xref: /csrg-svn/sys/netinet/tcp_input.c (revision 44485)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990 Regents of the University of California.
3  * All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  *
7  *	@(#)tcp_input.c	7.24 (Berkeley) 06/28/90
8  */
9 
10 #include "param.h"
11 #include "systm.h"
12 #include "malloc.h"
13 #include "mbuf.h"
14 #include "protosw.h"
15 #include "socket.h"
16 #include "socketvar.h"
17 #include "errno.h"
18 
19 #include "../net/if.h"
20 #include "../net/route.h"
21 
22 #include "in.h"
23 #include "in_systm.h"
24 #include "ip.h"
25 #include "in_pcb.h"
26 #include "ip_var.h"
27 #include "tcp.h"
28 #include "tcp_fsm.h"
29 #include "tcp_seq.h"
30 #include "tcp_timer.h"
31 #include "tcp_var.h"
32 #include "tcpip.h"
33 #include "tcp_debug.h"
34 
35 #define VAN
36 int	tcprexmtthresh = 3;
37 int	tcppredack;	/* XXX debugging: times hdr predict ok for acks */
38 int	tcppreddat;	/* XXX # times header prediction ok for data packets */
39 int	tcppcbcachemiss;
40 struct	tcpiphdr tcp_saveti;
41 struct	inpcb *tcp_last_inpcb = &tcb;
42 
43 struct	tcpcb *tcp_newtcpcb();
44 
45 /*
46  * Insert segment ti into reassembly queue of tcp with
47  * control block tp.  Return TH_FIN if reassembly now includes
48  * a segment with FIN.  The macro form does the common case inline
49  * (segment is the next to be received on an established connection,
50  * and the queue is empty), avoiding linkage into and removal
51  * from the queue and repetition of various conversions.
52  * Set DELACK for segments received in order, but ack immediately
53  * when segments are out of order (so fast retransmit can work).
54  */
55 #define	TCP_REASS(tp, ti, m, so, flags) { \
56 	if ((ti)->ti_seq == (tp)->rcv_nxt && \
57 	    (tp)->seg_next == (struct tcpiphdr *)(tp) && \
58 	    (tp)->t_state == TCPS_ESTABLISHED) { \
59 		tp->t_flags |= TF_DELACK; \
60 		(tp)->rcv_nxt += (ti)->ti_len; \
61 		flags = (ti)->ti_flags & TH_FIN; \
62 		tcpstat.tcps_rcvpack++;\
63 		tcpstat.tcps_rcvbyte += (ti)->ti_len;\
64 		sbappend(&(so)->so_rcv, (m)); \
65 		sorwakeup(so); \
66 	} else { \
67 		(flags) = tcp_reass((tp), (ti), (m)); \
68 		tp->t_flags |= TF_ACKNOW; \
69 	} \
70 }
71 
72 tcp_reass(tp, ti, m)
73 	register struct tcpcb *tp;
74 	register struct tcpiphdr *ti;
75 	struct mbuf *m;
76 {
77 	register struct tcpiphdr *q;
78 	struct socket *so = tp->t_inpcb->inp_socket;
79 	int flags;
80 
81 	/*
82 	 * Call with ti==0 after become established to
83 	 * force pre-ESTABLISHED data up to user socket.
84 	 */
85 	if (ti == 0)
86 		goto present;
87 
88 	/*
89 	 * Find a segment which begins after this one does.
90 	 */
91 	for (q = tp->seg_next; q != (struct tcpiphdr *)tp;
92 	    q = (struct tcpiphdr *)q->ti_next)
93 		if (SEQ_GT(q->ti_seq, ti->ti_seq))
94 			break;
95 
96 	/*
97 	 * If there is a preceding segment, it may provide some of
98 	 * our data already.  If so, drop the data from the incoming
99 	 * segment.  If it provides all of our data, drop us.
100 	 */
101 	if ((struct tcpiphdr *)q->ti_prev != (struct tcpiphdr *)tp) {
102 		register int i;
103 		q = (struct tcpiphdr *)q->ti_prev;
104 		/* conversion to int (in i) handles seq wraparound */
105 		i = q->ti_seq + q->ti_len - ti->ti_seq;
106 		if (i > 0) {
107 			if (i >= ti->ti_len) {
108 				tcpstat.tcps_rcvduppack++;
109 				tcpstat.tcps_rcvdupbyte += ti->ti_len;
110 				m_freem(m);
111 				return (0);
112 			}
113 			m_adj(m, i);
114 			ti->ti_len -= i;
115 			ti->ti_seq += i;
116 		}
117 		q = (struct tcpiphdr *)(q->ti_next);
118 	}
119 	tcpstat.tcps_rcvoopack++;
120 	tcpstat.tcps_rcvoobyte += ti->ti_len;
121 	REASS_MBUF(ti) = m;		/* XXX */
122 
123 	/*
124 	 * While we overlap succeeding segments trim them or,
125 	 * if they are completely covered, dequeue them.
126 	 */
127 	while (q != (struct tcpiphdr *)tp) {
128 		register int i = (ti->ti_seq + ti->ti_len) - q->ti_seq;
129 		if (i <= 0)
130 			break;
131 		if (i < q->ti_len) {
132 			q->ti_seq += i;
133 			q->ti_len -= i;
134 			m_adj(REASS_MBUF(q), i);
135 			break;
136 		}
137 		q = (struct tcpiphdr *)q->ti_next;
138 		m = REASS_MBUF((struct tcpiphdr *)q->ti_prev);
139 		remque(q->ti_prev);
140 		m_freem(m);
141 	}
142 
143 	/*
144 	 * Stick new segment in its place.
145 	 */
146 	insque(ti, q->ti_prev);
147 
148 present:
149 	/*
150 	 * Present data to user, advancing rcv_nxt through
151 	 * completed sequence space.
152 	 */
153 	if (TCPS_HAVERCVDSYN(tp->t_state) == 0)
154 		return (0);
155 	ti = tp->seg_next;
156 	if (ti == (struct tcpiphdr *)tp || ti->ti_seq != tp->rcv_nxt)
157 		return (0);
158 	if (tp->t_state == TCPS_SYN_RECEIVED && ti->ti_len)
159 		return (0);
160 	do {
161 		tp->rcv_nxt += ti->ti_len;
162 		flags = ti->ti_flags & TH_FIN;
163 		remque(ti);
164 		m = REASS_MBUF(ti);
165 		ti = (struct tcpiphdr *)ti->ti_next;
166 		if (so->so_state & SS_CANTRCVMORE)
167 			m_freem(m);
168 		else
169 			sbappend(&so->so_rcv, m);
170 	} while (ti != (struct tcpiphdr *)tp && ti->ti_seq == tp->rcv_nxt);
171 	sorwakeup(so);
172 	return (flags);
173 }
174 
175 /*
176  * TCP input routine, follows pages 65-76 of the
177  * protocol specification dated September, 1981 very closely.
