xref: /csrg-svn/sys/netinet/tcp_input.c (revision 33447)
1 /*
2  * Copyright (c) 1982, 1986 Regents of the University of California.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms are permitted
6  * provided that this notice is preserved and that due credit is given
7  * to the University of California at Berkeley. The name of the University
8  * may not be used to endorse or promote products derived from this
9  * software without specific prior written permission. This software
10  * is provided ``as is'' without express or implied warranty.
11  *
12  *	@(#)tcp_input.c	7.15.1.1 (Berkeley) 02/07/88
13  */
14 
15 #include "param.h"
16 #include "systm.h"
17 #include "mbuf.h"
18 #include "protosw.h"
19 #include "socket.h"
20 #include "socketvar.h"
21 #include "errno.h"
22 
23 #include "../net/if.h"
24 #include "../net/route.h"
25 
26 #include "in.h"
27 #include "in_pcb.h"
28 #include "in_systm.h"
29 #include "ip.h"
30 #include "ip_var.h"
31 #include "tcp.h"
32 #include "tcp_fsm.h"
33 #include "tcp_seq.h"
34 #include "tcp_timer.h"
35 #include "tcp_var.h"
36 #include "tcpip.h"
37 #include "tcp_debug.h"
38 
39 int	tcpprintfs = 0;
40 int	tcpcksum = 1;
41 int	tcprexmtthresh = 3;
42 struct	tcpiphdr tcp_saveti;
43 extern	tcpnodelack;
44 
45 struct	tcpcb *tcp_newtcpcb();
46 
47 /*
48  * Insert segment ti into reassembly queue of tcp with
49  * control block tp.  Return TH_FIN if reassembly now includes
50  * a segment with FIN.  The macro form does the common case inline
51  * (segment is the next to be received on an established connection,
52  * and the queue is empty), avoiding linkage into and removal
53  * from the queue and repetition of various conversions.
54  */
55 #define	TCP_REASS(tp, ti, m, so, flags) { \
56 	if ((ti)->ti_seq == (tp)->rcv_nxt && \
57 	    (tp)->seg_next == (struct tcpiphdr *)(tp) && \
58 	    (tp)->t_state == TCPS_ESTABLISHED) { \
59 		(tp)->rcv_nxt += (ti)->ti_len; \
60 		flags = (ti)->ti_flags & TH_FIN; \
61 		tcpstat.tcps_rcvpack++;\
62 		tcpstat.tcps_rcvbyte += (ti)->ti_len;\
63 		sbappend(&(so)->so_rcv, (m)); \
64 		sorwakeup(so); \
65 	} else \
66 		(flags) = tcp_reass((tp), (ti)); \
67 }
68 
69 tcp_reass(tp, ti)
70 	register struct tcpcb *tp;
71 	register struct tcpiphdr *ti;
72 {
73 	register struct tcpiphdr *q;
74 	struct socket *so = tp->t_inpcb->inp_socket;
75 	struct mbuf *m;
76 	int flags;
77 
78 	/*
79 	 * Call with ti==0 after become established to
80 	 * force pre-ESTABLISHED data up to user socket.
81 	 */
82 	if (ti == 0)
83 		goto present;
84 
85 	/*
86 	 * Find a segment which begins after this one does.
87 	 */
88 	for (q = tp->seg_next; q != (struct tcpiphdr *)tp;
89 	    q = (struct tcpiphdr *)q->ti_next)
90 		if (SEQ_GT(q->ti_seq, ti->ti_seq))
91 			break;
92 
93 	/*
94 	 * If there is a preceding segment, it may provide some of
95 	 * our data already.  If so, drop the data from the incoming
96 	 * segment.  If it provides all of our data, drop us.
97 	 */
98 	if ((struct tcpiphdr *)q->ti_prev != (struct tcpiphdr *)tp) {
99 		register int i;
100 		q = (struct tcpiphdr *)q->ti_prev;
101 		/* conversion to int (in i) handles seq wraparound */
102 		i = q->ti_seq + q->ti_len - ti->ti_seq;
103 		if (i > 0) {
104 			if (i >= ti->ti_len) {
105 				tcpstat.tcps_rcvduppack++;
106 				tcpstat.tcps_rcvdupbyte += ti->ti_len;
107 				goto drop;
108 			}
109 			m_adj(dtom(ti), i);
110 			ti->ti_len -= i;
111 			ti->ti_seq += i;
112 		}
113 		q = (struct tcpiphdr *)(q->ti_next);
114 	}
115 	tcpstat.tcps_rcvoopack++;
116 	tcpstat.tcps_rcvoobyte += ti->ti_len;
117 
118 	/*
119 	 * While we overlap succeeding segments trim them or,
120 	 * if they are completely covered, dequeue them.
121 	 */
122 	while (q != (struct tcpiphdr *)tp) {
123 		register int i = (ti->ti_seq + ti->ti_len) - q->ti_seq;
124 		if (i <= 0)
125 			break;
126 		if (i < q->ti_len) {
127 			q->ti_seq += i;
128 			q->ti_len -= i;
129 			m_adj(dtom(q), i);
130 			break;
131 		}
132 		q = (struct tcpiphdr *)q->ti_next;
133 		m = dtom(q->ti_prev);
134 		remque(q->ti_prev);
135 		m_freem(m);
136 	}
137 
138 	/*
139 	 * Stick new segment in its place.
140 	 */
141 	insque(ti, q->ti_prev);
142 
143 present:
144 	/*
145 	 * Present data to user, advancing rcv_nxt through
146 	 * completed sequence space.
147 	 */
148 	if (TCPS_HAVERCVDSYN(tp->t_state) == 0)
149 		return (0);
150 	ti = tp->seg_next;
151 	if (ti == (struct tcpiphdr *)tp || ti->ti_seq != tp->rcv_nxt)
152 		return (0);
153 	if (tp->t_state == TCPS_SYN_RECEIVED && ti->ti_len)
154 		return (0);
155 	do {
156 		tp->rcv_nxt += ti->ti_len;
157 		flags = ti->ti_flags & TH_FIN;
158 		remque(ti);
159 		m = dtom(ti);
160 		ti = (struct tcpiphdr *)ti->ti_next;
161 		if (so->so_state & SS_CANTRCVMORE)
162 			m_freem(m);
163 		else
164 			sbappend(&so->so_rcv, m);
165 	} while (ti != (struct tcpiphdr *)tp && ti->ti_seq == tp->rcv_nxt);
166 	sorwakeup(so);
167 	return (flags);
168 drop:
169 	m_freem(dtom(ti));
170 	return (0);
171 }
172 
173 /*
174  * TCP input routine, follows pages 65-76 of the
175  * protocol specification dated September, 1981 very closely.
