xref: /csrg-svn/sys/netccitt/if_x25subr.c (revision 57030)
1 /*
2  * Copyright (c) 1990 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  *
7  *	@(#)if_x25subr.c	7.19 (Berkeley) 12/08/92
8  */
9 
10 #include <sys/param.h>
11 #include <sys/systm.h>
12 #include <sys/malloc.h>
13 #include <sys/mbuf.h>
14 #include <sys/protosw.h>
15 #include <sys/socket.h>
16 #include <sys/socketvar.h>
17 #include <sys/ioctl.h>
18 #include <sys/errno.h>
19 #include <sys/syslog.h>
20 
21 #include <machine/mtpr.h>
22 
23 #include <net/if.h>
24 #include <net/if_types.h>
25 #include <net/netisr.h>
26 #include <net/route.h>
27 
28 #include <netccitt/x25.h>
29 #include <netccitt/x25err.h>
30 #include <netccitt/pk.h>
31 #include <netccitt/pk_var.h>
32 
33 #ifdef INET
34 #include <netinet/in.h>
35 #include <netinet/in_var.h>
36 #endif
37 
38 #ifdef NS
39 #include <netns/ns.h>
40 #include <netns/ns_if.h>
41 #endif
42 
43 #ifdef ISO
44 int tp_incoming();
45 #include <netiso/argo_debug.h>
46 #include <netiso/iso.h>
47 #include <netiso/iso_var.h>
48 #endif
49 
50 extern	struct ifnet loif;
51 struct llinfo_x25 llinfo_x25 = {&llinfo_x25, &llinfo_x25};
52 #ifndef _offsetof
53 #define _offsetof(t, m) ((int)((caddr_t)&((t *)0)->m))
54 #endif
55 struct sockaddr *x25_dgram_sockmask;
56 struct sockaddr_x25 x25_dgmask = {
57  _offsetof(struct sockaddr_x25, x25_udata[1]),			/* _len */
58  0,								/* _family */
59  0,								/* _net */
60  { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, /* _addr */
61  {0},								/* opts */
62  -1,								/* _udlen */
63  {-1}								/* _udata */
64 };
65 
66 struct if_x25stats {
67 	int	ifx_wrongplen;
68 	int	ifx_nophdr;
69 } if_x25stats;
70 int x25_autoconnect = 0;
71 
72 #define senderr(x) {error = x; goto bad;}
73 /*
74  * Ancillary routines
75  */
76 static struct llinfo_x25 *
77 x25_lxalloc(rt)
78 register struct rtentry *rt;
79 {
80 	register struct llinfo_x25 *lx;
81 	register struct sockaddr *dst = rt_key(rt);
82 	register struct ifaddr *ifa;
83 
84 	MALLOC(lx, struct llinfo_x25 *, sizeof (*lx), M_PCB, M_NOWAIT);
85 	if (lx == 0)
86 		return lx;
87 	Bzero(lx, sizeof(*lx));
88 	lx->lx_rt = rt;
89 	lx->lx_family = dst->sa_family;
90 	rt->rt_refcnt++;
91 	if (rt->rt_llinfo)
92 		insque(lx, (struct llinfo_x25 *)rt->rt_llinfo);
93 	else {
94 		rt->rt_llinfo = (caddr_t)lx;
95 		insque(lx, &llinfo_x25);
96 	}
97 	for (ifa = rt->rt_ifp->if_addrlist; ifa; ifa = ifa->ifa_next) {
98 		if (ifa->ifa_addr->sa_family == AF_CCITT)
99 			lx->lx_ia = (struct x25_ifaddr *)ifa;
100 	}
101 	return lx;
102 }
103 x25_lxfree(lx)
104 register struct llinfo_x25 *lx;
105 {
106 	register struct rtentry *rt = lx->lx_rt;
107 	register struct pklcd *lcp = lx->lx_lcd;
108 
109 	if (lcp) {
110 		lcp->lcd_upper = 0;
111 		pk_disconnect(lcp);
112 	}
113 	if ((rt->rt_llinfo == (caddr_t)lx) && (lx->lx_next->lx_rt == rt))
114 		rt->rt_llinfo = (caddr_t)lx->lx_next;
115 	else
116 		rt->rt_llinfo = 0;
117 	RTFREE(rt);
118 	remque(lx);
119 	FREE(lx, M_PCB);
120 }
121 /*
122  * Process a x25 packet as datagram;
123  */
124 x25_ifinput(lcp, m)
125 struct pklcd *lcp;
126 register struct mbuf *m;
127 {
128 	struct llinfo_x25 *lx = (struct llinfo_x25 *)lcp->lcd_upnext;
129 	register struct ifnet *ifp;
130 	struct ifqueue *inq;
131 	extern struct timeval time;
132 	int s, len, isr;
133 
134 	if (m == 0 || lcp->lcd_state != DATA_TRANSFER) {
135 		x25_connect_callback(lcp, 0);
136 		return;
137 	}
138 	pk_flowcontrol(lcp, 0, 1); /* Generate RR */