178  */
179 tcp_input(m, iphlen)
180 	register struct mbuf *m;
181 	int iphlen;
182 {
183 	register struct tcpiphdr *ti;
184 	register struct inpcb *inp;
185 	struct mbuf *om = 0;
186 	int len, tlen, off;
187 	register struct tcpcb *tp = 0;
188 	register int tiflags;
189 	struct socket *so;
190 	int todrop, acked, ourfinisacked, needoutput = 0;
191 	short ostate;
192 	struct in_addr laddr;
193 	int dropsocket = 0;
194 	int iss = 0;
195 
196 	tcpstat.tcps_rcvtotal++;
197 	/*
198 	 * Get IP and TCP header together in first mbuf.
199 	 * Note: IP leaves IP header in first mbuf.
200 	 */
201 	ti = mtod(m, struct tcpiphdr *);
202 	if (iphlen > sizeof (struct ip))
203 		ip_stripoptions(m, (struct mbuf *)0);
204 	if (m->m_len < sizeof (struct tcpiphdr)) {
205 		if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
206 			tcpstat.tcps_rcvshort++;
207 			return;
208 		}
209 		ti = mtod(m, struct tcpiphdr *);
210 	}
211 
212 	/*
213 	 * Checksum extended TCP header and data.
214 	 */
215 	tlen = ((struct ip *)ti)->ip_len;
216 	len = sizeof (struct ip) + tlen;
217 	ti->ti_next = ti->ti_prev = 0;
218 	ti->ti_x1 = 0;
219 	ti->ti_len = (u_short)tlen;
220 	HTONS(ti->ti_len);
221 	if (ti->ti_sum = in_cksum(m, len)) {
222 		tcpstat.tcps_rcvbadsum++;
223 		goto drop;
224 	}
225 
226 	/*
227 	 * Check that TCP offset makes sense,
228 	 * pull out TCP options and adjust length.		XXX
229 	 */
230 	off = ti->ti_off << 2;
231 	if (off < sizeof (struct tcphdr) || off > tlen) {
232 		tcpstat.tcps_rcvbadoff++;
233 		goto drop;
234 	}
235 	tlen -= off;
236 	ti->ti_len = tlen;
237 	if (off > sizeof (struct tcphdr)) {
238 		if (m->m_len < sizeof(struct ip) + off) {
239 			if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
240 				tcpstat.tcps_rcvshort++;
241 				return;
242 			}
243 			ti = mtod(m, struct tcpiphdr *);
244 		}
245 		om = m_get(M_DONTWAIT, MT_DATA);
246 		if (om == 0)
247 			goto drop;
248 		om->m_len = off - sizeof (struct tcphdr);
249 		{ caddr_t op = mtod(m, caddr_t) + sizeof (struct tcpiphdr);
250 		  bcopy(op, mtod(om, caddr_t), (unsigned)om->m_len);
251 		  m->m_len -= om->m_len;
252 		  m->m_pkthdr.len -= om->m_len;
253 		  bcopy(op+om->m_len, op,
254 		   (unsigned)(m->m_len-sizeof (struct tcpiphdr)));
255 		}
256 	}
257 	tiflags = ti->ti_flags;
258 
259 	/*
260 	 * Convert TCP protocol specific fields to host format.
261 	 */
262 	NTOHL(ti->ti_seq);
263 	NTOHL(ti->ti_ack);
264 	NTOHS(ti->ti_win);
265 	NTOHS(ti->ti_urp);
266 
267 	/*
268 	 * Locate pcb for segment.
269 	 */
270 findpcb:
271 	inp = tcp_last_inpcb;
272 	if (inp->inp_lport != ti->ti_dport ||
273 	    inp->inp_fport != ti->ti_sport ||
274 	    inp->inp_faddr.s_addr != ti->ti_src.s_addr ||
275 	    inp->inp_laddr.s_addr != ti->ti_dst.s_addr) {
276 		inp = in_pcblookup(&tcb, ti->ti_src, ti->ti_sport,
277 		    ti->ti_dst, ti->ti_dport, INPLOOKUP_WILDCARD);
278 		if (inp)
279 			tcp_last_inpcb = inp;
280 		++tcppcbcachemiss;
281 	}
282 
283 	/*
284 	 * If the state is CLOSED (i.e., TCB does not exist) then
285 	 * all data in the incoming segment is discarded.
286 	 * If the TCB exists but is in CLOSED state, it is embryonic,
287 	 * but should either do a listen or a connect soon.
288 	 */
289 	if (inp == 0)
290 		goto dropwithreset;
291 	tp = intotcpcb(inp);
292 	if (tp == 0)
293 		goto dropwithreset;
294 	if (tp->t_state == TCPS_CLOSED)
295 		goto drop;
296 	so = inp->inp_socket;
297 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
298 		if (so->so_options & SO_DEBUG) {
299 			ostate = tp->t_state;
300 			tcp_saveti = *ti;
301 		}
302 		if (so->so_options & SO_ACCEPTCONN) {
303 			so = sonewconn(so, 0);
304 			if (so == 0)
305 				goto drop;
306 			/*
307 			 * This is ugly, but ....
308 			 *
309 			 * Mark socket as temporary until we're
310 			 * committed to keeping it.  The code at
311 			 * ``drop'' and ``dropwithreset'' check the
312 			 * flag dropsocket to see if the temporary
313 			 * socket created here should be discarded.
314 			 * We mark the socket as discardable until
315 			 * we're committed to it below in TCPS_LISTEN.
316 			 */
317 			dropsocket++;
318 			inp = (struct inpcb *)so->so_pcb;
319 			inp->inp_laddr = ti->ti_dst;
320 			inp->inp_lport = ti->ti_dport;
321 #if BSD>=43
322 			inp->inp_options = ip_srcroute();
323 #endif
324 			tp = intotcpcb(inp);
325 			tp->t_state = TCPS_LISTEN;
326 		}
327 	}
328 
329 	/*
330 	 * Segment received on connection.
331 	 * Reset idle time and keep-alive timer.
332 	 */
333 	tp->t_idle = 0;
334 	tp->t_timer[TCPT_KEEP] = tcp_keepidle;
335 
336 #ifndef VAN
337 	/*
338 	 * Process options if not in LISTEN state,
339 	 * else do it below (after getting remote address).
340 	 */
341 	if (om && tp->t_state != TCPS_LISTEN) {
342 		tcp_dooptions(tp, om, ti);
343 		om = 0;
344 	}
345 #endif VAN
346 	/*
347 	 * Header prediction: check for the two common cases
348 	 * of a uni-directional data xfer.  If the packet has
349 	 * no control flags, is in-sequence, the window didn't
350 	 * change and we're not retransmitting, it's a
351 	 * candidate.  If the length is zero and the ack moved
352 	 * forward, we're the sender side of the xfer.  Just
353 	 * free the data acked & wake any higher level process
354 	 * that was blocked waiting for space.  If the length
355 	 * is non-zero and the ack didn't move, we're the
356 	 * receiver side.  If we're getting packets in-order
357 	 * (the reassembly queue is empty), add the data to
358 	 * the socket buffer and note that we need a delayed ack.
359 	 */
360 	if (tp->t_state == TCPS_ESTABLISHED &&
361 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
362 	    ti->ti_seq == tp->rcv_nxt &&
363 	    ti->ti_win && ti->ti_win == tp->snd_wnd &&
364 	    tp->snd_nxt == tp->snd_max) {
365 		if (ti->ti_len == 0) {
366 			if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
367 			    SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
368 			    tp->snd_cwnd >= tp->snd_wnd) {
369 				/*
370 				 * this is a pure ack for outstanding data.