176  */
177 tcp_input(m0)
178 	struct mbuf *m0;
179 {
180 	register struct tcpiphdr *ti;
181 	struct inpcb *inp;
182 	register struct mbuf *m;
183 	struct mbuf *om = 0;
184 	int len, tlen, off;
185 	register struct tcpcb *tp = 0;
186 	register int tiflags;
187 	struct socket *so;
188 	int todrop, acked, ourfinisacked, needoutput = 0;
189 	short ostate;
190 	struct in_addr laddr;
191 	int dropsocket = 0;
192 	int iss = 0;
193 
194 	tcpstat.tcps_rcvtotal++;
195 	/*
196 	 * Get IP and TCP header together in first mbuf.
197 	 * Note: IP leaves IP header in first mbuf.
198 	 */
199 	m = m0;
200 	ti = mtod(m, struct tcpiphdr *);
201 	if (((struct ip *)ti)->ip_hl > (sizeof (struct ip) >> 2))
202 		ip_stripoptions((struct ip *)ti, (struct mbuf *)0);
203 	if (m->m_off > MMAXOFF || m->m_len < sizeof (struct tcpiphdr)) {
204 		if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
205 			tcpstat.tcps_rcvshort++;
206 			return;
207 		}
208 		ti = mtod(m, struct tcpiphdr *);
209 	}
210 
211 	/*
212 	 * Checksum extended TCP header and data.
213 	 */
214 	tlen = ((struct ip *)ti)->ip_len;
215 	len = sizeof (struct ip) + tlen;
216 	if (tcpcksum) {
217 		ti->ti_next = ti->ti_prev = 0;
218 		ti->ti_x1 = 0;
219 		ti->ti_len = (u_short)tlen;
220 		ti->ti_len = htons((u_short)ti->ti_len);
221 		if (ti->ti_sum = in_cksum(m, len)) {
222 			if (tcpprintfs)
223 				printf("tcp sum: src %x\n", ti->ti_src);
224 			tcpstat.tcps_rcvbadsum++;
225 			goto drop;
226 		}
227 	}
228 
229 	/*
230 	 * Check that TCP offset makes sense,
231 	 * pull out TCP options and adjust length.
232 	 */
233 	off = ti->ti_off << 2;
234 	if (off < sizeof (struct tcphdr) || off > tlen) {
235 		if (tcpprintfs)
236 			printf("tcp off: src %x off %d\n", ti->ti_src, off);
237 		tcpstat.tcps_rcvbadoff++;
238 		goto drop;
239 	}
240 	tlen -= off;
241 	ti->ti_len = tlen;
242 	if (off > sizeof (struct tcphdr)) {
243 		if (m->m_len < sizeof(struct ip) + off) {
244 			if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
245 				tcpstat.tcps_rcvshort++;
246 				return;
247 			}
248 			ti = mtod(m, struct tcpiphdr *);
249 		}
250 		om = m_get(M_DONTWAIT, MT_DATA);
251 		if (om == 0)
252 			goto drop;
253 		om->m_len = off - sizeof (struct tcphdr);
254 		{ caddr_t op = mtod(m, caddr_t) + sizeof (struct tcpiphdr);
255 		  bcopy(op, mtod(om, caddr_t), (unsigned)om->m_len);
256 		  m->m_len -= om->m_len;
257 		  bcopy(op+om->m_len, op,
258 		   (unsigned)(m->m_len-sizeof (struct tcpiphdr)));
259 		}
260 	}
261 	tiflags = ti->ti_flags;
262 
263 	/*
264 	 * Drop TCP and IP headers; TCP options were dropped above.
265 	 */
266 	m->m_off += sizeof(struct tcpiphdr);
267 	m->m_len -= sizeof(struct tcpiphdr);
268 
269 	/*
270 	 * Convert TCP protocol specific fields to host format.
271 	 */
272 	ti->ti_seq = ntohl(ti->ti_seq);
273 	ti->ti_ack = ntohl(ti->ti_ack);
274 	ti->ti_win = ntohs(ti->ti_win);
275 	ti->ti_urp = ntohs(ti->ti_urp);
276 
277 	/*
278 	 * Locate pcb for segment.
279 	 */
280 findpcb:
281 	inp = in_pcblookup
282 		(&tcb, ti->ti_src, ti->ti_sport, ti->ti_dst, ti->ti_dport,
283 		INPLOOKUP_WILDCARD);
284 
285 	/*
286 	 * If the state is CLOSED (i.e., TCB does not exist) then
287 	 * all data in the incoming segment is discarded.
288 	 * If the TCB exists but is in CLOSED state, it is embryonic,
289 	 * but should either do a listen or a connect soon.
290 	 */
291 	if (inp == 0)
292 		goto dropwithreset;
293 	tp = intotcpcb(inp);
294 	if (tp == 0)
295 		goto dropwithreset;
296 	if (tp->t_state == TCPS_CLOSED)
297 		goto drop;
298 	so = inp->inp_socket;
299 	if (so->so_options & SO_DEBUG) {
300 		ostate = tp->t_state;
301 		tcp_saveti = *ti;
302 	}
303 	if (so->so_options & SO_ACCEPTCONN) {
304 		so = sonewconn(so);
305 		if (so == 0)
306 			goto drop;
307 		/*
308 		 * This is ugly, but ....
309 		 *
310 		 * Mark socket as temporary until we're
311 		 * committed to keeping it.  The code at
312 		 * ``drop'' and ``dropwithreset'' check the
313 		 * flag dropsocket to see if the temporary
314 		 * socket created here should be discarded.
315 		 * We mark the socket as discardable until
316 		 * we're committed to it below in TCPS_LISTEN.
317 		 */
318 		dropsocket++;
319 		inp = (struct inpcb *)so->so_pcb;
320 		inp->inp_laddr = ti->ti_dst;
321 		inp->inp_lport = ti->ti_dport;
322 #if BSD>=43
323 		inp->inp_options = ip_srcroute();
324 #endif
325 		tp = intotcpcb(inp);
326 		tp->t_state = TCPS_LISTEN;
327 	}
328 
329 	/*
330 	 * Segment received on connection.
