1 /* 2 * Copyright (c) 1984, 1985, 1986, 1987 Regents of the University of California. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms are permitted 6 * provided that this notice is preserved and that due credit is given 7 * to the University of California at Berkeley. The name of the University 8 * may not be used to endorse or promote products derived from this 9 * software without specific prior written permission. This software 10 * is provided ``as is'' without express or implied warranty. 11 * 12 * @(#)spp_usrreq.c 7.4 (Berkeley) 01/20/88 13 */ 14 15 #include "param.h" 16 #include "systm.h" 17 #include "dir.h" 18 #include "user.h" 19 #include "mbuf.h" 20 #include "protosw.h" 21 #include "socket.h" 22 #include "socketvar.h" 23 #include "errno.h" 24 25 #include "../net/if.h" 26 #include "../net/route.h" 27 #include "../netinet/tcp_fsm.h" 28 #include "../netinet/tcp_timer.h" 29 30 #include "ns.h" 31 #include "ns_pcb.h" 32 #include "idp.h" 33 #include "idp_var.h" 34 #include "ns_error.h" 35 #include "sp.h" 36 #include "spidp.h" 37 #include "spp_var.h" 38 #include "spp_debug.h" 39 40 /* 41 * SP protocol implementation. 42 */ 43 spp_init() 44 { 45 46 spp_iss = 1; /* WRONG !! should fish it out of TODR */ 47 } 48 struct spidp spp_savesi; 49 int traceallspps = 0; 50 extern int sppconsdebug; 51 int spp_hardnosed; 52 int spp_use_delack = 0; 53 54 /*ARGSUSED*/ 55 spp_input(m, nsp, ifp) 56 register struct mbuf *m; 57 register struct nspcb *nsp; 58 struct ifnet *ifp; 59 { 60 register struct sppcb *cb; 61 register struct spidp *si = mtod(m, struct spidp *); 62 register struct socket *so; 63 short ostate; 64 int dropsocket = 0; 65 66 67 sppstat.spps_rcvtotal++; 68 if (nsp == 0) { 69 panic("No nspcb in spp_input\n"); 70 return; 71 } 72 73 cb = nstosppcb(nsp); 74 if (cb == 0) goto bad; 75 76 if (m->m_len < sizeof(*si)) { 77 if ((m = m_pullup(m, sizeof(*si))) == 0) { 78 sppstat.spps_rcvshort++; 79 return; 80 } 81 si = mtod(m, struct spidp *); 82 } 83 si->si_seq = ntohs(si->si_seq); 84 si->si_ack = ntohs(si->si_ack); 85 si->si_alo = ntohs(si->si_alo); 86 87 so = nsp->nsp_socket; 88 if (so->so_options & SO_DEBUG || traceallspps) { 89 ostate = cb->s_state; 90 spp_savesi = *si; 91 } 92 if (so->so_options & SO_ACCEPTCONN) { 93 struct sppcb *ocb = cb; 94 struct socket *oso = so; 95 so = sonewconn(so); 96 if (so == 0) { 97 goto drop; 98 } 99 /* 100 * This is ugly, but .... 101 * 102 * Mark socket as temporary until we're 103 * committed to keeping it. The code at 104 * ``drop'' and ``dropwithreset'' check the 105 * flag dropsocket to see if the temporary 106 * socket created here should be discarded. 107 * We mark the socket as discardable until 108 * we're committed to it below in TCPS_LISTEN. 109 */ 110 dropsocket++; 111 nsp = (struct nspcb *)so->so_pcb; 112 nsp->nsp_laddr = si->si_dna; 113 cb = nstosppcb(nsp); 114 cb->s_mtu = ocb->s_mtu; /* preserve sockopts */ 115 cb->s_flags = ocb->s_flags; /* preserve sockopts */ 116 if (so->so_snd.sb_hiwat != oso->so_snd.sb_hiwat) /*XXX*/ 117 sbreserve(&so->so_snd, oso->so_snd.sb_hiwat); 118 if (so->so_rcv.sb_hiwat != oso->so_rcv.sb_hiwat) /*XXX*/ 119 sbreserve(&so->so_rcv, oso->so_rcv.sb_hiwat); 120 cb->s_state = TCPS_LISTEN; 121 } 122 123 /* 124 * Packet received on connection. 125 * reset idle time and keep-alive timer; 126 */ 127 cb->s_idle = 0; 128 cb->s_timer[TCPT_KEEP] = TCPTV_KEEP; 129 130 switch (cb->s_state) { 131 132 case TCPS_LISTEN:{ 133 struct mbuf *am; 134 register struct sockaddr_ns *sns; 135 struct ns_addr laddr; 136 137 /* 138 * If somebody here was carying on a conversation 139 * and went away, and his pen pal thinks he can 140 * still talk, we get the misdirected packet. 141 */ 142 if (spp_hardnosed && (si->si_did != 0 || si->si_seq != 0)) { 143 spp_istat.gonawy++; 144 goto dropwithreset; 145 } 146 am = m_get(M_DONTWAIT, MT_SONAME); 147 if (am == NULL) 148 goto drop; 149 am->m_len = sizeof (struct sockaddr_ns); 150 sns = mtod(am, struct sockaddr_ns *); 151 sns->sns_family = AF_NS; 152 sns->sns_addr = si->si_sna; 153 laddr = nsp->nsp_laddr; 154 if (ns_nullhost(laddr)) 155 nsp->nsp_laddr = si->si_dna; 156 if (ns_pcbconnect(nsp, am)) { 157 nsp->nsp_laddr = laddr; 158 (void) m_free(am); 159 spp_istat.noconn++; 160 goto drop; 161 } 162 (void) m_free(am); 163 spp_template(cb); 164 dropsocket = 0; /* committed to socket */ 165 cb->s_did = si->si_sid; 166 cb->s_rack = si->si_ack; 167 cb->s_ralo = si->si_alo; 168 #define THREEWAYSHAKE 169 #ifdef THREEWAYSHAKE 170 cb->s_state = TCPS_SYN_RECEIVED; 171 cb->s_force = 1 + TCPT_KEEP; 172 sppstat.spps_accepts++; 173 cb->s_timer[TCPT_KEEP] = TCPTV_KEEP; 174 } 175 break; 176 /* 177 * This state means that we have heard a response 178 * to our acceptance of their connection 179 * It is probably logically unnecessary in this 180 * implementation. 181 */ 182 case TCPS_SYN_RECEIVED: { 183 if (si->si_did!=cb->s_sid) { 184 spp_istat.wrncon++; 185 goto drop; 186 } 187 #endif 188 nsp->nsp_fport = si->si_sport; 189 cb->s_timer[TCPT_REXMT] = 0; 190 cb->s_timer[TCPT_KEEP] = TCPTV_KEEP; 191 soisconnected(so); 192 cb->s_state = TCPS_ESTABLISHED; 193 sppstat.spps_accepts++; 194 } 195 break; 196 197 /* 198 * This state means that we have gotten a response 199 * to our attempt to establish a connection. 200 * We fill in the data from the other side, 201 * telling us which port to respond to, instead of the well- 202 * known one we might have sent to in the first place. 203 * We also require that this is a response to our 204 * connection id. 205 */ 206 case TCPS_SYN_SENT: 207 if (si->si_did!