371 				 */
372 				++tcppredack;
373 				if (tp->t_rtt && SEQ_GT(ti->ti_ack,tp->t_rtseq))
374 					tcp_xmit_timer(tp);
375 				acked = ti->ti_ack - tp->snd_una;
376 				tcpstat.tcps_rcvackpack++;
377 				tcpstat.tcps_rcvackbyte += acked;
378 				sbdrop(&so->so_snd, acked);
379 				tp->snd_una = ti->ti_ack;
380 				m_freem(m);
381 
382 				/*
383 				 * If all outstanding data are acked, stop
384 				 * retransmit timer, otherwise restart timer
385 				 * using current (possibly backed-off) value.
386 				 * If process is waiting for space,
387 				 * wakeup/selwakeup/signal.  If data
388 				 * are ready to send, let tcp_output
389 				 * decide between more output or persist.
390 				 */
391 				if (tp->snd_una == tp->snd_max)
392 					tp->t_timer[TCPT_REXMT] = 0;
393 				else if (tp->t_timer[TCPT_PERSIST] == 0)
394 					tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
395 
396 				if (so->so_snd.sb_flags & SB_NOTIFY)
397 					sowwakeup(so);
398 				if (so->so_snd.sb_cc)
399 					(void) tcp_output(tp);
400 				return;
401 			}
402 		} else if (ti->ti_ack == tp->snd_una &&
403 		    tp->seg_next == (struct tcpiphdr *)tp &&
404 		    ti->ti_len <= sbspace(&so->so_rcv)) {
405 			/*
406 			 * this is a pure, in-sequence data packet
407 			 * with nothing on the reassembly queue and
408 			 * we have enough buffer space to take it.
409 			 */
410 			++tcppreddat;
411 			tp->rcv_nxt += ti->ti_len;
412 			tcpstat.tcps_rcvpack++;
413 			tcpstat.tcps_rcvbyte += ti->ti_len;
414 			/*
415 			 * Drop TCP and IP headers then add data
416 			 * to socket buffer
417 			 */
418 			m->m_data += sizeof(struct tcpiphdr);
419 			m->m_len -= sizeof(struct tcpiphdr);
420 			sbappend(&so->so_rcv, m);
421 			sorwakeup(so);
422 			tp->t_flags |= TF_DELACK;
423 			return;
424 		}
425 	}
426 
427 	/*
428 	 * Drop TCP and IP headers; TCP options were dropped above.
429 	 */
430 	m->m_data += sizeof(struct tcpiphdr);
431 	m->m_len -= sizeof(struct tcpiphdr);
432 
433 	/*
434 	 * Calculate amount of space in receive window,
435 	 * and then do TCP input processing.
436 	 * Receive window is amount of space in rcv queue,
437 	 * but not less than advertised window.
438 	 */
439 	{ int win;
440 
441 	win = sbspace(&so->so_rcv);
442 	if (win < 0)
443 		win = 0;
444 	tp->rcv_wnd = max(win, (int)(tp->rcv_adv - tp->rcv_nxt));
445 	}
446 
447 	switch (tp->t_state) {
448 
449 	/*
450 	 * If the state is LISTEN then ignore segment if it contains an RST.
451 	 * If the segment contains an ACK then it is bad and send a RST.
452 	 * If it does not contain a SYN then it is not interesting; drop it.
453 	 * Don't bother responding if the destination was a broadcast.
454 	 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
455 	 * tp->iss, and send a segment:
456 	 *     <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
457 	 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
458 	 * Fill in remote peer address fields if not previously specified.
459 	 * Enter SYN_RECEIVED state, and process any other fields of this
460 	 * segment in this state.
461 	 */
462 	case TCPS_LISTEN: {
463 		struct mbuf *am;
464 		register struct sockaddr_in *sin;
465 
466 		if (tiflags & TH_RST)
467 			goto drop;
468 		if (tiflags & TH_ACK)
469 			goto dropwithreset;
470 		if ((tiflags & TH_SYN) == 0)
471 			goto drop;
472 		if (m->m_flags & M_BCAST)
473 			goto drop;
474 		am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
475 		if (am == NULL)
476 			goto drop;
477 		am->m_len = sizeof (struct sockaddr_in);
478 		sin = mtod(am, struct sockaddr_in *);
479 		sin->sin_family = AF_INET;
480 		sin->sin_len = sizeof(*sin);
481 		sin->sin_addr = ti->ti_src;
482 		sin->sin_port = ti->ti_sport;
483 		laddr = inp->inp_laddr;
484 		if (inp->inp_laddr.s_addr == INADDR_ANY)
485 			inp->inp_laddr = ti->ti_dst;
486 		if (in_pcbconnect(inp, am)) {
487 			inp->inp_laddr = laddr;
488 			(void) m_free(am);
489 			goto drop;
490 		}
491 		(void) m_free(am);
492 		tp->t_template = tcp_template(tp);
493 		if (tp->t_template == 0) {
494 			tp = tcp_drop(tp, ENOBUFS);
495 			dropsocket = 0;		/* socket is already gone */
496 			goto drop;
497 		}
498 		if (om) {
499 			tcp_dooptions(tp, om, ti);
500 			om = 0;
501 		}
502 		if (iss)
503 			tp->iss = iss;
504 		else
505 			tp->iss = tcp_iss;
506 		tcp_iss += TCP_ISSINCR/2;
507 		tp->irs = ti->ti_seq;
508 		tcp_sendseqinit(tp);
509 		tcp_rcvseqinit(tp);
510 		tp->t_flags |= TF_ACKNOW;
511 		tp->t_state = TCPS_SYN_RECEIVED;
512 		tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
513 		dropsocket = 0;		/* committed to socket */
514 		tcpstat.tcps_accepts++;
515 		goto trimthenstep6;
516 		}
517 
518 	/*
519 	 * If the state is SYN_SENT:
520 	 *	if seg contains an ACK, but not for our SYN, drop the input.
521 	 *	if seg contains a RST, then drop the connection.
522 	 *	if seg does not contain SYN, then drop it.
523 	 * Otherwise this is an acceptable SYN segment
524 	 *	initialize tp->rcv_nxt and tp->irs
525 	 *	if seg contains ack then advance tp->snd_una
526 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
527 	 *	arrange for segment to be acked (eventually)
528 	 *	continue processing rest of data/controls, beginning with URG
529 	 */
530 	case TCPS_SYN_SENT:
531 #ifdef VAN
532 		if (om) {
533 			tcp_dooptions(tp, om, ti);
534 			om = 0;
535 		}
536 #endif VAN
537 		if ((tiflags & TH_ACK) &&
538 		    (SEQ_LEQ(ti->ti_ack, tp->iss) ||
539 		     SEQ_GT(ti->ti_ack, tp->snd_max)))
540 			goto dropwithreset;
541 		if (tiflags & TH_RST) {
542 			if (tiflags & TH_ACK)
543 				tp = tcp_drop(tp, ECONNREFUSED);
544 			goto drop;
545 		}
546 		if ((tiflags & TH_SYN) == 0)
547 			goto drop;
548 		if (tiflags & TH_ACK) {
549 			tp->snd_una = ti->ti_ack;
550 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
551 				tp->snd_nxt = tp->snd_una;
552 		}
553 		tp->t_timer[TCPT_REXMT] = 0;
554 		tp->irs = ti->ti_seq;
555 		tcp_rcvseqinit(tp);
556 		tp->t_flags |= TF_ACKNOW;
557 		if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
558 			tcpstat.tcps_connects++;
559 			soisconnected(so);
560 			tp->t_state = TCPS_ESTABLISHED;
561 			(void) tcp_reass(tp, (struct tcpiphdr *)0,
562 				(struct mbuf *)0);
563 			/*
564 			 * if we didn't have to retransmit the SYN,
565 			 * use its rtt as our initial srtt & rtt var.