331 	 * Reset idle time and keep-alive timer.
332 	 */
333 	tp->t_idle = 0;
334 	tp->t_timer[TCPT_KEEP] = TCPTV_KEEP;
335 
336 	/*
337 	 * Process options if not in LISTEN state,
338 	 * else do it below (after getting remote address).
339 	 */
340 	if (om && tp->t_state != TCPS_LISTEN) {
341 		tcp_dooptions(tp, om, ti);
342 		om = 0;
343 	}
344 
345 	/*
346 	 * Calculate amount of space in receive window,
347 	 * and then do TCP input processing.
348 	 * Receive window is amount of space in rcv queue,
349 	 * but not less than advertised window.
350 	 */
351 	{ int win;
352 
353 	win = sbspace(&so->so_rcv);
354 	if (win < 0)
355 		win = 0;
356 	tp->rcv_wnd = MAX(win, (int)(tp->rcv_adv - tp->rcv_nxt));
357 	}
358 
359 	switch (tp->t_state) {
360 
361 	/*
362 	 * If the state is LISTEN then ignore segment if it contains an RST.
363 	 * If the segment contains an ACK then it is bad and send a RST.
364 	 * If it does not contain a SYN then it is not interesting; drop it.
365 	 * Don't bother responding if the destination was a broadcast.
366 	 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
367 	 * tp->iss, and send a segment:
368 	 *     <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
369 	 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
370 	 * Fill in remote peer address fields if not previously specified.
371 	 * Enter SYN_RECEIVED state, and process any other fields of this
372 	 * segment in this state.
373 	 */
374 	case TCPS_LISTEN: {
375 		struct mbuf *am;
376 		register struct sockaddr_in *sin;
377 
378 		if (tiflags & TH_RST)
379 			goto drop;
380 		if (tiflags & TH_ACK)
381 			goto dropwithreset;
382 		if ((tiflags & TH_SYN) == 0)
383 			goto drop;
384 		if (in_broadcast(ti->ti_dst))
385 			goto drop;
386 		am = m_get(M_DONTWAIT, MT_SONAME);
387 		if (am == NULL)
388 			goto drop;
389 		am->m_len = sizeof (struct sockaddr_in);
390 		sin = mtod(am, struct sockaddr_in *);
391 		sin->sin_family = AF_INET;
392 		sin->sin_addr = ti->ti_src;
393 		sin->sin_port = ti->ti_sport;
394 		laddr = inp->inp_laddr;
395 		if (inp->inp_laddr.s_addr == INADDR_ANY)
396 			inp->inp_laddr = ti->ti_dst;
397 		if (in_pcbconnect(inp, am)) {
398 			inp->inp_laddr = laddr;
399 			(void) m_free(am);
400 			goto drop;
401 		}
402 		(void) m_free(am);
403 		tp->t_template = tcp_template(tp);
404 		if (tp->t_template == 0) {
405 			tp = tcp_drop(tp, ENOBUFS);
406 			dropsocket = 0;		/* socket is already gone */
407 			goto drop;
408 		}
409 		if (om) {
410 			tcp_dooptions(tp, om, ti);
411 			om = 0;
412 		}
413 		if (iss)
414 			tp->iss = iss;
415 		else
416 			tp->iss = tcp_iss;
417 		tcp_iss += TCP_ISSINCR/2;
418 		tp->irs = ti->ti_seq;
419 		tcp_sendseqinit(tp);
420 		tcp_rcvseqinit(tp);
421 		tp->t_flags |= TF_ACKNOW;
422 		tp->t_state = TCPS_SYN_RECEIVED;
423 		tp->t_timer[TCPT_KEEP] = TCPTV_KEEP;
424 		dropsocket = 0;		/* committed to socket */
425 		tcpstat.tcps_accepts++;
426 		goto trimthenstep6;
427 		}
428 
429 	/*
430 	 * If the state is SYN_SENT:
431 	 *	if seg contains an ACK, but not for our SYN, drop the input.
432 	 *	if seg contains a RST, then drop the connection.
433 	 *	if seg does not contain SYN, then drop it.
434 	 * Otherwise this is an acceptable SYN segment
435 	 *	initialize tp->rcv_nxt and tp->irs
436 	 *	if seg contains ack then advance tp->snd_una
437 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
438 	 *	arrange for segment to be acked (eventually)
439 	 *	continue processing rest of data/controls, beginning with URG
440 	 */
441 	case TCPS_SYN_SENT:
442 		if ((tiflags & TH_ACK) &&
443 		    (SEQ_LEQ(ti->ti_ack, tp->iss) ||
444 		     SEQ_GT(ti->ti_ack, tp->snd_max)))
445 			goto dropwithreset;
446 		if (tiflags & TH_RST) {
447 			if (tiflags & TH_ACK)
448 				tp = tcp_drop(tp, ECONNREFUSED);
449 			goto drop;
450 		}
451 		if ((tiflags & TH_SYN) == 0)
452 			goto drop;
453 		if (tiflags & TH_ACK) {
454 			tp->snd_una = ti->ti_ack;
455 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
456 				tp->snd_nxt = tp->snd_una;
457 		}
458 		tp->t_timer[TCPT_REXMT] = 0;
459 		tp->irs = ti->ti_seq;
460 		tcp_rcvseqinit(tp);
461 		tp->t_flags |= TF_ACKNOW;
462 		if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
463 			tcpstat.tcps_connects++;
464 			soisconnected(so);
465 			tp->t_state = TCPS_ESTABLISHED;
466 			tp->t_maxseg = MIN(tp->t_maxseg, tcp_mss(tp));
467 			(void) tcp_reass(tp, (struct tcpiphdr *)0);
468 			/*
469 			 * if we didn't have to retransmit the SYN,
470 			 * use its rtt as our initial srtt & rtt var.
471 			 */
472 			if (tp->t_rtt) {
473 				tp->t_srtt = tp->t_rtt << 3;
474 				tp->t_rttvar = tp->t_rtt << 1;
475 				TCPT_RANGESET(tp->t_rxtcur,
476 				    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
477 				    TCPTV_MIN, TCPTV_REXMTMAX);
478 				tp->t_rtt = 0;
479 			}
480 		} else
481 			tp->t_state = TCPS_SYN_RECEIVED;
482 
483 trimthenstep6:
484 		/*
485 		 * Advance ti->ti_seq to correspond to first data byte.