=cb->s_sid) { 208 spp_istat.notme++; 209 goto drop; 210 } 211 sppstat.spps_connects++; 212 cb->s_did = si->si_sid; 213 cb->s_rack = si->si_ack; 214 cb->s_ralo = si->si_alo; 215 cb->s_dport = nsp->nsp_fport = si->si_sport; 216 cb->s_timer[TCPT_REXMT] = 0; 217 cb->s_flags |= SF_ACKNOW; 218 soisconnected(so); 219 cb->s_state = TCPS_ESTABLISHED; 220 /* Use roundtrip time of connection request for initial rtt */ 221 if (cb->s_rtt) { 222 cb->s_srtt = cb->s_rtt << 3; 223 cb->s_rttvar = cb->s_rtt << 1; 224 TCPT_RANGESET(cb->s_rxtcur, 225 ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1, 226 TCPTV_MIN, TCPTV_REXMTMAX); 227 cb->s_rtt = 0; 228 } 229 } 230 if (so->so_options & SO_DEBUG || traceallspps) 231 spp_trace(SA_INPUT, (u_char)ostate, cb, &spp_savesi, 0); 232 233 m->m_len -= sizeof (struct idp); 234 m->m_off += sizeof (struct idp); 235 236 if (spp_reass(cb, si)) { 237 m_freem(m); 238 } 239 if (cb->s_force || (cb->s_flags & (SF_ACKNOW|SF_WIN|SF_RXT))) 240 (void) spp_output(cb, (struct mbuf *)0); 241 cb->s_flags &= ~(SF_WIN|SF_RXT); 242 return; 243 244 dropwithreset: 245 if (dropsocket) 246 (void) soabort(so); 247 si->si_seq = ntohs(si->si_seq); 248 si->si_ack = ntohs(si->si_ack); 249 si->si_alo = ntohs(si->si_alo); 250 ns_error(dtom(si), NS_ERR_NOSOCK, 0); 251 if (cb->s_nspcb->nsp_socket->so_options & SO_DEBUG || traceallspps) 252 spp_trace(SA_DROP, (u_char)ostate, cb, &spp_savesi, 0); 253 return; 254 255 drop: 256 bad: 257 if (cb == 0 || cb->s_nspcb->nsp_socket->so_options & SO_DEBUG || 258 traceallspps) 259 spp_trace(SA_DROP, (u_char)ostate, cb, &spp_savesi, 0); 260 m_freem(m); 261 } 262 263 int spprexmtthresh = 3; 264 265 /* 266 * This is structurally similar to the tcp reassembly routine 267 * but its function is somewhat different: It merely queues 268 * packets up, and suppresses duplicates. 269 */ 270 spp_reass(cb, si) 271 register struct sppcb *cb; 272 register struct spidp *si; 273 { 274 register struct spidp_q *q; 275 register struct mbuf *m; 276 register struct socket *so = cb->s_nspcb->nsp_socket; 277 char packetp = cb->s_flags & SF_HI; 278 int incr; 279 char wakeup = 0; 280 281 if (si == SI(0)) 282 goto present; 283 /* 284 * Update our news from them. 285 */ 286 if (si->si_cc & SP_SA) 287 cb->s_flags |= (spp_use_delack ? SF_DELACK : SF_ACKNOW); 288 if (SSEQ_GT(si->si_alo, cb->s_ralo)) 289 cb->s_flags |= SF_WIN; 290 if (SSEQ_LEQ(si->si_ack, cb->s_rack)) { 291 if ((si->si_cc & SP_SP) && cb->s_rack != cb->s_smax) { 292 sppstat.spps_rcvdupack++; 293 /* 294 * If this is a completely duplicate ack 295 * and other conditions hold, we assume 296 * a packet has been dropped and retransmit 297 * it exactly as in tcp_input(). 298 */ 299 if (si->si_ack != cb->s_rack || 300 si->si_alo != cb->s_ralo) 301 cb->s_dupacks = 0; 302 else if (++cb->s_dupacks == spprexmtthresh) { 303 u_short onxt = cb->s_snxt; 304 int cwnd = cb->s_cwnd; 305 306 cb->s_snxt = si->si_ack; 307 cb->s_cwnd = CUNIT; 308 cb->s_force = 1 + TCPT_REXMT; 309 (void) spp_output(cb, 0); 310 cb->s_timer[TCPT_REXMT] = cb->s_rxtcur; 311 cb->s_rtt = 0; 312 if (cwnd >= 4 * CUNIT) 313 cb->s_cwnd = cwnd / 2; 314 if (SSEQ_GT(onxt, cb->s_snxt)) 315 cb->s_snxt = onxt; 316 return (1); 317 } 318 } else 319 cb->s_dupacks = 0; 320 goto update_window; 321 } 322 cb->s_dupacks = 0; 323 /* 324 * If our correspondent acknowledges data we haven't sent 325 * TCP would drop the packet after acking. We'll be a little 326 * more permissive 327 */ 328 if (SSEQ_GT(si->si_ack, (cb->s_smax + 1))) { 329 sppstat.spps_rcvacktoomuch++; 330 si->si_ack = cb->s_smax + 1; 331 } 332 sppstat.spps_rcvackpack++; 333 /* 334 * If transmit timer is running and timed sequence 335 * number was acked, update smoothed round trip time. 336 * See discussion of algorithm in tcp_input.c 337 */ 338 if (cb->s_rtt && SSEQ_GT(si->si_ack, cb->s_rtseq)) { 339 sppstat.spps_rttupdated++; 340 if (cb->s_srtt != 0) { 341 register short delta; 342 delta = cb->s_rtt - (cb->s_srtt >> 3); 343 if ((cb->s_srtt += delta) <= 0) 344 cb->s_srtt = 1; 345 if (delta < 0) 346 delta = -delta; 347 delta -= (cb->s_rttvar >> 2); 348 if ((cb->s_rttvar += delta) <= 0) 349 cb->s_rttvar = 1; 350 } else { 351 /* 352 * No rtt measurement yet 353 */ 354 cb->s_srtt = cb->s_rtt << 3; 355 cb->s_rttvar = cb->s_rtt << 1; 356 } 357 cb->s_rtt = 0; 358 cb->s_rxtshift = 0; 359 TCPT_RANGESET(cb->s_rxtcur, 360 ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1, 361 TCPTV_MIN, TCPTV_REXMTMAX); 362 } 363 /* 364 * If all outstanding data is acked, stop retransmit 365 * timer and remember to restart (more output or persist). 366 * If there is more data to be acked, restart retransmit 367 * timer, using current (possibly backed-off) value; 368 */ 369 if (si->si_ack == cb->s_smax + 1) { 370 cb->s_timer[TCPT_REXMT] = 0; 371 cb->s_flags |= SF_RXT; 372 } else if (cb->s_timer[TCPT_PERSIST] == 0) 373 cb->s_timer[TCPT_REXMT] = cb->s_rxtcur; 374 /* 375 * When new data is acked, open the congestion window. 376 * If the window gives us less than ssthresh packets 377 * in flight, open exponentially (maxseg at a time). 378 * Otherwise open linearly (maxseg^2 / cwnd at a time). 379 */ 380 incr = CUNIT; 381 if (cb->s_cwnd > cb->s_ssthresh) 382 incr = MAX(incr * incr / cb->s_cwnd, 1); 383 cb->s_cwnd = MIN(cb->s_cwnd + incr, cb->s_cwmx); 384 /* 385 * Trim Acked data from output queue. 