566 			 */
567 			if (tp->t_rtt)
568 				tcp_xmit_timer(tp);
569 		} else
570 			tp->t_state = TCPS_SYN_RECEIVED;
571 
572 trimthenstep6:
573 		/*
574 		 * Advance ti->ti_seq to correspond to first data byte.
575 		 * If data, trim to stay within window,
576 		 * dropping FIN if necessary.
577 		 */
578 		ti->ti_seq++;
579 		if (ti->ti_len > tp->rcv_wnd) {
580 			todrop = ti->ti_len - tp->rcv_wnd;
581 			m_adj(m, -todrop);
582 			ti->ti_len = tp->rcv_wnd;
583 			tiflags &= ~TH_FIN;
584 			tcpstat.tcps_rcvpackafterwin++;
585 			tcpstat.tcps_rcvbyteafterwin += todrop;
586 		}
587 		tp->snd_wl1 = ti->ti_seq - 1;
588 		tp->rcv_up = ti->ti_seq;
589 		goto step6;
590 #ifdef VAN
591 
592 	default:
593 		if (om) {
594 			tcp_dooptions(tp, om, ti);
595 			om = 0;
596 		}
597 #endif VAN
598 	}
599 
600 	/*
601 	 * States other than LISTEN or SYN_SENT.
602 	 * First check that at least some bytes of segment are within
603 	 * receive window.  If segment begins before rcv_nxt,
604 	 * drop leading data (and SYN); if nothing left, just ack.
605 	 */
606 	todrop = tp->rcv_nxt - ti->ti_seq;
607 	if (todrop > 0) {
608 		if (tiflags & TH_SYN) {
609 			tiflags &= ~TH_SYN;
610 			ti->ti_seq++;
611 			if (ti->ti_urp > 1)
612 				ti->ti_urp--;
613 			else
614 				tiflags &= ~TH_URG;
615 			todrop--;
616 		}
617 		if (todrop > ti->ti_len ||
618 		    todrop == ti->ti_len && (tiflags&TH_FIN) == 0) {
619 			tcpstat.tcps_rcvduppack++;
620 			tcpstat.tcps_rcvdupbyte += ti->ti_len;
621 			/*
622 			 * If segment is just one to the left of the window,
623 			 * check two special cases:
624 			 * 1. Don't toss RST in response to 4.2-style keepalive.
625 			 * 2. If the only thing to drop is a FIN, we can drop
626 			 *    it, but check the ACK or we will get into FIN
627 			 *    wars if our FINs crossed (both CLOSING).
628 			 * In either case, send ACK to resynchronize,
629 			 * but keep on processing for RST or ACK.
630 			 */
631 			if ((tiflags & TH_FIN && todrop == ti->ti_len + 1)
632 #ifdef TCP_COMPAT_42
633 			  || (tiflags & TH_RST && ti->ti_seq == tp->rcv_nxt - 1)
634 #endif
635 			   ) {
636 				todrop = ti->ti_len;
637 				tiflags &= ~TH_FIN;
638 				tp->t_flags |= TF_ACKNOW;
639 			} else
640 				goto dropafterack;
641 		} else {
642 			tcpstat.tcps_rcvpartduppack++;
643 			tcpstat.tcps_rcvpartdupbyte += todrop;
644 		}
645 		m_adj(m, todrop);
646 		ti->ti_seq += todrop;
647 		ti->ti_len -= todrop;
648 		if (ti->ti_urp > todrop)
649 			ti->ti_urp -= todrop;
650 		else {
651 			tiflags &= ~TH_URG;
652 			ti->ti_urp = 0;
653 		}
654 	}
655 
656 	/*
657 	 * If new data are received on a connection after the
658 	 * user processes are gone, then RST the other end.
659 	 */
660 	if ((so->so_state & SS_NOFDREF) &&
661 	    tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
662 		tp = tcp_close(tp);
663 		tcpstat.tcps_rcvafterclose++;
664 		goto dropwithreset;
665 	}
666 
667 	/*
668 	 * If segment ends after window, drop trailing data
669 	 * (and PUSH and FIN); if nothing left, just ACK.
670 	 */
671 	todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
672 	if (todrop > 0) {
673 		tcpstat.tcps_rcvpackafterwin++;
674 		if (todrop >= ti->ti_len) {
675 			tcpstat.tcps_rcvbyteafterwin += ti->ti_len;
676 			/*
677 			 * If a new connection request is received
678 			 * while in TIME_WAIT, drop the old connection
679 			 * and start over if the sequence numbers
680 			 * are above the previous ones.
681 			 */
682 			if (tiflags & TH_SYN &&
683 			    tp->t_state == TCPS_TIME_WAIT &&
684 			    SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
685 				iss = tp->rcv_nxt + TCP_ISSINCR;
686 				tp = tcp_close(tp);
687 				goto findpcb;
688 			}
689 			/*
690 			 * If window is closed can only take segments at
691 			 * window edge, and have to drop data and PUSH from
692 			 * incoming segments.  Continue processing, but
693 			 * remember to ack.  Otherwise, drop segment
694 			 * and ack.
695 			 */
696 			if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
697 				tp->t_flags |= TF_ACKNOW;
698 				tcpstat.tcps_rcvwinprobe++;
699 			} else
700 				goto dropafterack;
701 		} else
702 			tcpstat.tcps_rcvbyteafterwin += todrop;
703 		m_adj(m, -todrop);
704 		ti->ti_len -= todrop;
705 		tiflags &= ~(TH_PUSH|TH_FIN);
706 	}
707 
708 	/*
709 	 * If the RST bit is set examine the state:
710 	 *    SYN_RECEIVED STATE:
711 	 *	If passive open, return to LISTEN state.
712 	 *	If active open, inform user that connection was refused.
713 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
714 	 *	Inform user that connection was reset, and close tcb.
715 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
716 	 *	Close the tcb.
717 	 */
718 	if (tiflags&TH_RST) switch (tp->t_state) {
719 
720 	case TCPS_SYN_RECEIVED:
721 		so->so_error = ECONNREFUSED;
722 		goto close;
723 
724 	case TCPS_ESTABLISHED:
725 	case TCPS_FIN_WAIT_1:
726 	case TCPS_FIN_WAIT_2:
727 	case TCPS_CLOSE_WAIT:
728 		so->so_error = ECONNRESET;
729 	close:
730 		tp->t_state = TCPS_CLOSED;
731 		tcpstat.tcps_drops++;
732 		tp = tcp_close(tp);
733 		goto drop;
734 
735 	case TCPS_CLOSING:
736 	case TCPS_LAST_ACK:
737 	case TCPS_TIME_WAIT:
738 		tp = tcp_close(tp);
739 		goto drop;
740 	}
741 
742 	/*
743 	 * If a SYN is in the window, then this is an
744 	 * error and we send an RST and drop the connection.