486 		 * If data, trim to stay within window,
487 		 * dropping FIN if necessary.
488 		 */
489 		ti->ti_seq++;
490 		if (ti->ti_len > tp->rcv_wnd) {
491 			todrop = ti->ti_len - tp->rcv_wnd;
492 #if BSD>=43
493 			m_adj(m, -todrop);
494 #else
495 			/* XXX work around 4.2 m_adj bug */
496 			if (m->m_len) {
497 				m_adj(m, -todrop);
498 			} else {
499 				/* skip tcp/ip header in first mbuf */
500 				m_adj(m->m_next, -todrop);
501 			}
502 #endif
503 			ti->ti_len = tp->rcv_wnd;
504 			tiflags &= ~TH_FIN;
505 			tcpstat.tcps_rcvpackafterwin++;
506 			tcpstat.tcps_rcvbyteafterwin += todrop;
507 		}
508 		tp->snd_wl1 = ti->ti_seq - 1;
509 		tp->rcv_up = ti->ti_seq;
510 		goto step6;
511 	}
512 
513 	/*
514 	 * States other than LISTEN or SYN_SENT.
515 	 * First check that at least some bytes of segment are within
516 	 * receive window.  If segment begins before rcv_nxt,
517 	 * drop leading data (and SYN); if nothing left, just ack.
518 	 */
519 	todrop = tp->rcv_nxt - ti->ti_seq;
520 	if (todrop > 0) {
521 		if (tiflags & TH_SYN) {
522 			tiflags &= ~TH_SYN;
523 			ti->ti_seq++;
524 			if (ti->ti_urp > 1)
525 				ti->ti_urp--;
526 			else
527 				tiflags &= ~TH_URG;
528 			todrop--;
529 		}
530 		if (todrop > ti->ti_len ||
531 		    todrop == ti->ti_len && (tiflags&TH_FIN) == 0) {
532 #ifdef TCP_COMPAT_42
533 			/*
534 			 * Don't toss RST in response to 4.2-style keepalive.
535 			 */
536 			if (ti->ti_seq == tp->rcv_nxt - 1 && tiflags & TH_RST)
537 				goto do_rst;
538 #endif
539 			tcpstat.tcps_rcvduppack++;
540 			tcpstat.tcps_rcvdupbyte += ti->ti_len;
541 			todrop = ti->ti_len;
542 			tiflags &= ~TH_FIN;
543 			tp->t_flags |= TF_ACKNOW;
544 		} else {
545 			tcpstat.tcps_rcvpartduppack++;
546 			tcpstat.tcps_rcvpartdupbyte += todrop;
547 		}
548 		m_adj(m, todrop);
549 		ti->ti_seq += todrop;
550 		ti->ti_len -= todrop;
551 		if (ti->ti_urp > todrop)
552 			ti->ti_urp -= todrop;
553 		else {
554 			tiflags &= ~TH_URG;
555 			ti->ti_urp = 0;
556 		}
557 	}
558 
559 	/*
560 	 * If new data is received on a connection after the
561 	 * user processes are gone, then RST the other end.
562 	 */
563 	if ((so->so_state & SS_NOFDREF) &&
564 	    tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
565 		tp = tcp_close(tp);
566 		tcpstat.tcps_rcvafterclose++;
567 		goto dropwithreset;
568 	}
569 
570 	/*
571 	 * If segment ends after window, drop trailing data
572 	 * (and PUSH and FIN); if nothing left, just ACK.
573 	 */
574 	todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
575 	if (todrop > 0) {
576 		tcpstat.tcps_rcvpackafterwin++;
577 		if (todrop >= ti->ti_len) {
578 			tcpstat.tcps_rcvbyteafterwin += ti->ti_len;
579 			/*
580 			 * If a new connection request is received
581 			 * while in TIME_WAIT, drop the old connection
582 			 * and start over if the sequence numbers
583 			 * are above the previous ones.
584 			 */
585 			if (tiflags & TH_SYN &&
586 			    tp->t_state == TCPS_TIME_WAIT &&
587 			    SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
588 				iss = tp->rcv_nxt + TCP_ISSINCR;
589 				(void) tcp_close(tp);
590 				goto findpcb;
591 			}
592 			/*
593 			 * If window is closed can only take segments at
594 			 * window edge, and have to drop data and PUSH from
595 			 * incoming segments.  Continue processing, but
596 			 * remember to ack.  Otherwise, drop segment
597 			 * and ack.
598 			 */
599 			if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
600 				tp->t_flags |= TF_ACKNOW;
601 				tcpstat.tcps_rcvwinprobe++;
602 			} else
603 				goto dropafterack;
604 		} else
605 			tcpstat.tcps_rcvbyteafterwin += todrop;
606 #if BSD>=43
607 		m_adj(m, -todrop);
608 #else
609 		/* XXX work around m_adj bug */
610 		if (m->m_len) {
611 			m_adj(m, -todrop);
612 		} else {
613 			/* skip tcp/ip header in first mbuf */
614 			m_adj(m->m_next, -todrop);
615 		}
616 #endif
617 		ti->ti_len -= todrop;
618 		tiflags &= ~(TH_PUSH|TH_FIN);
619 	}
620 
621 #ifdef TCP_COMPAT_42
622 do_rst:
623 #endif
624 	/*
625 	 * If the RST bit is set examine the state:
626 	 *    SYN_RECEIVED STATE:
627 	 *	If passive open, return to LISTEN state.
628 	 *	If active open, inform user that connection was refused.
629 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
630 	 *	Inform user that connection was reset, and close tcb.
631 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
632 	 *	Close the tcb.
633 	 */
634 	if (tiflags&TH_RST) switch (tp->t_state) {
635 
636 	case TCPS_SYN_RECEIVED:
637 		tp = tcp_drop(tp, ECONNREFUSED);
638 		goto drop;
639 
640 	case TCPS_ESTABLISHED:
641 	case TCPS_FIN_WAIT_1:
642 	case TCPS_FIN_WAIT_2:
643 	case TCPS_CLOSE_WAIT:
644 		tp = tcp_drop(tp, ECONNRESET);
645 		goto drop;
646 
647 	case TCPS_CLOSING:
648 	case TCPS_LAST_ACK:
649 	case TCPS_TIME_WAIT:
650 		tp = tcp_close(tp);
651 		goto drop;
652 	}
653 
654 	/*
655 	 * If a SYN is in the window, then this is an
656 	 * error and we send an RST and drop the connection.