386 */ 387 for (m = so->so_snd.sb_mb; m; m = m->m_act) { 388 if (SSEQ_LT((mtod(m, struct spidp *))->si_seq, si->si_ack)) 389 sbdroprecord(&so->so_snd); 390 else 391 break; 392 } 393 if ((so->so_snd.sb_flags & SB_WAIT) || so->so_snd.sb_sel) 394 sowwakeup(so); 395 cb->s_rack = si->si_ack; 396 update_window: 397 if (SSEQ_LT(cb->s_snxt, cb->s_rack)) 398 cb->s_snxt = cb->s_rack; 399 if (SSEQ_LT(cb->s_swl1, si->si_seq) || cb->s_swl1 == si->si_seq && 400 (SSEQ_LT(cb->s_swl2, si->si_ack) || 401 cb->s_swl2 == si->si_ack && SSEQ_LT(cb->s_ralo, si->si_alo))) { 402 /* keep track of pure window updates */ 403 if ((si->si_cc & SP_SP) && cb->s_swl2 == si->si_ack 404 && SSEQ_LT(cb->s_ralo, si->si_alo)) { 405 sppstat.spps_rcvwinupd++; 406 sppstat.spps_rcvdupack--; 407 } 408 cb->s_ralo = si->si_alo; 409 cb->s_swl1 = si->si_seq; 410 cb->s_swl2 = si->si_ack; 411 cb->s_swnd = (1 + si->si_alo - si->si_ack); 412 if (cb->s_swnd > cb->s_smxw) 413 cb->s_smxw = cb->s_swnd; 414 cb->s_flags |= SF_WIN; 415 } 416 /* 417 * If this packet number is higher than that which 418 * we have allocated refuse it, unless urgent 419 */ 420 if (SSEQ_GT(si->si_seq, cb->s_alo)) { 421 if (si->si_cc & SP_SP) { 422 sppstat.spps_rcvwinprobe++; 423 return (1); 424 } else 425 sppstat.spps_rcvpackafterwin++; 426 if (si->si_cc & SP_OB) { 427 if (SSEQ_GT(si->si_seq, cb->s_alo + 60)) { 428 ns_error(dtom(si), NS_ERR_FULLUP, 0); 429 return (0); 430 } /* else queue this packet; */ 431 } else { 432 /*register struct socket *so = cb->s_nspcb->nsp_socket; 433 if (so->so_state && SS_NOFDREF) { 434 ns_error(dtom(si), NS_ERR_NOSOCK, 0); 435 (void)spp_close(cb); 436 } else 437 would crash system*/ 438 spp_istat.notyet++; 439 ns_error(dtom(si), NS_ERR_FULLUP, 0); 440 return (0); 441 } 442 } 443 /* 444 * If this is a system packet, we don't need to 445 * queue it up, and won't update acknowledge # 446 */ 447 if (si->si_cc & SP_SP) { 448 return (1); 449 } 450 /* 451 * We have already seen this packet, so drop. 452 */ 453 if (SSEQ_LT(si->si_seq, cb->s_ack)) { 454 spp_istat.bdreas++; 455 sppstat.spps_rcvduppack++; 456 if (si->si_seq == cb->s_ack - 1) 457 spp_istat.lstdup++; 458 return (1); 459 } 460 /* 461 * Loop through all packets queued up to insert in 462 * appropriate sequence. 463 */ 464 for (q = cb->s_q.si_next; q!=&cb->s_q; q = q->si_next) { 465 if (si->si_seq == SI(q)->si_seq) { 466 sppstat.spps_rcvduppack++; 467 return (1); 468 } 469 if (SSEQ_LT(si->si_seq, SI(q)->si_seq)) { 470 sppstat.spps_rcvoopack++; 471 break; 472 } 473 } 474 insque(si, q->si_prev); 475 /* 476 * If this packet is urgent, inform process 477 */ 478 if (si->si_cc & SP_OB) { 479 cb->s_iobc = ((char *)si)[1 + sizeof(*si)]; 480 sohasoutofband(so); 481 cb->s_oobflags |= SF_IOOB; 482 } 483 present: 484 #define SPINC sizeof(struct sphdr) 485 /* 486 * Loop through all packets queued up to update acknowledge 487 * number, and present all acknowledged data to user; 488 * If in packet interface mode, show packet headers. 489 */ 490 for (q = cb->s_q.si_next; q!=&cb->s_q; q = q->si_next) { 491 if (SI(q)->si_seq == cb->s_ack) { 492 cb->s_ack++; 493 m = dtom(q); 494 if (SI(q)->si_cc & SP_OB) { 495 cb->s_oobflags &= ~SF_IOOB; 496 if (so->so_rcv.sb_cc) 497 so->so_oobmark = so->so_rcv.sb_cc; 498 else 499 so->so_state |= SS_RCVATMARK; 500 } 501 q = q->si_prev; 502 remque(q->si_next); 503 wakeup = 1; 504 sppstat.spps_rcvpack++; 505 if (packetp) { 506 sbappendrecord(&so->so_rcv, m); 507 } else { 508 cb->s_rhdr = *mtod(m, struct sphdr *); 509 m->m_off += SPINC; 510 m->m_len -= SPINC; 511 sbappend(&so->so_rcv, m); 512 } 513 } else 514 break; 515 } 516 if (wakeup) sorwakeup(so); 517 return (0); 518 } 519 520 spp_ctlinput(cmd, arg) 521 int cmd; 522 caddr_t arg; 523 { 524 struct ns_addr *na; 525 extern u_char nsctlerrmap[]; 526 extern spp_abort(), spp_quench(); 527 extern struct nspcb *idp_drop(); 528 struct ns_errp *errp; 529 struct nspcb *nsp; 530 struct sockaddr_ns *sns; 531 int type; 532 533 if (cmd < 0 || cmd > PRC_NCMDS) 534 return; 535 type = NS_ERR_UNREACH_HOST; 536 537 switch (cmd) { 538 539 case PRC_ROUTEDEAD: 540 return; 541 542 case PRC_IFDOWN: 543 case PRC_HOSTDEAD: 544 case PRC_HOSTUNREACH: 545 sns = (struct sockaddr_ns *)arg; 546 if (sns->sns_family != AF_NS) 547 return; 548 na = &sns->sns_addr; 549 break; 550 551 default: 552 errp = (struct ns_errp *)arg; 553 na = &errp->ns_err_idp.idp_dna; 554 type = errp->ns_err_num; 555 type = ntohs((u_short)type); 556 } 557 switch (type) { 558 559 case NS_ERR_UNREACH_HOST: 560 ns_pcbnotify(na, (int)nsctlerrmap[cmd], spp_abort, (long) 0); 561 break; 562 563 case NS_ERR_TOO_BIG: 564 case NS_ERR_NOSOCK: 565 nsp = ns_pcblookup(na, errp->ns_err_idp.idp_sna.x_port, 566 NS_WILDCARD); 567 if (nsp) { 568 if(nsp->nsp_pcb) 569 (void) spp_drop((struct sppcb *)nsp->nsp_pcb, 570 (int)nsctlerrmap[cmd]); 571 else 572 (void) idp_drop(nsp, (int)nsctlerrmap[cmd]); 573 } 574 break; 575 576 case NS_ERR_FULLUP: 577 ns_pcbnotify(na, 0, spp_quench, (long) 0); 578 } 579 } 580 /* 581 * When a source quench is received, close congestion window 582 * to one packet. We will gradually open it again as we proceed. 583 */ 584 spp_quench(nsp) 585 struct nspcb *nsp; 586 { 587 struct sppcb *cb = nstosppcb(nsp); 588 589 if (cb) 590 cb->s_cwnd = CUNIT; 591 } 592 593 #ifdef notdef 594 int 595 spp_fixmtu(nsp) 596 register struct nspcb *nsp; 597 { 598 register struct sppcb *cb = (struct sppcb *)(nsp->nsp_pcb); 599 register struct mbuf *m; 600 register struct spidp *si; 601 struct ns_errp *ep; 602 struct sockbuf *sb; 603 int badseq, len; 604 struct mbuf *firstbad, *m0; 605 606 if (cb) { 607 /* 608 * The notification that we have sent 609 * too much is bad news -- we will 610 * have to go through queued up so far 611 * splitting ones which are too big and 612 * reassigning sequence numbers and checksums. 