745 	 */
746 	if (tiflags & TH_SYN) {
747 		tp = tcp_drop(tp, ECONNRESET);
748 		goto dropwithreset;
749 	}
750 
751 	/*
752 	 * If the ACK bit is off we drop the segment and return.
753 	 */
754 	if ((tiflags & TH_ACK) == 0)
755 		goto drop;
756 
757 	/*
758 	 * Ack processing.
759 	 */
760 	switch (tp->t_state) {
761 
762 	/*
763 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
764 	 * ESTABLISHED state and continue processing, otherwise
765 	 * send an RST.
766 	 */
767 	case TCPS_SYN_RECEIVED:
768 		if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
769 		    SEQ_GT(ti->ti_ack, tp->snd_max))
770 			goto dropwithreset;
771 		tcpstat.tcps_connects++;
772 		soisconnected(so);
773 		tp->t_state = TCPS_ESTABLISHED;
774 		(void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0);
775 		tp->snd_wl1 = ti->ti_seq - 1;
776 		/* fall into ... */
777 
778 	/*
779 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
780 	 * ACKs.  If the ack is in the range
781 	 *	tp->snd_una < ti->ti_ack <= tp->snd_max
782 	 * then advance tp->snd_una to ti->ti_ack and drop
783 	 * data from the retransmission queue.  If this ACK reflects
784 	 * more up to date window information we update our window information.
785 	 */
786 	case TCPS_ESTABLISHED:
787 	case TCPS_FIN_WAIT_1:
788 	case TCPS_FIN_WAIT_2:
789 	case TCPS_CLOSE_WAIT:
790 	case TCPS_CLOSING:
791 	case TCPS_LAST_ACK:
792 	case TCPS_TIME_WAIT:
793 
794 		if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
795 			if (ti->ti_len == 0 && ti->ti_win == tp->snd_wnd) {
796 				tcpstat.tcps_rcvdupack++;
797 				/*
798 				 * If we have outstanding data (other than
799 				 * a window probe), this is a completely
800 				 * duplicate ack (ie, window info didn't
801 				 * change), the ack is the biggest we've
802 				 * seen and we've seen exactly our rexmt
803 				 * threshhold of them, assume a packet
804 				 * has been dropped and retransmit it.
805 				 * Kludge snd_nxt & the congestion
806 				 * window so we send only this one
807 				 * packet.
808 				 *
809 				 * We know we're losing at the current
810 				 * window size so do congestion avoidance
811 				 * (set ssthresh to half the current window
812 				 * and pull our congestion window back to
813 				 * the new ssthresh).
814 				 *
815 				 * Dup acks mean that packets have left the
816 				 * network (they're now cached at the receiver)
817 				 * so bump cwnd by the amount in the receiver
818 				 * to keep a constant cwnd packets in the
819 				 * network.
820 				 */
821 				if (tp->t_timer[TCPT_REXMT] == 0 ||
822 				    ti->ti_ack != tp->snd_una)
823 					tp->t_dupacks = 0;
824 				else if (++tp->t_dupacks == tcprexmtthresh) {
825 					tcp_seq onxt = tp->snd_nxt;
826 					u_int win =
827 					    min(tp->snd_wnd, tp->snd_cwnd) / 2 /
828 						tp->t_maxseg;
829 
830 					if (win < 2)
831 						win = 2;
832 					tp->snd_ssthresh = win * tp->t_maxseg;
833 					tp->t_timer[TCPT_REXMT] = 0;
834 					tp->t_rtt = 0;
835 					tp->snd_nxt = ti->ti_ack;
836 					tp->snd_cwnd = tp->t_maxseg;
837 					(void) tcp_output(tp);
838 					tp->snd_cwnd = tp->snd_ssthresh +
839 					       tp->t_maxseg * tp->t_dupacks;
840 					if (SEQ_GT(onxt, tp->snd_nxt))
841 						tp->snd_nxt = onxt;
842 					goto drop;
843 				} else if (tp->t_dupacks > tcprexmtthresh) {
844 					tp->snd_cwnd += tp->t_maxseg;
845 					(void) tcp_output(tp);
846 					goto drop;
847 				}
848 			} else
849 				tp->t_dupacks = 0;
850 			break;
851 		}
852 		/*
853 		 * If the congestion window was inflated to account
854 		 * for the other side's cached packets, retract it.
855 		 */
856 		if (tp->t_dupacks > tcprexmtthresh &&
857 		    tp->snd_cwnd > tp->snd_ssthresh)
858 			tp->snd_cwnd = tp->snd_ssthresh;
859 		tp->t_dupacks = 0;
860 		if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
861 			tcpstat.tcps_rcvacktoomuch++;
862 			goto dropafterack;
863 		}
864 		acked = ti->ti_ack - tp->snd_una;
865 		tcpstat.tcps_rcvackpack++;
866 		tcpstat.tcps_rcvackbyte += acked;
867 
868 		/*
869 		 * If transmit timer is running and timed sequence
870 		 * number was acked, update smoothed round trip time.
871 		 * Since we now have an rtt measurement, cancel the
872 		 * timer backoff (cf., Phil Karn's retransmit alg.).
873 		 * Recompute the initial retransmit timer.
874 		 */
875 		if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
876 			tcp_xmit_timer(tp);
877 
878 		/*
879 		 * If all outstanding data is acked, stop retransmit
880 		 * timer and remember to restart (more output or persist).
881 		 * If there is more data to be acked, restart retransmit
882 		 * timer, using current (possibly backed-off) value.
883 		 */
884 		if (ti->ti_ack == tp->snd_max) {
885 			tp->t_timer[TCPT_REXMT] = 0;
886 			needoutput = 1;
887 		} else if (tp->t_timer[TCPT_PERSIST] == 0)
888 			tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
889 		/*
890 		 * When new data is acked, open the congestion window.
891 		 * If the window gives us less than ssthresh packets
892 		 * in flight, open exponentially (maxseg per packet).
893 		 * Otherwise open linearly: maxseg per window
894 		 * (maxseg^2 / cwnd per packet), plus a constant
895 		 * fraction of a packet (maxseg/8) to help larger windows
896 		 * open quickly enough.
897 		 */
898 		{
899 		register u_int cw = tp->snd_cwnd;
900 		register u_int incr = tp->t_maxseg;
901 
902 		if (cw > tp->snd_ssthresh)
903 			incr = incr * incr / cw + incr / 8;
904 		tp->snd_cwnd = min(cw + incr, TCP_MAXWIN);
905 		}
906 		if (acked > so->so_snd.sb_cc) {
907 			tp->snd_wnd -= so->so_snd.sb_cc;
908 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
909 			ourfinisacked = 1;
910 		} else {
911 			sbdrop(&so->so_snd, acked);
912 			tp->snd_wnd -= acked;
913 			ourfinisacked = 0;
914 		}
915 		if (so->so_snd.sb_flags & SB_NOTIFY)
916 			sowwakeup(so);
917 		tp->snd_una = ti->ti_ack;
918 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
919 			tp->snd_nxt = tp->snd_una;
920 
921 		switch (tp->t_state) {
922 
923 		/*
924 		 * In FIN_WAIT_1 STATE in addition to the processing
925 		 * for the ESTABLISHED state if our FIN is now acknowledged
926 		 * then enter FIN_WAIT_2.