657 	 */
658 	if (tiflags & TH_SYN) {
659 		tp = tcp_drop(tp, ECONNRESET);
660 		goto dropwithreset;
661 	}
662 
663 	/*
664 	 * If the ACK bit is off we drop the segment and return.
665 	 */
666 	if ((tiflags & TH_ACK) == 0)
667 		goto drop;
668 
669 	/*
670 	 * Ack processing.
671 	 */
672 	switch (tp->t_state) {
673 
674 	/*
675 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
676 	 * ESTABLISHED state and continue processing, otherwise
677 	 * send an RST.
678 	 */
679 	case TCPS_SYN_RECEIVED:
680 		if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
681 		    SEQ_GT(ti->ti_ack, tp->snd_max))
682 			goto dropwithreset;
683 		tcpstat.tcps_connects++;
684 		soisconnected(so);
685 		tp->t_state = TCPS_ESTABLISHED;
686 		tp->t_maxseg = MIN(tp->t_maxseg, tcp_mss(tp));
687 		(void) tcp_reass(tp, (struct tcpiphdr *)0);
688 		tp->snd_wl1 = ti->ti_seq - 1;
689 		/* fall into ... */
690 
691 	/*
692 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
693 	 * ACKs.  If the ack is in the range
694 	 *	tp->snd_una < ti->ti_ack <= tp->snd_max
695 	 * then advance tp->snd_una to ti->ti_ack and drop
696 	 * data from the retransmission queue.  If this ACK reflects
697 	 * more up to date window information we update our window information.
698 	 */
699 	case TCPS_ESTABLISHED:
700 	case TCPS_FIN_WAIT_1:
701 	case TCPS_FIN_WAIT_2:
702 	case TCPS_CLOSE_WAIT:
703 	case TCPS_CLOSING:
704 	case TCPS_LAST_ACK:
705 	case TCPS_TIME_WAIT:
706 
707 		if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
708 			if (ti->ti_len == 0 && ti->ti_win == tp->snd_wnd) {
709 				tcpstat.tcps_rcvdupack++;
710 				/*
711 				 * If we have outstanding data (not a
712 				 * window probe), this is a completely
713 				 * duplicate ack (ie, window info didn't
714 				 * change), the ack is the biggest we've
715 				 * seen and we've seen exactly our rexmt
716 				 * threshhold of them, assume a packet
717 				 * has been dropped and retransmit it.
718 				 * Kludge snd_nxt & the congestion
719 				 * window so we send only this one
720 				 * packet.  If this packet fills the
721 				 * only hole in the receiver's seq.
722 				 * space, the next real ack will fully
723 				 * open our window.  This means we
724 				 * have to do the usual slow-start to
725 				 * not overwhelm an intermediate gateway
726 				 * with a burst of packets.  Leave
727 				 * here with the congestion window set
728 				 * to allow 2 packets on the next real
729 				 * ack and the exp-to-linear thresh
730 				 * set for half the current window
731 				 * size (since we know we're losing at
732 				 * the current window size).
733 				 */
734 				if (tp->t_timer[TCPT_REXMT] == 0 ||
735 				    ti->ti_ack != tp->snd_una)
736 					tp->t_dupacks = 0;
737 				else if (++tp->t_dupacks == tcprexmtthresh) {
738 					tcp_seq onxt = tp->snd_nxt;
739 					u_int win =
740 					    MIN(tp->snd_wnd, tp->snd_cwnd) / 2 /
741 						tp->t_maxseg;
742 
743 					if (win < 2)
744 						win = 2;
745 					tp->snd_ssthresh = win * tp->t_maxseg;
746 
747 					tp->t_timer[TCPT_REXMT] = 0;
748 					tp->t_rtt = 0;
749 					tp->snd_nxt = ti->ti_ack;
750 					tp->snd_cwnd = tp->t_maxseg;
751 					(void) tcp_output(tp);
752 
753 					if (SEQ_GT(onxt, tp->snd_nxt))
754 						tp->snd_nxt = onxt;
755 					goto drop;
756 				}
757 			} else
758 				tp->t_dupacks = 0;
759 			break;
760 		}
761 		tp->t_dupacks = 0;
762 		if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
763 			tcpstat.tcps_rcvacktoomuch++;
764 			goto dropafterack;
765 		}
766 		acked = ti->ti_ack - tp->snd_una;
767 		tcpstat.tcps_rcvackpack++;
768 		tcpstat.tcps_rcvackbyte += acked;
769 
770 		/*
771 		 * If transmit timer is running and timed sequence
772 		 * number was acked, update smoothed round trip time.
773 		 * Since we now have an rtt measurement, cancel the
774 		 * timer backoff (cf., Phil Karn's retransmit alg.).
775 		 * Recompute the initial retransmit timer.
776 		 */
777 		if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq)) {
778 			tcpstat.tcps_rttupdated++;
779 			if (tp->t_srtt != 0) {
780 				register short delta;
781 
782 				/*
783 				 * srtt is stored as fixed point with 3 bits
784 				 * after the binary point (i.e., scaled by 8).
785 				 * The following magic is equivalent
786 				 * to the smoothing algorithm in rfc793
787 				 * with an alpha of .875
788 				 * (srtt = rtt/8 + srtt*7/8 in fixed point).
789 				 * Adjust t_rtt to origin 0.
790 				 */
791 				tp->t_rtt--;
792 				delta = tp->t_rtt - (tp->t_srtt >> 3);
793 				if ((tp->t_srtt += delta) <= 0)
794 					tp->t_srtt = 1;
795 				/*
796 				 * We accumulate a smoothed rtt variance
797 				 * (actually, a smoothed mean difference),
798 				 * then set the retransmit timer to smoothed
799 				 * rtt + 2 times the smoothed variance.
800 				 * rttvar is stored as fixed point
801 				 * with 2 bits after the binary point
802 				 * (scaled by 4).  The following is equivalent
803 				 * to rfc793 smoothing with an alpha of .75
804 				 * (rttvar = rttvar*3/4 + |delta| / 4).
805 				 * This replaces rfc793's wired-in beta.