613 * we should then retransmit all packets from 614 * one above the offending packet to the last one 615 * we had sent (or our allocation) 616 * then the offending one so that the any queued 617 * data at our destination will be discarded. 618 */ 619 ep = (struct ns_errp *)nsp->nsp_notify_param; 620 sb = &nsp->nsp_socket->so_snd; 621 cb->s_mtu = ep->ns_err_param; 622 badseq = SI(&ep->ns_err_idp)->si_seq; 623 for (m = sb->sb_mb; m; m = m->m_act) { 624 si = mtod(m, struct spidp *); 625 if (si->si_seq == badseq) 626 break; 627 } 628 if (m == 0) return; 629 firstbad = m; 630 /*for (;;) {*/ 631 /* calculate length */ 632 for (m0 = m, len = 0; m ; m = m->m_next) 633 len += m->m_len; 634 if (len > cb->s_mtu) { 635 } 636 /* FINISH THIS 637 } */ 638 } 639 } 640 #endif 641 642 spp_output(cb, m0) 643 register struct sppcb *cb; 644 struct mbuf *m0; 645 { 646 struct socket *so = cb->s_nspcb->nsp_socket; 647 register struct mbuf *m; 648 register struct spidp *si = (struct spidp *) 0; 649 register struct sockbuf *sb = &so->so_snd; 650 int len = 0, win, rcv_win; 651 short span, off; 652 u_short alo, oalo; 653 int error = 0, idle, sendalot; 654 u_short lookfor = 0; 655 struct mbuf *mprev; 656 extern int idpcksum; 657 658 if (m0) { 659 int mtu = cb->s_mtu; 660 int datalen; 661 /* 662 * Make sure that packet isn't too big. 663 */ 664 for (m = m0; m ; m = m->m_next) { 665 mprev = m; 666 len += m->m_len; 667 } 668 datalen = (cb->s_flags & SF_HO) ? 669 len - sizeof (struct sphdr) : len; 670 if (datalen > mtu) { 671 if (cb->s_flags & SF_PI) { 672 m_freem(m0); 673 return (EMSGSIZE); 674 } else { 675 int off = 0; 676 int oldEM = cb->s_cc & SP_EM; 677 678 cb->s_cc &= ~SP_EM; 679 while (len > mtu) { 680 m = m_copy(m0, off, mtu); 681 if (m == NULL) { 682 error = ENOBUFS; 683 goto bad_copy; 684 } 685 error = spp_output(cb, m); 686 if (error) { 687 bad_copy: 688 cb->s_cc |= oldEM; 689 m_freem(m0); 690 return(error); 691 } 692 m_adj(m0, mtu); 693 len -= mtu; 694 } 695 cb->s_cc |= oldEM; 696 } 697 } 698 /* 699 * Force length even, by adding a "garbage byte" if 700 * necessary. 701 */ 702 if (len & 1) { 703 m = mprev; 704 if (m->m_len + m->m_off < MMAXOFF) 705 m->m_len++; 706 else { 707 struct mbuf *m1 = m_get(M_DONTWAIT, MT_DATA); 708 709 if (m1 == 0) { 710 m_freem(m0); 711 return (ENOBUFS); 712 } 713 m1->m_len = 1; 714 m1->m_off = MMAXOFF - 1; 715 m->m_next = m1; 716 } 717 } 718 m = m_get(M_DONTWAIT, MT_HEADER); 719 if (m == 0) { 720 m_freem(m0); 721 return (ENOBUFS); 722 } 723 /* 724 * Fill in mbuf with extended SP header 725 * and addresses and length put into network format. 726 * Long align so prepended ip headers will work on Gould. 727 */ 728 m->m_off = MMAXOFF - sizeof (struct spidp) - 2; 729 m->m_len = sizeof (struct spidp); 730 m->m_next = m0; 731 si = mtod(m, struct spidp *); 732 si->si_i = *cb->s_idp; 733 si->si_s = cb->s_shdr; 734 if ((cb->s_flags & SF_PI) && (cb->s_flags & SF_HO)) { 735 register struct sphdr *sh; 736 if (m0->m_len < sizeof (*sh)) { 737 if((m0 = m_pullup(m0, sizeof(*sh))) == NULL) { 738 (void) m_free(m); 739 m_freem(m0); 740 return (EINVAL); 741 } 742 m->m_next = m0; 743 } 744 sh = mtod(m0, struct sphdr *); 745 si->si_dt = sh->sp_dt; 746 si->si_cc |= sh->sp_cc & SP_EM; 747 m0->m_len -= sizeof (*sh); 748 m0->m_off += sizeof (*sh); 749 len -= sizeof (*sh); 750 } 751 len += sizeof(*si); 752 if (cb->s_oobflags & SF_SOOB) { 753 /* 754 * Per jqj@cornell: 755 * make sure OB packets convey exactly 1 byte. 756 * If the packet is 1 byte or larger, we 757 * have already guaranted there to be at least 758 * one garbage byte for the checksum, and 759 * extra bytes shouldn't hurt! 760 */ 761 if (len > sizeof(*si)) { 762 si->si_cc |= SP_OB; 763 len = (1 + sizeof(*si)); 764 } 765 } 766 si->si_len = htons((u_short)len); 767 /* 768 * queue stuff up for output 769 */ 770 sbappendrecord(sb, m); 771 cb->s_seq++; 772 } 773 idle = (cb->s_smax == (cb->s_rack - 1)); 774 again: 775 sendalot = 0; 776 off = cb->s_snxt - cb->s_rack; 777 win = MIN(cb->s_swnd, (cb->s_cwnd/CUNIT)); 778 779 /* 780 * If in persist timeout with window of 0, send a probe. 781 * Otherwise, if window is small but nonzero 782 * and timer expired, send what we can and go into 783 * transmit state. 784 */ 785 if (cb->s_force == 1 + TCPT_PERSIST) { 786 if (win != 0) { 787 cb->s_timer[TCPT_PERSIST] = 0; 788 cb->s_rxtshift = 0; 789 } 790 } 791 span = cb->s_seq - cb->s_rack; 792 len = MIN(span, win) - off; 793 794 if (len < 0) { 795 /* 796 * Window shrank after we went into it. 797 * If window shrank to 0, cancel pending 798 * restransmission and pull s_snxt back 799 * to (closed) window. We will enter persist 800 * state below. If the widndow didn't close completely, 801 * just wait for an ACK. 802 */ 803 len = 0; 804 if (win == 0) { 805 cb->s_timer[TCPT_REXMT] = 0; 806 cb->s_snxt = cb->s_rack; 807 } 808 } 809 if (len > 1) 810 sendalot = 1; 811 rcv_win = sbspace(&so->so_rcv); 812 813 /* 814 * Send if we owe peer an ACK. 815 */ 816 if (cb->s_oobflags & SF_SOOB) { 817 /* 818 * must transmit this out of band packet 819 */ 820 cb->s_oobflags &= ~ SF_SOOB; 821 sendalot = 1; 822 sppstat.spps_sndurg++; 823 goto found; 824 } 825 if (cb->s_flags & SF_ACKNOW) 826 goto send; 827 if (cb->s_state < TCPS_ESTABLISHED) 828 goto send; 829 /* 830 * Silly window can't happen in spp. 831 * Code from tcp deleted. 