927 		 */
928 		case TCPS_FIN_WAIT_1:
929 			if (ourfinisacked) {
930 				/*
931 				 * If we can't receive any more
932 				 * data, then closing user can proceed.
933 				 * Starting the timer is contrary to the
934 				 * specification, but if we don't get a FIN
935 				 * we'll hang forever.
936 				 */
937 				if (so->so_state & SS_CANTRCVMORE) {
938 					soisdisconnected(so);
939 					tp->t_timer[TCPT_2MSL] = tcp_maxidle;
940 				}
941 				tp->t_state = TCPS_FIN_WAIT_2;
942 			}
943 			break;
944 
945 	 	/*
946 		 * In CLOSING STATE in addition to the processing for
947 		 * the ESTABLISHED state if the ACK acknowledges our FIN
948 		 * then enter the TIME-WAIT state, otherwise ignore
949 		 * the segment.
950 		 */
951 		case TCPS_CLOSING:
952 			if (ourfinisacked) {
953 				tp->t_state = TCPS_TIME_WAIT;
954 				tcp_canceltimers(tp);
955 				tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
956 				soisdisconnected(so);
957 			}
958 			break;
959 
960 		/*
961 		 * In LAST_ACK, we may still be waiting for data to drain
962 		 * and/or to be acked, as well as for the ack of our FIN.
963 		 * If our FIN is now acknowledged, delete the TCB,
964 		 * enter the closed state and return.
965 		 */
966 		case TCPS_LAST_ACK:
967 			if (ourfinisacked) {
968 				tp = tcp_close(tp);
969 				goto drop;
970 			}
971 			break;
972 
973 		/*
974 		 * In TIME_WAIT state the only thing that should arrive
975 		 * is a retransmission of the remote FIN.  Acknowledge
976 		 * it and restart the finack timer.
977 		 */
978 		case TCPS_TIME_WAIT:
979 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
980 			goto dropafterack;
981 		}
982 	}
983 
984 step6:
985 	/*
986 	 * Update window information.
987 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
988 	 */
989 	if ((tiflags & TH_ACK) &&
990 	    (SEQ_LT(tp->snd_wl1, ti->ti_seq) || tp->snd_wl1 == ti->ti_seq &&
991 	    (SEQ_LT(tp->snd_wl2, ti->ti_ack) ||
992 	     tp->snd_wl2 == ti->ti_ack && ti->ti_win > tp->snd_wnd))) {
993 		/* keep track of pure window updates */
994 		if (ti->ti_len == 0 &&
995 		    tp->snd_wl2 == ti->ti_ack && ti->ti_win > tp->snd_wnd)
996 			tcpstat.tcps_rcvwinupd++;
997 		tp->snd_wnd = ti->ti_win;
998 		tp->snd_wl1 = ti->ti_seq;
999 		tp->snd_wl2 = ti->ti_ack;
1000 		if (tp->snd_wnd > tp->max_sndwnd)
1001 			tp->max_sndwnd = tp->snd_wnd;
1002 		needoutput = 1;
1003 	}
1004 
1005 	/*
1006 	 * Process segments with URG.
1007 	 */
1008 	if ((tiflags & TH_URG) && ti->ti_urp &&
1009 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1010 		/*
1011 		 * This is a kludge, but if we receive and accept
1012 		 * random urgent pointers, we'll crash in
1013 		 * soreceive.  It's hard to imagine someone
1014 		 * actually wanting to send this much urgent data.
1015 		 */
1016 		if (ti->ti_urp + so->so_rcv.sb_cc > SB_MAX) {
1017 			ti->ti_urp = 0;			/* XXX */
1018 			tiflags &= ~TH_URG;		/* XXX */
1019 			goto dodata;			/* XXX */
1020 		}
1021 		/*
1022 		 * If this segment advances the known urgent pointer,
1023 		 * then mark the data stream.  This should not happen
1024 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1025 		 * a FIN has been received from the remote side.
1026 		 * In these states we ignore the URG.
1027 		 *
1028 		 * According to RFC961 (Assigned Protocols),
1029 		 * the urgent pointer points to the last octet
1030 		 * of urgent data.  We continue, however,
1031 		 * to consider it to indicate the first octet
1032 		 * of data past the urgent section as the original
1033 		 * spec states (in one of two places).
1034 		 */
1035 		if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
1036 			tp->rcv_up = ti->ti_seq + ti->ti_urp;
1037 			so->so_oobmark = so->so_rcv.sb_cc +
1038 			    (tp->rcv_up - tp->rcv_nxt) - 1;
1039 			if (so->so_oobmark == 0)
1040 				so->so_state |= SS_RCVATMARK;
1041 			sohasoutofband(so);
1042 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1043 		}
1044 		/*
1045 		 * Remove out of band data so doesn't get presented to user.
1046 		 * This can happen independent of advancing the URG pointer,
1047 		 * but if two URG's are pending at once, some out-of-band
1048 		 * data may creep in... ick.
1049 		 */
1050 		if (ti->ti_urp <= ti->ti_len
1051 #ifdef SO_OOBINLINE
1052 		     && (so->so_options & SO_OOBINLINE) == 0
1053 #endif
1054 		     )
1055 			tcp_pulloutofband(so, ti, m);
1056 	} else
1057 		/*
1058 		 * If no out of band data is expected,
1059 		 * pull receive urgent pointer along
1060 		 * with the receive window.
1061 		 */
1062 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1063 			tp->rcv_up = tp->rcv_nxt;
1064 dodata:							/* XXX */
1065 
1066 	/*
1067 	 * Process the segment text, merging it into the TCP sequencing queue,
1068 	 * and arranging for acknowledgment of receipt if necessary.
1069 	 * This process logically involves adjusting tp->rcv_wnd as data
1070 	 * is presented to the user (this happens in tcp_usrreq.c,
1071 	 * case PRU_RCVD).  If a FIN has already been received on this
1072 	 * connection then we just ignore the text.
1073 	 */
1074 	if ((ti->ti_len || (tiflags&TH_FIN)) &&
1075 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1076 		TCP_REASS(tp, ti, m, so, tiflags);
1077 		/*
1078 		 * Note the amount of data that peer has sent into
1079 		 * our window, in order to estimate the sender's
1080 		 * buffer size.
1081 		 */
1082 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
1083 	} else {
1084 		m_freem(m);
1085 		tiflags &= ~TH_FIN;
1086 	}
1087 
1088 	/*
1089 	 * If FIN is received ACK the FIN and let the user know
1090 	 * that the connection is closing.
1091 	 */
1092 	if (tiflags & TH_FIN) {
1093 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1094 			socantrcvmore(so);
1095 			tp->t_flags |= TF_ACKNOW;
1096 			tp->rcv_nxt++;
1097 		}
1098 		switch (tp->t_state) {
1099 
1100 	 	/*
1101 		 * In SYN_RECEIVED and ESTABLISHED STATES
1102 		 * enter the CLOSE_WAIT state.