806 				 */
807 				if (delta < 0)
808 					delta = -delta;
809 				delta -= (tp->t_rttvar >> 2);
810 				if ((tp->t_rttvar += delta) <= 0)
811 					tp->t_rttvar = 1;
812 			} else {
813 				/*
814 				 * No rtt measurement yet - use the
815 				 * unsmoothed rtt.  Set the variance
816 				 * to half the rtt (so our first
817 				 * retransmit happens at 2*rtt)
818 				 */
819 				tp->t_srtt = tp->t_rtt << 3;
820 				tp->t_rttvar = tp->t_rtt << 1;
821 			}
822 			tp->t_rtt = 0;
823 			tp->t_rxtshift = 0;
824 			TCPT_RANGESET(tp->t_rxtcur,
825 			    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
826 			    TCPTV_MIN, TCPTV_REXMTMAX);
827 		}
828 
829 		/*
830 		 * If all outstanding data is acked, stop retransmit
831 		 * timer and remember to restart (more output or persist).
832 		 * If there is more data to be acked, restart retransmit
833 		 * timer, using current (possibly backed-off) value.
834 		 */
835 		if (ti->ti_ack == tp->snd_max) {
836 			tp->t_timer[TCPT_REXMT] = 0;
837 			needoutput = 1;
838 		} else if (tp->t_timer[TCPT_PERSIST] == 0)
839 			tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
840 		/*
841 		 * When new data is acked, open the congestion window.
842 		 * If the window gives us less than ssthresh packets
843 		 * in flight, open exponentially (maxseg per packet).
844 		 * Otherwise open linearly (maxseg per window,
845 		 * or maxseg^2 / cwnd per packet).
846 		 */
847 		{
848 		u_int incr = tp->t_maxseg;
849 
850 		if (tp->snd_cwnd > tp->snd_ssthresh)
851 			incr = MAX(incr * incr / tp->snd_cwnd, 1);
852 
853 		tp->snd_cwnd = MIN(tp->snd_cwnd + incr, 65535); /* XXX */
854 		}
855 		if (acked > so->so_snd.sb_cc) {
856 			tp->snd_wnd -= so->so_snd.sb_cc;
857 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
858 			ourfinisacked = 1;
859 		} else {
860 			sbdrop(&so->so_snd, acked);
861 			tp->snd_wnd -= acked;
862 			ourfinisacked = 0;
863 		}
864 		if ((so->so_snd.sb_flags & SB_WAIT) || so->so_snd.sb_sel)
865 			sowwakeup(so);
866 		tp->snd_una = ti->ti_ack;
867 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
868 			tp->snd_nxt = tp->snd_una;
869 
870 		switch (tp->t_state) {
871 
872 		/*
873 		 * In FIN_WAIT_1 STATE in addition to the processing
874 		 * for the ESTABLISHED state if our FIN is now acknowledged
875 		 * then enter FIN_WAIT_2.
876 		 */
877 		case TCPS_FIN_WAIT_1:
878 			if (ourfinisacked) {
879 				/*
880 				 * If we can't receive any more
881 				 * data, then closing user can proceed.
882 				 * Starting the timer is contrary to the
883 				 * specification, but if we don't get a FIN
884 				 * we'll hang forever.
885 				 */
886 				if (so->so_state & SS_CANTRCVMORE) {
887 					soisdisconnected(so);
888 					tp->t_timer[TCPT_2MSL] = TCPTV_MAXIDLE;
889 				}
890 				tp->t_state = TCPS_FIN_WAIT_2;
891 			}
892 			break;
893 
894 	 	/*
895 		 * In CLOSING STATE in addition to the processing for
896 		 * the ESTABLISHED state if the ACK acknowledges our FIN
897 		 * then enter the TIME-WAIT state, otherwise ignore
898 		 * the segment.
899 		 */
900 		case TCPS_CLOSING:
901 			if (ourfinisacked) {
902 				tp->t_state = TCPS_TIME_WAIT;
903 				tcp_canceltimers(tp);
904 				tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
905 				soisdisconnected(so);
906 			}
907 			break;
908 
909 		/*
910 		 * In LAST_ACK, we may still be waiting for data to drain
911 		 * and/or to be acked, as well as for the ack of our FIN.
912 		 * If our FIN is now acknowledged, delete the TCB,
913 		 * enter the closed state and return.
914 		 */
915 		case TCPS_LAST_ACK:
916 			if (ourfinisacked) {
917 				tp = tcp_close(tp);
918 				goto drop;
919 			}
920 			break;
921 
922 		/*
923 		 * In TIME_WAIT state the only thing that should arrive
924 		 * is a retransmission of the remote FIN.  Acknowledge
925 		 * it and restart the finack timer.
926 		 */
927 		case TCPS_TIME_WAIT:
928 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
929 			goto dropafterack;
930 		}
931 	}
932 
933 step6:
934 	/*
935 	 * Update window information.
936 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
937 	 */
938 	if ((tiflags & TH_ACK) &&
939 	    (SEQ_LT(tp->snd_wl1, ti->ti_seq) || tp->snd_wl1 == ti->ti_seq &&
940 	    (SEQ_LT(tp->snd_wl2, ti->ti_ack) ||
941 	     tp->snd_wl2 == ti->ti_ack && ti->ti_win > tp->snd_wnd))) {
942 		/* keep track of pure window updates */
943 		if (ti->ti_len == 0 &&
944 		    tp->snd_wl2 == ti->ti_ack && ti->ti_win > tp->snd_wnd)
945 			tcpstat.tcps_rcvwinupd++;
946 		tp->snd_wnd = ti->ti_win;
947 		tp->snd_wl1 = ti->ti_seq;
948 		tp->snd_wl2 = ti->ti_ack;
949 		if (tp->snd_wnd > tp->max_sndwnd)
950 			tp->max_sndwnd = tp->snd_wnd;
951 		needoutput = 1;
952 	}
953 
954 	/*
955 	 * Process segments with URG.
956 	 */
957 	if ((tiflags & TH_URG) && ti->ti_urp &&
958 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
959 		/*
960 		 * This is a kludge, but if we receive and accept
961 		 * random urgent pointers, we'll crash in
962 		 * soreceive.  It's hard to imagine someone
963 		 * actually wanting to send this much urgent data.