832 */ 833 if (len) 834 goto send; 835 /* 836 * Compare available window to amount of window 837 * known to peer (as advertised window less 838 * next expected input.) If the difference is at least two 839 * packets or at least 35% of the mximum possible window, 840 * then want to send a window update to peer. 841 */ 842 if (rcv_win > 0) { 843 u_short delta = 1 + cb->s_alo - cb->s_ack; 844 int adv = rcv_win - (delta * cb->s_mtu); 845 846 if ((so->so_rcv.sb_cc == 0 && adv >= (2 * cb->s_mtu)) || 847 (100 * adv / so->so_rcv.sb_hiwat >= 35)) { 848 sppstat.spps_sndwinup++; 849 cb->s_flags |= SF_ACKNOW; 850 goto send; 851 } 852 853 } 854 /* 855 * Many comments from tcp_output.c are appropriate here 856 * including . . . 857 * If send window is too small, there is data to transmit, and no 858 * retransmit or persist is pending, then go to persist state. 859 * If nothing happens soon, send when timer expires: 860 * if window is nonzero, transmit what we can, 861 * otherwise send a probe. 862 */ 863 if (so->so_snd.sb_cc && cb->s_timer[TCPT_REXMT] == 0 && 864 cb->s_timer[TCPT_PERSIST] == 0) { 865 cb->s_rxtshift = 0; 866 spp_setpersist(cb); 867 } 868 /* 869 * No reason to send a packet, just return. 870 */ 871 cb->s_outx = 1; 872 return (0); 873 874 send: 875 /* 876 * Find requested packet. 877 */ 878 si = 0; 879 if (len > 0) { 880 cb->s_want = cb->s_snxt; 881 for (m = sb->sb_mb; m; m = m->m_act) { 882 si = mtod(m, struct spidp *); 883 if (SSEQ_LEQ(cb->s_snxt, si->si_seq)) 884 break; 885 } 886 found: 887 if (si) { 888 if (si->si_seq == cb->s_snxt) 889 cb->s_snxt++; 890 else 891 sppstat.spps_sndvoid++, si = 0; 892 } 893 } 894 /* 895 * update window 896 */ 897 if (rcv_win < 0) 898 rcv_win = 0; 899 oalo = alo = cb->s_ack - 1 + (rcv_win / ((short)cb->s_mtu)); 900 if (SSEQ_LT(alo, cb->s_alo)) 901 alo = cb->s_alo; 902 903 if (si) { 904 /* 905 * must make a copy of this packet for 906 * idp_output to monkey with 907 */ 908 m = m_copy(dtom(si), 0, (int)M_COPYALL); 909 if (m == NULL) { 910 return (ENOBUFS); 911 } 912 m0 = m; 913 si = mtod(m, struct spidp *); 914 if (SSEQ_LT(si->si_seq, cb->s_smax)) 915 sppstat.spps_sndrexmitpack++; 916 else 917 sppstat.spps_sndpack++; 918 } else if (cb->s_force || cb->s_flags & SF_ACKNOW) { 919 /* 920 * Must send an acknowledgement or a probe 921 */ 922 if (cb->s_force) 923 sppstat.spps_sndprobe++; 924 if (cb->s_flags & SF_ACKNOW) 925 sppstat.spps_sndacks++; 926 m = m_get(M_DONTWAIT, MT_HEADER); 927 if (m == 0) { 928 return (ENOBUFS); 929 } 930 /* 931 * Fill in mbuf with extended SP header 932 * and addresses and length put into network format. 933 * Allign beginning of packet to long to prepend 934 * ifp's on loopback, or NSIP encaspulation for fussy cpu's. 935 */ 936 m->m_off = MMAXOFF - sizeof (struct spidp) - 2; 937 m->m_len = sizeof (*si); 938 m->m_next = 0; 939 si = mtod(m, struct spidp *); 940 si->si_i = *cb->s_idp; 941 si->si_s = cb->s_shdr; 942 si->si_seq = cb->s_smax + 1; 943 si->si_len = htons(sizeof (*si)); 944 si->si_cc |= SP_SP; 945 } else { 946 cb->s_outx = 3; 947 if (so->so_options & SO_DEBUG || traceallspps) 948 spp_trace(SA_OUTPUT, cb->s_state, cb, si, 0); 949 return (0); 950 } 951 /* 952 * Stuff checksum and output datagram. 953 */ 954 if ((si->si_cc & SP_SP) == 0) { 955 if (cb->s_force != (1 + TCPT_PERSIST) || 956 cb->s_timer[TCPT_PERSIST] == 0) { 957 /* 958 * If this is a new packet and we are not currently 959 * timing anything, time this one. 960 */ 961 if (SSEQ_LT(cb->s_smax, si->si_seq)) { 962 cb->s_smax = si->si_seq; 963 if (cb->s_rtt == 0) { 964 sppstat.spps_segstimed++; 965 cb->s_rtseq = si->si_seq; 966 cb->s_rtt = 1; 967 } 968 } 969 /* 970 * Set rexmt timer if not currently set, 971 * Initial value for retransmit timer is smoothed 972 * round-trip time + 2 * round-trip time variance. 973 * Initialize shift counter which is used for backoff 974 * of retransmit time. 975 */ 976 if (cb->s_timer[TCPT_REXMT] == 0 && 977 cb->s_snxt != cb->s_rack) { 978 cb->s_timer[TCPT_REXMT] = cb->s_rxtcur; 979 if (cb->s_timer[TCPT_PERSIST]) { 980 cb->s_timer[TCPT_PERSIST] = 0; 981 cb->s_rxtshift = 0; 982 } 983 } 984 } else if (SSEQ_LT(cb->s_smax, si->si_seq)) { 985 cb->s_smax = si->si_seq; 986 } 987 } else if (cb->s_state < TCPS_ESTABLISHED) { 988 if (cb->s_rtt == 0) 989 cb->s_rtt = 1; /* Time initial handshake */ 990 if (cb->s_timer[TCPT_REXMT] == 0) 991 cb->s_timer[TCPT_REXMT] = cb->s_rxtcur; 992 } 993 { 994 /* 995 * Do not request acks when we ack their data packets or 996 * when we do a gratuitous window update. 997 */ 998 if (((si->si_cc & SP_SP) == 0) || cb->s_force) 999 si->si_cc |= SP_SA; 1000 si->si_seq = htons(si->si_seq); 1001 si->si_alo = htons(alo); 1002 si->si_ack = htons(cb->s_ack); 1003 1004 if (idpcksum) { 1005 si->si_sum = 0; 1006 len = ntohs(si->si_len); 1007 if (len & 1) 1008 len++; 1009 si->si_sum = ns_cksum(dtom(si), len); 1010 } else 1011 si->si_sum = 0xffff; 1012 1013 cb->s_outx = 4; 1014 if (so->so_options & SO_DEBUG || traceallspps) 1015 spp_trace(SA_OUTPUT, cb->s_state, cb, si, 0); 1016 1017 if (so->so_options & SO_DONTROUTE) 1018 error = ns_output(m, (struct route *)0, NS_ROUTETOIF); 1019 else 1020 error = ns_output(m, &cb->s_nspcb->nsp_route, 0); 1021 } 1022 if (error) { 1023 return (error); 1024 } 1025 sppstat.spps_sndtotal++; 1026 /* 1027 * Data sent (as far as we can tell). 1028 * If this advertises a larger window than any other segment, 1029 * then remember the size of the advertized window. 1030 * Any pending ACK has now been sent. 1031 */ 1032 cb->s_force = 0; 1033 cb->s_flags &= ~(SF_ACKNOW|SF_DELACK); 1034 if (SSEQ_GT(alo, cb->s_alo)) 1035 cb->s_alo = alo; 1036 if (sendalot) 1037 goto again; 1038 cb->s_outx = 5; 1039 return (0); 1040 } 1041 1042 int spp_do_persist_panics = 0; 1043 1044 spp_setpersist(cb) 1045 register struct sppcb *cb; 1046 { 1047 register t = ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1; 1048 extern int spp_backoff[]; 1049 1050 if (cb->s_timer[TCPT_REXMT] && spp_do_persist_panics) 1051 panic("spp_output REXMT"); 1052 /* 1053 * Start/restart persistance timer. 