1103 		 */
1104 		case TCPS_SYN_RECEIVED:
1105 		case TCPS_ESTABLISHED:
1106 			tp->t_state = TCPS_CLOSE_WAIT;
1107 			break;
1108 
1109 	 	/*
1110 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
1111 		 * enter the CLOSING state.
1112 		 */
1113 		case TCPS_FIN_WAIT_1:
1114 			tp->t_state = TCPS_CLOSING;
1115 			break;
1116 
1117 	 	/*
1118 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
1119 		 * starting the time-wait timer, turning off the other
1120 		 * standard timers.
1121 		 */
1122 		case TCPS_FIN_WAIT_2:
1123 			tp->t_state = TCPS_TIME_WAIT;
1124 			tcp_canceltimers(tp);
1125 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1126 			soisdisconnected(so);
1127 			break;
1128 
1129 		/*
1130 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
1131 		 */
1132 		case TCPS_TIME_WAIT:
1133 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1134 			break;
1135 		}
1136 	}
1137 	if (so->so_options & SO_DEBUG)
1138 		tcp_trace(TA_INPUT, ostate, tp, &tcp_saveti, 0);
1139 
1140 	/*
1141 	 * Return any desired output.
1142 	 */
1143 	if (needoutput || (tp->t_flags & TF_ACKNOW))
1144 		(void) tcp_output(tp);
1145 	return;
1146 
1147 dropafterack:
1148 	/*
1149 	 * Generate an ACK dropping incoming segment if it occupies
1150 	 * sequence space, where the ACK reflects our state.
1151 	 */
1152 	if (tiflags & TH_RST)
1153 		goto drop;
1154 	m_freem(m);
1155 	tp->t_flags |= TF_ACKNOW;
1156 	(void) tcp_output(tp);
1157 	return;
1158 
1159 dropwithreset:
1160 	if (om) {
1161 		(void) m_free(om);
1162 		om = 0;
1163 	}
1164 	/*
1165 	 * Generate a RST, dropping incoming segment.
1166 	 * Make ACK acceptable to originator of segment.
1167 	 * Don't bother to respond if destination was broadcast.
1168 	 */
1169 	if ((tiflags & TH_RST) || m->m_flags & M_BCAST)
1170 		goto drop;
1171 	if (tiflags & TH_ACK)
1172 		tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST);
1173 	else {
1174 		if (tiflags & TH_SYN)
1175 			ti->ti_len++;
1176 		tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0,
1177 		    TH_RST|TH_ACK);
1178 	}
1179 	/* destroy temporarily created socket */
1180 	if (dropsocket)
1181 		(void) soabort(so);
1182 	return;
1183 
1184 drop:
1185 	if (om)
1186 		(void) m_free(om);
1187 	/*
1188 	 * Drop space held by incoming segment and return.
1189 	 */
1190 	if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
1191 		tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0);
1192 	m_freem(m);
1193 	/* destroy temporarily created socket */
1194 	if (dropsocket)
1195 		(void) soabort(so);
1196 	return;
1197 }
1198 
1199 tcp_dooptions(tp, om, ti)
1200 	struct tcpcb *tp;
1201 	struct mbuf *om;
1202 	struct tcpiphdr *ti;
1203 {
1204 	register u_char *cp;
1205 	u_short mss;
1206 	int opt, optlen, cnt;
1207 
1208 	cp = mtod(om, u_char *);
1209 	cnt = om->m_len;
1210 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1211 		opt = cp[0];
1212 		if (opt == TCPOPT_EOL)
1213 			break;
1214 		if (opt == TCPOPT_NOP)
1215 			optlen = 1;
1216 		else {
1217 			optlen = cp[1];
1218 			if (optlen <= 0)
1219 				break;
1220 		}
1221 		switch (opt) {
1222 
1223 		default:
1224 			continue;
1225 
1226 		case TCPOPT_MAXSEG:
1227 			if (optlen != 4)
1228 				continue;
1229 			if (!(ti->ti_flags & TH_SYN))
1230 				continue;
1231 			bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
1232 			NTOHS(mss);
1233 			(void) tcp_mss(tp, mss);	/* sets t_maxseg */
1234 			break;
1235 		}
1236 	}
1237 	(void) m_free(om);
1238 }
1239 
1240 /*
1241  * Pull out of band byte out of a segment so
1242  * it doesn't appear in the user's data queue.
1243  * It is still reflected in the segment length for
1244  * sequencing purposes.
1245  */
1246 tcp_pulloutofband(so, ti, m)
1247 	struct socket *so;
1248 	struct tcpiphdr *ti;
1249 	register struct mbuf *m;
1250 {
1251 	int cnt = ti->ti_urp - 1;
1252 
1253 	while (cnt >= 0) {
1254 		if (m->m_len > cnt) {
1255 			char *cp = mtod(m, caddr_t) + cnt;
1256 			struct tcpcb *tp = sototcpcb(so);
1257 
1258 			tp->t_iobc = *cp;
1259 			tp->t_oobflags |= TCPOOB_HAVEDATA;
1260 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
1261 			m->m_len--;
1262 			return;
1263 		}
1264 		cnt -= m->m_len;
1265 		m = m->m_next;
1266 		if (m == 0)
1267 			break;
1268 	}
1269 	panic("tcp_pulloutofband");
1270 }
1271 
1272 /*
1273  * Collect new round-trip time estimate
1274  * and update averages and current timeout.
1275  */
1276 tcp_xmit_timer(tp)
1277 	register struct tcpcb *tp;
1278 {
1279 	register short delta;
1280 
1281 	tcpstat.tcps_rttupdated++;
1282 	if (tp->t_srtt != 0) {
1283 		/*
1284 		 * srtt is stored as fixed point with 3 bits after the
1285 		 * binary point (i.e., scaled by 8).  The following magic
1286 		 * is equivalent to the smoothing algorithm in rfc793 with
1287 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
1288 		 * point).  Adjust t_rtt to origin 0.
1289 		 */
1290 		delta = tp->t_rtt - 1 - (tp->t_srtt >> TCP_RTT_SHIFT);
1291 		if ((tp->t_srtt += delta) <= 0)
1292 			tp->t_srtt = 1;
1293 		/*
1294 		 * We accumulate a smoothed rtt variance (actually, a
1295 		 * smoothed mean difference), then set the retransmit
1296 		 * timer to smoothed rtt + 4 times the smoothed variance.
1297 		 * rttvar is stored as fixed point with 2 bits after the
1298 		 * binary point (scaled by 4).  The following is
1299 		 * equivalent to rfc793 smoothing with an alpha of .75
1300 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
1301 		 * rfc793's wired-in beta.
1302 		 */
1303 		if (delta < 0)
1304 			delta = -delta;
1305 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
1306 		if ((tp->t_rttvar += delta) <= 0)
1307 			tp->t_rttvar = 1;
1308 	} else {
1309 		/*
1310 		 * No rtt measurement yet - use the unsmoothed rtt.