964 		 */
965 		if (ti->ti_urp + so->so_rcv.sb_cc > SB_MAX) {
966 			ti->ti_urp = 0;			/* XXX */
967 			tiflags &= ~TH_URG;		/* XXX */
968 			goto dodata;			/* XXX */
969 		}
970 		/*
971 		 * If this segment advances the known urgent pointer,
972 		 * then mark the data stream.  This should not happen
973 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
974 		 * a FIN has been received from the remote side.
975 		 * In these states we ignore the URG.
976 		 *
977 		 * According to RFC961 (Assigned Protocols),
978 		 * the urgent pointer points to the last octet
979 		 * of urgent data.  We continue, however,
980 		 * to consider it to indicate the first octet
981 		 * of data past the urgent section
982 		 * as the original spec states.
983 		 */
984 		if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
985 			tp->rcv_up = ti->ti_seq + ti->ti_urp;
986 			so->so_oobmark = so->so_rcv.sb_cc +
987 			    (tp->rcv_up - tp->rcv_nxt) - 1;
988 			if (so->so_oobmark == 0)
989 				so->so_state |= SS_RCVATMARK;
990 			sohasoutofband(so);
991 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
992 		}
993 		/*
994 		 * Remove out of band data so doesn't get presented to user.
995 		 * This can happen independent of advancing the URG pointer,
996 		 * but if two URG's are pending at once, some out-of-band
997 		 * data may creep in... ick.
998 		 */
999 		if (ti->ti_urp <= ti->ti_len
1000 #ifdef SO_OOBINLINE
1001 		     && (so->so_options & SO_OOBINLINE) == 0
1002 #endif
1003 							   )
1004 			tcp_pulloutofband(so, ti);
1005 	} else
1006 		/*
1007 		 * If no out of band data is expected,
1008 		 * pull receive urgent pointer along
1009 		 * with the receive window.
1010 		 */
1011 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1012 			tp->rcv_up = tp->rcv_nxt;
1013 dodata:							/* XXX */
1014 
1015 	/*
1016 	 * Process the segment text, merging it into the TCP sequencing queue,
1017 	 * and arranging for acknowledgment of receipt if necessary.
1018 	 * This process logically involves adjusting tp->rcv_wnd as data
1019 	 * is presented to the user (this happens in tcp_usrreq.c,
1020 	 * case PRU_RCVD).  If a FIN has already been received on this
1021 	 * connection then we just ignore the text.
1022 	 */
1023 	if ((ti->ti_len || (tiflags&TH_FIN)) &&
1024 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1025 		TCP_REASS(tp, ti, m, so, tiflags);
1026 		if (tcpnodelack == 0)
1027 			tp->t_flags |= TF_DELACK;
1028 		else
1029 			tp->t_flags |= TF_ACKNOW;
1030 		/*
1031 		 * Note the amount of data that peer has sent into
1032 		 * our window, in order to estimate the sender's
1033 		 * buffer size.
1034 		 */
1035 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
1036 		if (len > tp->max_rcvd)
1037 			tp->max_rcvd = len;
1038 	} else {
1039 		m_freem(m);
1040 		tiflags &= ~TH_FIN;
1041 	}
1042 
1043 	/*
1044 	 * If FIN is received ACK the FIN and let the user know
1045 	 * that the connection is closing.
1046 	 */
1047 	if (tiflags & TH_FIN) {
1048 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1049 			socantrcvmore(so);
1050 			tp->t_flags |= TF_ACKNOW;
1051 			tp->rcv_nxt++;
1052 		}
1053 		switch (tp->t_state) {
1054 
1055 	 	/*
1056 		 * In SYN_RECEIVED and ESTABLISHED STATES
1057 		 * enter the CLOSE_WAIT state.
1058 		 */
1059 		case TCPS_SYN_RECEIVED:
1060 		case TCPS_ESTABLISHED:
1061 			tp->t_state = TCPS_CLOSE_WAIT;
1062 			break;
1063 
1064 	 	/*
1065 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
1066 		 * enter the CLOSING state.
1067 		 */
1068 		case TCPS_FIN_WAIT_1:
1069 			tp->t_state = TCPS_CLOSING;
1070 			break;
1071 
1072 	 	/*
1073 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
1074 		 * starting the time-wait timer, turning off the other
1075 		 * standard timers.
1076 		 */
1077 		case TCPS_FIN_WAIT_2:
1078 			tp->t_state = TCPS_TIME_WAIT;
1079 			tcp_canceltimers(tp);
1080 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1081 			soisdisconnected(so);
1082 			break;
1083 
1084 		/*
1085 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
1086 		 */
1087 		case TCPS_TIME_WAIT:
1088 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1089 			break;
1090 		}
1091 	}
1092 	if (so->so_options & SO_DEBUG)
1093 		tcp_trace(TA_INPUT, ostate, tp, &tcp_saveti, 0);
1094 
1095 	/*
1096 	 * Return any desired output.
1097 	 */
1098 	if (needoutput || (tp->t_flags & TF_ACKNOW))
1099 		(void) tcp_output(tp);
1100 	return;
1101 
1102 dropafterack:
1103 	/*
1104 	 * Generate an ACK dropping incoming segment if it occupies
1105 	 * sequence space, where the ACK reflects our state.
1106 	 */
1107 	if (tiflags & TH_RST)
1108 		goto drop;
1109 	m_freem(m);
1110 	tp->t_flags |= TF_ACKNOW;
1111 	(void) tcp_output(tp);
1112 	return;
1113 
1114 dropwithreset:
1115 	if (om) {
1116 		(void) m_free(om);
1117 		om = 0;
1118 	}
1119 	/*
1120 	 * Generate a RST, dropping incoming segment.
1121 	 * Make ACK acceptable to originator of segment.
1122 	 * Don't bother to respond if destination was broadcast.
1123 	 */
1124 	if ((tiflags & TH_RST) || in_broadcast(ti->ti_dst))
1125 		goto drop;
1126 	if (tiflags & TH_ACK)
1127 		tcp_respond(tp, ti, (tcp_seq)0, ti->ti_ack, TH_RST);
1128 	else {
1129 		if (tiflags & TH_SYN)
1130 			ti->ti_len++;
1131 		tcp_respond(tp, ti, ti->ti_seq+ti->ti_len, (tcp_seq)0,
1132 		    TH_RST|TH_ACK);
1133 	}
1134 	/* destroy temporarily created socket */
1135 	if (dropsocket)
1136 		(void) soabort(so);
1137 	return;
1138 
1139 drop:
1140 	if (om)
1141 		(void) m_free(om);
1142 	/*
1143 	 * Drop space held by incoming segment and return.