1054 */ 1055 TCPT_RANGESET(cb->s_timer[TCPT_PERSIST], 1056 t*spp_backoff[cb->s_rxtshift], 1057 TCPTV_PERSMIN, TCPTV_PERSMAX); 1058 if (cb->s_rxtshift < TCP_MAXRXTSHIFT) 1059 cb->s_rxtshift++; 1060 } 1061 /*ARGSUSED*/ 1062 spp_ctloutput(req, so, level, name, value) 1063 int req; 1064 struct socket *so; 1065 int name; 1066 struct mbuf **value; 1067 { 1068 register struct mbuf *m; 1069 struct nspcb *nsp = sotonspcb(so); 1070 register struct sppcb *cb; 1071 int mask, error = 0; 1072 1073 if (level != NSPROTO_SPP) { 1074 /* This will have to be changed when we do more general 1075 stacking of protocols */ 1076 return (idp_ctloutput(req, so, level, name, value)); 1077 } 1078 if (nsp == NULL) { 1079 error = EINVAL; 1080 goto release; 1081 } else 1082 cb = nstosppcb(nsp); 1083 1084 switch (req) { 1085 1086 case PRCO_GETOPT: 1087 if (value == NULL) 1088 return (EINVAL); 1089 m = m_get(M_DONTWAIT, MT_DATA); 1090 if (m == NULL) 1091 return (ENOBUFS); 1092 switch (name) { 1093 1094 case SO_HEADERS_ON_INPUT: 1095 mask = SF_HI; 1096 goto get_flags; 1097 1098 case SO_HEADERS_ON_OUTPUT: 1099 mask = SF_HO; 1100 get_flags: 1101 m->m_len = sizeof(short); 1102 m->m_off = MMAXOFF - sizeof(short); 1103 *mtod(m, short *) = cb->s_flags & mask; 1104 break; 1105 1106 case SO_MTU: 1107 m->m_len = sizeof(u_short); 1108 m->m_off = MMAXOFF - sizeof(short); 1109 *mtod(m, short *) = cb->s_mtu; 1110 break; 1111 1112 case SO_LAST_HEADER: 1113 m->m_len = sizeof(struct sphdr); 1114 m->m_off = MMAXOFF - sizeof(struct sphdr); 1115 *mtod(m, struct sphdr *) = cb->s_rhdr; 1116 break; 1117 1118 case SO_DEFAULT_HEADERS: 1119 m->m_len = sizeof(struct spidp); 1120 m->m_off = MMAXOFF - sizeof(struct sphdr); 1121 *mtod(m, struct sphdr *) = cb->s_shdr; 1122 break; 1123 1124 default: 1125 error = EINVAL; 1126 } 1127 *value = m; 1128 break; 1129 1130 case PRCO_SETOPT: 1131 if (value == 0 || *value == 0) { 1132 error = EINVAL; 1133 break; 1134 } 1135 switch (name) { 1136 int *ok; 1137 1138 case SO_HEADERS_ON_INPUT: 1139 mask = SF_HI; 1140 goto set_head; 1141 1142 case SO_HEADERS_ON_OUTPUT: 1143 mask = SF_HO; 1144 set_head: 1145 if (cb->s_flags & SF_PI) { 1146 ok = mtod(*value, int *); 1147 if (*ok) 1148 cb->s_flags |= mask; 1149 else 1150 cb->s_flags &= ~mask; 1151 } else error = EINVAL; 1152 break; 1153 1154 case SO_MTU: 1155 cb->s_mtu = *(mtod(*value, u_short *)); 1156 break; 1157 1158 case SO_DEFAULT_HEADERS: 1159 { 1160 register struct sphdr *sp 1161 = mtod(*value, struct sphdr *); 1162 cb->s_dt = sp->sp_dt; 1163 cb->s_cc = sp->sp_cc & SP_EM; 1164 } 1165 break; 1166 1167 default: 1168 error = EINVAL; 1169 } 1170 m_freem(*value); 1171 break; 1172 } 1173 release: 1174 return (error); 1175 } 1176 1177 /*ARGSUSED*/ 1178 spp_usrreq(so, req, m, nam, rights) 1179 struct socket *so; 1180 int req; 1181 struct mbuf *m, *nam, *rights; 1182 { 1183 struct nspcb *nsp = sotonspcb(so); 1184 register struct sppcb *cb; 1185 int s = splnet(); 1186 int error = 0, ostate; 1187 struct mbuf *mm; 1188 register struct sockbuf *sb; 1189 1190 if (req == PRU_CONTROL) 1191 return (ns_control(so, (int)m, (caddr_t)nam, 1192 (struct ifnet *)rights)); 1193 if (rights && rights->m_len) { 1194 error = EINVAL; 1195 goto release; 1196 } 1197 if (nsp == NULL) { 1198 if (req != PRU_ATTACH) { 1199 error = EINVAL; 1200 goto release; 1201 } 1202 } else 1203 cb = nstosppcb(nsp); 1204 1205 ostate = cb ? cb->s_state : 0; 1206 1207 switch (req) { 1208 1209 case PRU_ATTACH: 1210 if (nsp != NULL) { 1211 error = EISCONN; 1212 break; 1213 } 1214 error = ns_pcballoc(so, &nspcb); 1215 if (error) 1216 break; 1217 error = soreserve(so, 3072, 3072); 1218 if (error) 1219 break; 1220 nsp = sotonspcb(so); 1221 1222 mm = m_getclr(M_DONTWAIT, MT_PCB); 1223 sb = &so->so_snd; 1224 1225 if (mm == NULL) { 1226 error = ENOBUFS; 1227 break; 1228 } 1229 cb = mtod(mm, struct sppcb *); 1230 mm = m_getclr(M_DONTWAIT, MT_HEADER); 1231 if (mm == NULL) { 1232 m_free(dtom(m)); 1233 error = ENOBUFS; 1234 break; 1235 } 1236 cb->s_idp = mtod(mm, struct idp *); 1237 cb->s_state = TCPS_LISTEN; 1238 cb->s_smax = -1; 1239 cb->s_swl1 = -1; 1240 cb->s_q.si_next = cb->s_q.si_prev = &cb->s_q; 1241 cb->s_nspcb = nsp; 1242 cb->s_mtu = 576 - sizeof (struct spidp); 1243 cb->s_cwnd = sbspace(sb) * CUNIT / cb->s_mtu; 1244 cb->s_ssthresh = cb->s_cwnd; 1245 cb->s_cwmx = sb->sb_mbmax * CUNIT / 1246 (2 * sizeof (struct spidp)); 1247 /* Above is recomputed when connecting to account 1248 for changed buffering or mtu's */ 1249 cb->s_rtt = TCPTV_SRTTBASE; 1250 cb->s_rttvar = TCPTV_SRTTDFLT << 2; 1251 TCPT_RANGESET(cb->s_rxtcur, 1252 ((TCPTV_SRTTBASE >> 2) + (TCPTV_SRTTDFLT << 2)) >> 1, 1253 TCPTV_MIN, TCPTV_REXMTMAX); 1254 nsp->nsp_pcb = (caddr_t) cb; 1255 break; 1256 1257 case PRU_DETACH: 1258 if (nsp == NULL) { 1259 error = ENOTCONN; 1260 break; 1261 } 1262 if (cb->s_state > TCPS_LISTEN) 1263 cb = spp_disconnect(cb); 1264 else 1265 cb = spp_close(cb); 1266 break; 1267 1268 case PRU_BIND: 1269 error = ns_pcbbind(nsp, nam); 1270 break; 1271 1272 case PRU_LISTEN: 1273 if (nsp->nsp_lport == 0) 1274 error = ns_pcbbind(nsp, (struct mbuf *)0); 1275 if (error == 0) 1276 cb->s_state = TCPS_LISTEN; 1277 break; 1278 1279 /* 1280 * Initiate connection to peer. 1281 * Enter SYN_SENT state, and mark socket as connecting. 