1311 		 * Set the variance to half the rtt (so our first
1312 		 * retransmit happens at 2*rtt)
1313 		 */
1314 		tp->t_srtt = tp->t_rtt << TCP_RTT_SHIFT;
1315 		tp->t_rttvar = tp->t_rtt << (TCP_RTTVAR_SHIFT - 1);
1316 	}
1317 	tp->t_rtt = 0;
1318 	tp->t_rxtshift = 0;
1319 
1320 	/*
1321 	 * the retransmit should happen at rtt + 4 * rttvar.
1322 	 * Because of the way we do the smoothing, srtt and rttvar
1323 	 * will each average +1/2 tick of bias.  When we compute
1324 	 * the retransmit timer, we want 1/2 tick of rounding and
1325 	 * 1 extra tick because of +-1/2 tick uncertainty in the
1326 	 * firing of the timer.  The bias will give us exactly the
1327 	 * 1.5 tick we need.  But, because the bias is
1328 	 * statistical, we have to test that we don't drop below
1329 	 * the minimum feasible timer (which is 2 ticks).
1330 	 */
1331 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
1332 	    tp->t_rttmin, TCPTV_REXMTMAX);
1333 
1334 	/*
1335 	 * We received an ack for a packet that wasn't retransmitted;
1336 	 * it is probably safe to discard any error indications we've
1337 	 * received recently.  This isn't quite right, but close enough
1338 	 * for now (a route might have failed after we sent a segment,
1339 	 * and the return path might not be symmetrical).
1340 	 */
1341 	tp->t_softerror = 0;
1342 }
1343 
1344 /*
1345  * Determine a reasonable value for maxseg size.
1346  * If the route is known, check route for mtu.
1347  * If none, use an mss that can be handled on the outgoing
1348  * interface without forcing IP to fragment; if bigger than
1349  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
1350  * to utilize large mbufs.  If no route is found, route has no mtu,
1351  * or the destination isn't local, use a default, hopefully conservative
1352  * size (usually 512 or the default IP max size, but no more than the mtu
1353  * of the interface), as we can't discover anything about intervening
1354  * gateways or networks.  We also initialize the congestion/slow start
1355  * window to be a single segment if the destination isn't local.
1356  * While looking at the routing entry, we also initialize other path-dependent
1357  * parameters from pre-set or cached values in the routing entry.
1358  */
1359 
1360 tcp_mss(tp, offer)
1361 	register struct tcpcb *tp;
1362 	u_short offer;
1363 {
1364 	struct route *ro;
1365 	register struct rtentry *rt;
1366 	struct ifnet *ifp;
1367 	register int rtt, mss;
1368 	u_long bufsize;
1369 	struct inpcb *inp;
1370 	struct socket *so;
1371 	extern int tcp_mssdflt, tcp_rttdflt;
1372 
1373 	inp = tp->t_inpcb;
1374 	ro = &inp->inp_route;
1375 
1376 	if ((rt = ro->ro_rt) == (struct rtentry *)0) {
1377 		/* No route yet, so try to acquire one */
1378 		if (inp->inp_faddr.s_addr != INADDR_ANY) {
1379 			ro->ro_dst.sa_family = AF_INET;
1380 			ro->ro_dst.sa_len = sizeof(ro->ro_dst);
1381 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1382 				inp->inp_faddr;
1383 			rtalloc(ro);
1384 		}
1385 		if ((rt = ro->ro_rt) == (struct rtentry *)0)
1386 			return (tcp_mssdflt);
1387 	}
1388 	ifp = rt->rt_ifp;
1389 	so = inp->inp_socket;
1390 
1391 #ifdef RTV_MTU	/* if route characteristics exist ... */
1392 	/*
1393 	 * While we're here, check if there's an initial rtt
1394 	 * or rttvar.  Convert from the route-table units
1395 	 * to scaled multiples of the slow timeout timer.
1396 	 */
1397 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1398 		if (rt->rt_rmx.rmx_locks & RTV_MTU)
1399 			tp->t_rttmin = rtt / (RTM_RTTUNIT / PR_SLOWHZ);
1400 		tp->t_srtt = rtt / (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTT_SCALE));
1401 		if (rt->rt_rmx.rmx_rttvar)
1402 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1403 			    (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE));
1404 		else
1405 			/* default variation is +- 1 rtt */
1406 			tp->t_rttvar =
1407 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
1408 		TCPT_RANGESET(tp->t_rxtcur,
1409 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
1410 		    tp->t_rttmin, TCPTV_REXMTMAX);
1411 	}
1412 	/*
1413 	 * if there's an mtu associated with the route, use it
1414 	 */
1415 	if (rt->rt_rmx.rmx_mtu)
1416 		mss = rt->rt_rmx.rmx_mtu - sizeof(struct tcpiphdr);
1417 	else
1418 #endif /* RTV_MTU */
1419 	{
1420 		mss = ifp->if_mtu - sizeof(struct tcpiphdr);
1421 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1422 		if (mss > MCLBYTES)
1423 			mss &= ~(MCLBYTES-1);
1424 #else
1425 		if (mss > MCLBYTES)
1426 			mss = mss / MCLBYTES * MCLBYTES;
1427 #endif
1428 		if (!in_localaddr(inp->inp_faddr))
1429 			mss = min(mss, tcp_mssdflt);
1430 	}
1431 	/*
1432 	 * The current mss, t_maxseg, is initialized to the default value.
1433 	 * If we compute a smaller value, reduce the current mss.
1434 	 * If we compute a larger value, return it for use in sending
1435 	 * a max seg size option, but don't store it for use
1436 	 * unless we received an offer at least that large from peer.
1437 	 * However, do not accept offers under 32 bytes.
1438 	 */
1439 	if (offer)
1440 		mss = min(mss, offer);
1441 	mss = max(mss, 32);		/* sanity */
1442 	if (mss < tp->t_maxseg || offer != 0) {
1443 		/*
1444 		 * If there's a pipesize, change the socket buffer
1445 		 * to that size.  Make the socket buffers an integral
1446 		 * number of mss units; if the mss is larger than
1447 		 * the socket buffer, decrease the mss.
1448 		 */
1449 #ifdef RTV_SPIPE
1450 		if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
1451 #endif
1452 			bufsize = so->so_snd.sb_hiwat;
1453 		if (bufsize < mss)
1454 			mss = bufsize;
1455 		else {
1456 			bufsize = min(bufsize, SB_MAX) / mss * mss;
1457 			(void) sbreserve(&so->so_snd, bufsize);
1458 		}
1459 		tp->t_maxseg = mss;
1460 
1461 #ifdef RTV_RPIPE
1462 		if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
1463 #endif
1464 			bufsize = so->so_rcv.sb_hiwat;
1465 		if (bufsize > mss) {
1466 			bufsize = min(bufsize, SB_MAX) / mss * mss;
1467 			(void) sbreserve(&so->so_rcv, bufsize);
1468 		}
1469 	}
1470 	tp->snd_cwnd = mss;
1471 
1472 #ifdef RTV_SSTHRESH
1473 	if (rt->rt_rmx.rmx_ssthresh) {
1474 		/*
1475 		 * There's some sort of gateway or interface
1476 		 * buffer limit on the path.  Use this to set
1477 		 * the slow start threshhold, but set the
1478 		 * threshold to no less than 2*mss.
1479 		 */
1480 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1481 	}
1482 #endif /* RTV_MTU */
1483 	return (mss);
1484 }
1485