 register struct mbuf *m; 1482 1483 s = cb->s_q.si_next; 1484 while (s != &(cb->s_q)) { 1485 s = s->si_next; 1486 m = dtom(s->si_prev); 1487 remque(s->si_prev); 1488 m_freem(m); 1489 } 1490 (void) m_free(dtom(cb->s_idp)); 1491 (void) m_free(dtom(cb)); 1492 nsp->nsp_pcb = 0; 1493 soisdisconnected(so); 1494 ns_pcbdetach(nsp); 1495 sppstat.spps_closed++; 1496 return ((struct sppcb *)0); 1497 } 1498 /* 1499 * Someday we may do level 3 handshaking 1500 * to close a connection or send a xerox style error. 1501 * For now, just close. 1502 */ 1503 struct sppcb * 1504 spp_usrclosed(cb) 1505 register struct sppcb *cb; 1506 { 1507 return (spp_close(cb)); 1508 } 1509 struct sppcb * 1510 spp_disconnect(cb) 1511 register struct sppcb *cb; 1512 { 1513 return (spp_close(cb)); 1514 } 1515 /* 1516 * Drop connection, reporting 1517 * the specified error. 1518 */ 1519 struct sppcb * 1520 spp_drop(cb, errno) 1521 register struct sppcb *cb; 1522 int errno; 1523 { 1524 struct socket *so = cb->s_nspcb->nsp_socket; 1525 1526 /* 1527 * someday, in the xerox world 1528 * we will generate error protocol packets 1529 * announcing that the socket has gone away. 1530 */ 1531 if (TCPS_HAVERCVDSYN(cb->s_state)) { 1532 sppstat.spps_drops++; 1533 cb->s_state = TCPS_CLOSED; 1534 /*(void) tcp_output(cb);*/ 1535 } else 1536 sppstat.spps_conndrops++; 1537 so->so_error = errno; 1538 return (spp_close(cb)); 1539 } 1540 1541 spp_abort(nsp) 1542 struct nspcb *nsp; 1543 { 1544 1545 (void) spp_close((struct sppcb *)nsp->nsp_pcb); 1546 } 1547 1548 int spp_backoff[SPP_MAXRXTSHIFT+1] = 1549 { 1, 2, 4, 8, 16, 32, 64, 64, 64, 64, 64, 64, 64 }; 1550 /* 1551 * Fast timeout routine for processing delayed acks 1552 */ 1553 spp_fasttimo() 1554 { 1555 register struct nspcb *nsp; 1556 register struct sppcb *cb; 1557 int s = splnet(); 1558 1559 nsp = nspcb.nsp_next; 1560 if (nsp) 1561 for (; nsp != &nspcb; nsp = nsp->nsp_next) 1562 if ((cb = (struct sppcb *)nsp->nsp_pcb) && 1563 (cb->s_flags & SF_DELACK)) { 1564 cb->s_flags &= ~SF_DELACK; 1565 cb->s_flags |= SF_ACKNOW; 1566 sppstat.spps_delack++; 1567 (void) spp_output(cb, (struct mbuf *) 0); 1568 } 1569 splx(s); 1570 } 1571 1572 /* 1573 * spp protocol timeout routine called every 500 ms. 1574 * Updates the timers in all active pcb's and 1575 * causes finite state machine actions if timers expire. 1576 */ 1577 spp_slowtimo() 1578 { 1579 register struct nspcb *ip, *ipnxt; 1580 register struct sppcb *cb; 1581 int s = splnet(); 1582 register int i; 1583 1584 /* 1585 * Search through tcb's and update active timers. 1586 */ 1587 ip = nspcb.nsp_next; 1588 if (ip == 0) { 1589 splx(s); 1590 return; 1591 } 1592 while (ip != &nspcb) { 1593 cb = nstosppcb(ip); 1594 ipnxt = ip->nsp_next; 1595 if (cb == 0) 1596 goto tpgone; 1597 for (i = 0; i < SPPT_NTIMERS; i++) { 1598 if (cb->s_timer[i] && --cb->s_timer[i] == 0) { 1599 (void) spp_usrreq(cb->s_nspcb->nsp_socket, 1600 PRU_SLOWTIMO, (struct mbuf *)0, 1601 (struct mbuf *)i, (struct mbuf *)0); 1602 if (ipnxt->nsp_prev != ip) 1603 goto tpgone; 1604 } 1605 } 1606 cb->s_idle++; 1607 if (cb->s_rtt) 1608 cb->s_rtt++; 1609 tpgone: 1610 ip = ipnxt; 1611 } 1612 spp_iss += SPP_ISSINCR/PR_SLOWHZ; /* increment iss */ 1613 splx(s); 1614 } 1615 /* 1616 * SPP timer processing. 