1282 * Start keep-alive timer, setup prototype header, 1283 * Send initial system packet requesting connection. 1284 */ 1285 case PRU_CONNECT: 1286 if (nsp->nsp_lport == 0) { 1287 error = ns_pcbbind(nsp, (struct mbuf *)0); 1288 if (error) 1289 break; 1290 } 1291 error = ns_pcbconnect(nsp, nam); 1292 if (error) 1293 break; 1294 soisconnecting(so); 1295 sppstat.spps_connattempt++; 1296 cb->s_state = TCPS_SYN_SENT; 1297 cb->s_did = 0; 1298 spp_template(cb); 1299 cb->s_timer[TCPT_KEEP] = TCPTV_KEEP; 1300 cb->s_force = 1 + TCPTV_KEEP; 1301 /* 1302 * Other party is required to respond to 1303 * the port I send from, but he is not 1304 * required to answer from where I am sending to, 1305 * so allow wildcarding. 1306 * original port I am sending to is still saved in 1307 * cb->s_dport. 1308 */ 1309 nsp->nsp_fport = 0; 1310 error = spp_output(cb, (struct mbuf *) 0); 1311 break; 1312 1313 case PRU_CONNECT2: 1314 error = EOPNOTSUPP; 1315 break; 1316 1317 /* 1318 * We may decide later to implement connection closing 1319 * handshaking at the spp level optionally. 1320 * here is the hook to do it: 1321 */ 1322 case PRU_DISCONNECT: 1323 cb = spp_disconnect(cb); 1324 break; 1325 1326 /* 1327 * Accept a connection. Essentially all the work is 1328 * done at higher levels; just return the address 1329 * of the peer, storing through addr. 1330 */ 1331 case PRU_ACCEPT: { 1332 struct sockaddr_ns *sns = mtod(nam, struct sockaddr_ns *); 1333 1334 nam->m_len = sizeof (struct sockaddr_ns); 1335 sns->sns_family = AF_NS; 1336 sns->sns_addr = nsp->nsp_faddr; 1337 break; 1338 } 1339 1340 case PRU_SHUTDOWN: 1341 socantsendmore(so); 1342 cb = spp_usrclosed(cb); 1343 if (cb) 1344 error = spp_output(cb, (struct mbuf *) 0); 1345 break; 1346 1347 /* 1348 * After a receive, possibly send acknowledgment 1349 * updating allocation. 1350 */ 1351 case PRU_RCVD: 1352 cb->s_flags |= SF_RVD; 1353 (void) spp_output(cb, (struct mbuf *) 0); 1354 cb->s_flags &= ~SF_RVD; 1355 break; 1356 1357 case PRU_ABORT: 1358 (void) spp_drop(cb, ECONNABORTED); 1359 break; 1360 1361 case PRU_SENSE: 1362 case PRU_CONTROL: 1363 m = NULL; 1364 error = EOPNOTSUPP; 1365 break; 1366 1367 case PRU_RCVOOB: 1368 if ((cb->s_oobflags & SF_IOOB) || so->so_oobmark || 1369 (so->so_state & SS_RCVATMARK)) { 1370 m->m_len = 1; 1371 *mtod(m, caddr_t) = cb->s_iobc; 1372 break; 1373 } 1374 error = EINVAL; 1375 break; 1376 1377 case PRU_SENDOOB: 1378 if (sbspace(&so->so_snd) < -512) { 1379 error = ENOBUFS; 1380 break; 1381 } 1382 cb->s_oobflags |= SF_SOOB; 1383 /* fall into */ 1384 case PRU_SEND: 1385 error = spp_output(cb, m); 1386 m = NULL; 1387 break; 1388 1389 case PRU_SOCKADDR: 1390 ns_setsockaddr(nsp, nam); 1391 break; 1392 1393 case PRU_PEERADDR: 1394 ns_setpeeraddr(nsp, nam); 1395 break; 1396 1397 case PRU_SLOWTIMO: 1398 cb = spp_timers(cb, (int)nam); 1399 req |= ((int)nam) << 8; 1400 break; 1401 1402 case PRU_FASTTIMO: 1403 case PRU_PROTORCV: 1404 case PRU_PROTOSEND: 1405 error = EOPNOTSUPP; 1406 break; 1407 1408 default: 1409 panic("sp_usrreq"); 1410 } 1411 if (cb && (so->so_options & SO_DEBUG || traceallspps)) 1412 spp_trace(SA_USER, (u_char)ostate, cb, (struct spidp *)0, req); 1413 release: 1414 if (m != NULL) 1415 m_freem(m); 1416 splx(s); 1417 return (error); 1418 } 1419 1420 spp_usrreq_sp(so, req, m, nam, rights) 1421 struct socket *so; 1422 int req; 1423 struct mbuf *m, *nam, *rights; 1424 { 1425 int error = spp_usrreq(so, req, m, nam, rights); 1426 1427 if (req == PRU_ATTACH && error == 0) { 1428 struct nspcb *nsp = sotonspcb(so); 1429 ((struct sppcb *)nsp->nsp_pcb)->s_flags |= 1430 (SF_HI | SF_HO | SF_PI); 1431 } 1432 return (error); 1433 } 1434 1435 /* 1436 * Create template to be used to send spp packets on a connection. 1437 * Called after host entry created, fills 1438 * in a skeletal spp header (choosing connection id), 1439 * minimizing the amount of work necessary when the connection is used. 1440 */ 1441 spp_template(cb) 1442 register struct sppcb *cb; 1443 { 1444 register struct nspcb *nsp = cb->s_nspcb; 1445 register struct idp *idp = cb->s_idp; 1446 register struct sockbuf *sb = &(nsp->nsp_socket->so_snd); 1447 1448 idp->idp_pt = NSPROTO_SPP; 1449 idp->idp_sna = nsp->nsp_laddr; 1450 idp->idp_dna = nsp->nsp_faddr; 1451 cb->s_sid = htons(spp_iss); 1452 spp_iss += SPP_ISSINCR/2; 1453 cb->s_alo = 1; 1454 cb->s_cwnd = (sbspace(sb) * CUNIT) / cb->s_mtu; 1455 cb->s_ssthresh = cb->s_cwnd; /* Try to expand fast to full complement 1456 of large packets */ 1457 cb->s_cwmx = (sb->sb_mbmax * CUNIT) / (2 * sizeof(struct spidp)); 1458 cb->s_cwmx = MAX(cb->s_cwmx, cb->s_cwnd); 1459 /* But allow for lots of little packets as well */ 1460 } 1461 1462 /* 1463 * Close a SPIP control block: 1464 * discard spp control block itself 1465 * discard ns protocol control block 1466 * wake up any sleepers 1467 */ 1468 struct sppcb * 1469 spp_close(cb) 1470 register struct sppcb *cb; 1471 { 1472 register struct spidp_q *s; 1473 struct nspcb *nsp = cb->s_nspcb; 1474 struct socket *so = nsp->nsp_socket; 1475 register struct mbuf *m; 1476 1477 s = cb->s_q.si_next; 1478 while (s != &(cb->s_q)) { 1479 s = s->si_next; 1480 m = dtom(s->si_prev); 1481 remque(s->si_prev); 1482 m_freem(m); 1483 } 1484 (void) m_free(dtom(cb->s_idp)); 1485 (void) m_free(dtom(cb)); 1486 nsp->nsp_pcb = 0; 1487 soisdisconnected(so); 1488 ns_pcbdetach(nsp); 1489 sppstat.spps_closed++; 1490 return ((struct sppcb *)0); 1491 } 1492 /* 1493 * Someday we may do level 3 handshaking 1494 * to close a connection or send a xerox style error. 1495 * For now, just close. 