1144 	 */
1145 	if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
1146 		tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0);
1147 	m_freem(m);
1148 	/* destroy temporarily created socket */
1149 	if (dropsocket)
1150 		(void) soabort(so);
1151 	return;
1152 }
1153 
1154 tcp_dooptions(tp, om, ti)
1155 	struct tcpcb *tp;
1156 	struct mbuf *om;
1157 	struct tcpiphdr *ti;
1158 {
1159 	register u_char *cp;
1160 	int opt, optlen, cnt;
1161 
1162 	cp = mtod(om, u_char *);
1163 	cnt = om->m_len;
1164 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1165 		opt = cp[0];
1166 		if (opt == TCPOPT_EOL)
1167 			break;
1168 		if (opt == TCPOPT_NOP)
1169 			optlen = 1;
1170 		else {
1171 			optlen = cp[1];
1172 			if (optlen <= 0)
1173 				break;
1174 		}
1175 		switch (opt) {
1176 
1177 		default:
1178 			break;
1179 
1180 		case TCPOPT_MAXSEG:
1181 			if (optlen != 4)
1182 				continue;
1183 			if (!(ti->ti_flags & TH_SYN))
1184 				continue;
1185 			tp->t_maxseg = *(u_short *)(cp + 2);
1186 			tp->t_maxseg = ntohs((u_short)tp->t_maxseg);
1187 			tp->t_maxseg = MIN(tp->t_maxseg, tcp_mss(tp));
1188 			break;
1189 		}
1190 	}
1191 	(void) m_free(om);
1192 }
1193 
1194 /*
1195  * Pull out of band byte out of a segment so
1196  * it doesn't appear in the user's data queue.
1197  * It is still reflected in the segment length for
1198  * sequencing purposes.
1199  */
1200 tcp_pulloutofband(so, ti)
1201 	struct socket *so;
1202 	struct tcpiphdr *ti;
1203 {
1204 	register struct mbuf *m;
1205 	int cnt = ti->ti_urp - 1;
1206 
1207 	m = dtom(ti);
1208 	while (cnt >= 0) {
1209 		if (m->m_len > cnt) {
1210 			char *cp = mtod(m, caddr_t) + cnt;
1211 			struct tcpcb *tp = sototcpcb(so);
1212 
1213 			tp->t_iobc = *cp;
1214 			tp->t_oobflags |= TCPOOB_HAVEDATA;
1215 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
1216 			m->m_len--;
1217 			return;
1218 		}
1219 		cnt -= m->m_len;
1220 		m = m->m_next;
1221 		if (m == 0)
1222 			break;
1223 	}
1224 	panic("tcp_pulloutofband");
1225 }
1226 
1227 /*
1228  *  Determine a reasonable value for maxseg size.
1229  *  If the route is known, use one that can be handled
1230  *  on the given interface without forcing IP to fragment.
1231  *  If bigger than an mbuf cluster (MCLBYTES), round down to nearest size
1232  *  to utilize large mbufs.
1233  *  If interface pointer is unavailable, or the destination isn't local,
1234  *  use a conservative size (512 or the default IP max size, but no more
1235  *  than the mtu of the interface through which we route),
1236  *  as we can't discover anything about intervening gateways or networks.
1237  *  We also initialize the congestion/slow start window to be a single
1238  *  segment if the destination isn't local; this information should
1239  *  probably all be saved with the routing entry at the transport level.
1240  *
1241  *  This is ugly, and doesn't belong at this level, but has to happen somehow.
1242  */
1243 tcp_mss(tp)
1244 	register struct tcpcb *tp;
1245 {
1246 	struct route *ro;
1247 	struct ifnet *ifp;
1248 	int mss;
1249 	struct inpcb *inp;
1250 
1251 	inp = tp->t_inpcb;
1252 	ro = &inp->inp_route;
1253 	if ((ro->ro_rt == (struct rtentry *)0) ||
1254 	    (ifp = ro->ro_rt->rt_ifp) == (struct ifnet *)0) {
1255 		/* No route yet, so try to acquire one */
1256 		if (inp->inp_faddr.s_addr != INADDR_ANY) {
1257 			ro->ro_dst.sa_family = AF_INET;
1258 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1259 				inp->inp_faddr;
1260 			rtalloc(ro);
1261 		}
1262 		if ((ro->ro_rt == 0) || (ifp = ro->ro_rt->rt_ifp) == 0)
1263 			return (TCP_MSS);
1264 	}
1265 
1266 	mss = ifp->if_mtu - sizeof(struct tcpiphdr);
1267 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1268 	if (mss > MCLBYTES)
1269 		mss &= ~(MCLBYTES-1);
1270 #else
1271 	if (mss > MCLBYTES)
1272 		mss = mss / MCLBYTES * MCLBYTES;
1273 #endif
1274 	if (in_localaddr(inp->inp_faddr))
1275 		return (mss);
1276 
1277 	mss = MIN(mss, TCP_MSS);
1278 	tp->snd_cwnd = mss;
1279 	return (mss);
1280 }
1281 
1282 #if BSD<43
1283 /* XXX this belongs in netinet/in.c */
1284 in_localaddr(in)
1285 	struct in_addr in;
1286 {
1287 	register u_long i = ntohl(in.s_addr);
1288 	register struct ifnet *ifp;
1289 	register struct sockaddr_in *sin;
1290 	register u_long mask;
1291 
1292 	if (IN_CLASSA(i))
1293 		mask = IN_CLASSA_NET;
1294 	else if (IN_CLASSB(i))
1295 		mask = IN_CLASSB_NET;
1296 	else if (IN_CLASSC(i))
1297 		mask = IN_CLASSC_NET;
1298 	else
1299 		return (0);
1300 
1301 	i &= mask;
1302 	for (ifp = ifnet; ifp; ifp = ifp->if_next) {
1303 		if (ifp->if_addr.sa_family != AF_INET)
1304 			continue;
1305 		sin = (struct sockaddr_in *)&ifp->if_addr;
1306 		if ((sin->sin_addr.s_addr & mask) == i)
1307 			return (1);
1308 	}
1309 	return (0);
1310 }
1311 #endif
1312