1617 */ 1618 struct sppcb * 1619 spp_timers(cb, timer) 1620 register struct sppcb *cb; 1621 int timer; 1622 { 1623 long rexmt; 1624 int win; 1625 1626 cb->s_force = 1 + timer; 1627 switch (timer) { 1628 1629 /* 1630 * 2 MSL timeout in shutdown went off. TCP deletes connection 1631 * control block. 1632 */ 1633 case SPPT_2MSL: 1634 printf("spp: SPPT_2MSL went off for no reason\n"); 1635 cb->s_timer[timer] = 0; 1636 break; 1637 1638 /* 1639 * Retransmission timer went off. Message has not 1640 * been acked within retransmit interval. Back off 1641 * to a longer retransmit interval and retransmit one packet. 1642 */ 1643 case SPPT_REXMT: 1644 if (++cb->s_rxtshift > SPP_MAXRXTSHIFT) { 1645 cb->s_rxtshift = SPP_MAXRXTSHIFT; 1646 sppstat.spps_timeoutdrop++; 1647 cb = spp_drop(cb, ETIMEDOUT); 1648 break; 1649 } 1650 sppstat.spps_rexmttimeo++; 1651 rexmt = ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1; 1652 rexmt *= spp_backoff[cb->s_rxtshift]; 1653 SPPT_RANGESET(cb->s_rxtcur, rexmt, SPPTV_MIN, SPPTV_REXMTMAX); 1654 cb->s_timer[SPPT_REXMT] = cb->s_rxtcur; 1655 /* 1656 * If we have backed off fairly far, our srtt 1657 * estimate is probably bogus. Clobber it 1658 * so we'll take the next rtt measurement as our srtt; 1659 * move the current srtt into rttvar to keep the current 1660 * retransmit times until then. 1661 */ 1662 if (cb->s_rxtshift > SPP_MAXRXTSHIFT / 4 ) { 1663 cb->s_rttvar += (cb->s_srtt >> 2); 1664 cb->s_srtt = 0; 1665 } 1666 cb->s_snxt = cb->s_rack; 1667 /* 1668 * If timing a packet, stop the timer. 1669 */ 1670 cb->s_rtt = 0; 1671 /* 1672 * See very long discussion in tcp_timer.c about congestion 1673 * window and sstrhesh 1674 */ 1675 win = MIN(cb->s_swnd, (cb->s_cwnd/CUNIT)) / 2; 1676 if (win < 2) 1677 win = 2; 1678 cb->s_cwnd = CUNIT; 1679 cb->s_ssthresh = win * CUNIT; 1680 (void) spp_output(cb, (struct mbuf *) 0); 1681 break; 1682 1683 /* 1684 * Persistance timer into zero window. 1685 * Force a probe to be sent. 1686 */ 1687 case SPPT_PERSIST: 1688 sppstat.spps_persisttimeo++; 1689 spp_setpersist(cb); 1690 (void) spp_output(cb, (struct mbuf *) 0); 1691 break; 1692 1693 /* 1694 * Keep-alive timer went off; send something 1695 * or drop connection if idle for too long. 1696 */ 1697 case SPPT_KEEP: 1698 sppstat.spps_keeptimeo++; 1699 if (cb->s_state < TCPS_ESTABLISHED) 1700 goto dropit; 1701 if (cb->s_nspcb->nsp_socket->so_options & SO_KEEPALIVE) { 1702 if (cb->s_idle >= SPPTV_MAXIDLE) 1703 goto dropit; 1704 sppstat.spps_keepprobe++; 1705 (void) spp_output(cb, (struct mbuf *) 0); 1706 } else 1707 cb->s_idle = 0; 1708 cb->s_timer[SPPT_KEEP] = SPPTV_KEEP; 1709 break; 1710 dropit: 1711 sppstat.spps_keepdrops++; 1712 cb = spp_drop(cb, ETIMEDOUT); 1713 break; 1714 } 1715 return (cb); 1716 } 1717 #ifndef lint 1718 int SppcbSize = sizeof (struct sppcb); 1719 int NspcbSize = sizeof (struct nspcb); 1720 #endif lint 1721