1496 */ 1497 struct sppcb * 1498 spp_usrclosed(cb) 1499 register struct sppcb *cb; 1500 { 1501 return (spp_close(cb)); 1502 } 1503 struct sppcb * 1504 spp_disconnect(cb) 1505 register struct sppcb *cb; 1506 { 1507 return (spp_close(cb)); 1508 } 1509 /* 1510 * Drop connection, reporting 1511 * the specified error. 1512 */ 1513 struct sppcb * 1514 spp_drop(cb, errno) 1515 register struct sppcb *cb; 1516 int errno; 1517 { 1518 struct socket *so = cb->s_nspcb->nsp_socket; 1519 1520 /* 1521 * someday, in the xerox world 1522 * we will generate error protocol packets 1523 * announcing that the socket has gone away. 1524 */ 1525 if (TCPS_HAVERCVDSYN(cb->s_state)) { 1526 sppstat.spps_drops++; 1527 cb->s_state = TCPS_CLOSED; 1528 /*(void) tcp_output(cb);*/ 1529 } else 1530 sppstat.spps_conndrops++; 1531 so->so_error = errno; 1532 return (spp_close(cb)); 1533 } 1534 1535 spp_abort(nsp) 1536 struct nspcb *nsp; 1537 { 1538 1539 (void) spp_close((struct sppcb *)nsp->nsp_pcb); 1540 } 1541 1542 long spp_backoff[TCP_MAXRXTSHIFT+1] = 1543 { 1, 2, 4, 8, 16, 32, 64, 64, 64, 64, 64, 64, 64 }; 1544 /* 1545 * Fast timeout routine for processing delayed acks 1546 */ 1547 spp_fasttimo() 1548 { 1549 register struct nspcb *nsp; 1550 register struct sppcb *cb; 1551 int s = splnet(); 1552 1553 nsp = nspcb.nsp_next; 1554 if (nsp) 1555 for (; nsp != &nspcb; nsp = nsp->nsp_next) 1556 if ((cb = (struct sppcb *)nsp->nsp_pcb) && 1557 (cb->s_flags & SF_DELACK)) { 1558 cb->s_flags &= ~SF_DELACK; 1559 cb->s_flags |= SF_ACKNOW; 1560 sppstat.spps_delack++; 1561 (void) spp_output(cb, (struct mbuf *) 0); 1562 } 1563 splx(s); 1564 } 1565 1566 /* 1567 * spp protocol timeout routine called every 500 ms. 1568 * Updates the timers in all active pcb's and 1569 * causes finite state machine actions if timers expire. 1570 */ 1571 spp_slowtimo() 1572 { 1573 register struct nspcb *ip, *ipnxt; 1574 register struct sppcb *cb; 1575 int s = splnet(); 1576 register int i; 1577 1578 /* 1579 * Search through tcb's and update active timers. 1580 */ 1581 ip = nspcb.nsp_next; 1582 if (ip == 0) { 1583 splx(s); 1584 return; 1585 } 1586 while (ip != &nspcb) { 1587 cb = nstosppcb(ip); 1588 ipnxt = ip->nsp_next; 1589 if (cb == 0) 1590 goto tpgone; 1591 for (i = 0; i < TCPT_NTIMERS; i++) { 1592 if (cb->s_timer[i] && --cb->s_timer[i] == 0) { 1593 (void) spp_usrreq(cb->s_nspcb->nsp_socket, 1594 PRU_SLOWTIMO, (struct mbuf *)0, 1595 (struct mbuf *)i, (struct mbuf *)0); 1596 if (ipnxt->nsp_prev != ip) 1597 goto tpgone; 1598 } 1599 } 1600 cb->s_idle++; 1601 if (cb->s_rtt) 1602 cb->s_rtt++; 1603 tpgone: 1604 ip = ipnxt; 1605 } 1606 spp_iss += SPP_ISSINCR/PR_SLOWHZ; /* increment iss */ 1607 splx(s); 1608 } 1609 /* 1610 * SPP timer processing. 1611 */ 1612 struct sppcb * 1613 spp_timers(cb, timer) 1614 register struct sppcb *cb; 1615 int timer; 1616 { 1617 long rexmt; 1618 int win; 1619 1620 cb->s_force = 1 + timer; 1621 switch (timer) { 1622 1623 /* 1624 * 2 MSL timeout in shutdown went off. TCP deletes connection 1625 * control block. 1626 */ 1627 case TCPT_2MSL: 1628 printf("spp: TCPT_2MSL went off for no reason\n"); 1629 cb->s_timer[timer] = 0; 1630 break; 1631 1632 /* 1633 * Retransmission timer went off. Message has not 1634 * been acked within retransmit interval. Back off 1635 * to a longer retransmit interval and retransmit one packet. 1636 */ 1637 case TCPT_REXMT: 1638 if (++cb->s_rxtshift > TCP_MAXRXTSHIFT) { 1639 cb->s_rxtshift = TCP_MAXRXTSHIFT; 1640 sppstat.spps_timeoutdrop++; 1641 cb = spp_drop(cb, ETIMEDOUT); 1642 break; 1643 } 1644 sppstat.spps_rexmttimeo++; 1645 rexmt = ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1; 1646 rexmt *= spp_backoff[cb->s_rxtshift]; 1647 TCPT_RANGESET(cb->s_rxtcur, rexmt, TCPTV_MIN, TCPTV_REXMTMAX); 1648 cb->s_timer[TCPT_REXMT] = cb->s_rxtcur; 1649 /* 1650 * If we have backed off fairly far, our srtt 1651 * estimate is probably bogus. Clobber it 1652 * so we'll take the next rtt measurement as our srtt; 1653 * move the current srtt into rttvar to keep the current 1654 * retransmit times until then. 1655 */ 1656 if (cb->s_rxtshift > TCP_MAXRXTSHIFT / 4 ) { 1657 cb->s_rttvar += (cb->s_srtt >> 2); 1658 cb->s_srtt = 0; 1659 } 1660 cb->s_snxt = cb->s_rack; 1661 /* 1662 * If timing a packet, stop the timer. 1663 */ 1664 cb->s_rtt = 0; 1665 /* 1666 * See very long discussion in tcp_timer.c about congestion 1667 * window and sstrhesh 1668 */ 1669 win = MIN(cb->s_swnd, (cb->s_cwnd/CUNIT)) / 2; 1670 if (win < 2) 1671 win = 2; 1672 cb->s_cwnd = CUNIT; 1673 cb->s_ssthresh = win; 1674 (void) spp_output(cb, (struct mbuf *) 0); 1675 break; 1676 1677 /* 1678 * Persistance timer into zero window. 1679 * Force a probe to be sent. 1680 */ 1681 case TCPT_PERSIST: 1682 sppstat.spps_persisttimeo++; 1683 spp_setpersist(cb); 1684 (void) spp_output(cb, (struct mbuf *) 0); 1685 break; 1686 1687 /* 1688 * Keep-alive timer went off; send something 1689 * or drop connection if idle for too long. 1690 */ 1691 case TCPT_KEEP: 1692 sppstat.spps_keeptimeo++; 1693 if (cb->s_state < TCPS_ESTABLISHED) 1694 goto dropit; 1695 if (cb->s_nspcb->nsp_socket->so_options & SO_KEEPALIVE) { 1696 if (cb->s_idle >= TCPTV_MAXIDLE) 1697 goto dropit; 1698 sppstat.spps_keepprobe++; 1699 (void) spp_output(cb, (struct mbuf *) 0); 1700 } else 1701 cb->s_idle = 0; 1702 cb->s_timer[TCPT_KEEP] = TCPTV_KEEP; 1703 break; 1704 dropit: 1705 sppstat.spps_keepdrops++; 1706 cb = spp_drop(cb, ETIMEDOUT); 1707 break; 1708 } 1709 return (cb); 1710 } 1711 int SppcbSize = sizeof (struct sppcb); 1712 int NspcbSize = sizeof (struct nspcb); 1713