139 	ifp = m->m_pkthdr.rcvif;
140 	ifp->if_lastchange = time;
141 	switch (m->m_type) {
142 	case MT_OOBDATA:
143 		if (m)
144 			m_freem(m);
145 	default:
146 		return;
147 
148 	case MT_DATA:
149 		/* FALLTHROUGH */;
150 	}
151 	switch (lx->lx_family) {
152 #ifdef INET
153 	case AF_INET:
154 		isr = NETISR_IP;
155 		inq = &ipintrq;
156 		break;
157 
158 #endif
159 #ifdef NS
160 	case AF_NS:
161 		isr = NETISR_NS;
162 		inq = &nsintrq;
163 		break;
164 
165 #endif
166 #ifdef	ISO
167 	case AF_ISO:
168 		isr = NETISR_ISO;
169 		inq = &clnlintrq;
170 		break;
171 #endif
172 	default:
173 		m_freem(m);
174 		ifp->if_noproto++;
175 		return;
176 	}
177 	s = splimp();
178 	schednetisr(isr);
179 	if (IF_QFULL(inq)) {
180 		IF_DROP(inq);
181 		m_freem(m);
182 	} else {
183 		IF_ENQUEUE(inq, m);
184 		ifp->if_ibytes += m->m_pkthdr.len;
185 	}
186 	splx(s);
187 }
188 x25_connect_callback(lcp, m)
189 register struct pklcd *lcp;
190 register struct mbuf *m;
191 {
192 	register struct llinfo_x25 *lx = (struct llinfo_x25 *)lcp->lcd_upnext;
193 	if (m == 0)
194 		goto refused;
195 	if (m->m_type != MT_CONTROL) {
196 		printf("x25_connect_callback: should panic\n");
197 		goto refused;
198 	}
199 	switch (pk_decode(mtod(m, struct x25_packet *))) {
200 	case CALL_ACCEPTED:
201 		lcp->lcd_upper = x25_ifinput;
202 		if (lcp->lcd_sb.sb_mb)
203 			lcp->lcd_send(lcp); /* XXX start queued packets */
204 		return;
205 	default:
206 	refused:
207 		lcp->lcd_upper = 0;
208 		lx->lx_lcd = 0;
209 		pk_disconnect(lcp);
210 		return;
211 	}
212 }
213 #define SA(p) ((struct sockaddr *)(p))
214 #define RT(p) ((struct rtentry *)(p))
215 
216 x25_dgram_incoming(lcp, m0)
217 register struct pklcd *lcp;
218 struct mbuf *m0;
219 {
220 	register struct rtentry *rt, *nrt;
221 	register struct mbuf *m = m0->m_next; /* m0 has calling sockaddr_x25 */
222 	void x25_rtrequest();
223 
224 	rt = rtalloc1(SA(&lcp->lcd_faddr), 0);
225 	if (rt == 0) {
226 refuse: 	lcp->lcd_upper = 0;
227 		pk_close(lcp);
228 		return;
229 	}
230 	rt->rt_refcnt--;
231 	if ((nrt = RT(rt->rt_llinfo)) == 0 || rt_mask(rt) != x25_dgram_sockmask)
232 		goto refuse;
233 	if ((nrt->rt_flags & RTF_UP) == 0) {
234 		rt->rt_llinfo = (caddr_t)rtalloc1(rt->rt_gateway, 0);
235 		rtfree(nrt);
236 		if ((nrt = RT(rt->rt_llinfo)) == 0)
237 			goto refuse;
238 		nrt->rt_refcnt--;
239 	}
240 	if (nrt->rt_ifa == 0 || nrt->rt_ifa->ifa_rtrequest != x25_rtrequest)
241 		goto refuse;
242 	lcp->lcd_send(lcp); /* confirm call */
243 	x25_rtattach(lcp, nrt);
244 	m_freem(m);
245 }
246 
247 /*
248  * X.25 output routine.
249  */
250 x25_ifoutput(ifp, m0, dst, rt)
251 struct	ifnet *ifp;
252 struct	mbuf *m0;
253 struct	sockaddr *dst;
254 register struct	rtentry *rt;
255 {
256 	register struct	mbuf *m = m0;
257 	register struct	llinfo_x25 *lx;
258 	struct pklcd *lcp;
259 	int             s, error = 0;
260 
261 int plen;
262 for (plen = 0; m; m = m->m_next)
263 	plen += m->m_len;
264 m = m0;
265 
266 	if ((ifp->if_flags & IFF_UP) == 0)
267 		senderr(ENETDOWN);
268 	while (rt == 0 || (rt->rt_flags & RTF_GATEWAY)) {
269 		if (rt) {
270 			if (rt->rt_llinfo) {
271 				rt = (struct rtentry *)rt->rt_llinfo;
272 				continue;
273 			}
274 			dst = rt->rt_gateway;
275 		}
276 		if ((rt = rtalloc1(dst, 1)) == 0)
277 			senderr(EHOSTUNREACH);
278 		rt->rt_refcnt--;
279 	}
280 	/*
281 	 * Sanity checks.
282 	 */
283 	if ((rt->rt_ifp != ifp) ||
284 	    (rt->rt_flags & (RTF_CLONING | RTF_GATEWAY)) ||
285 	    ((lx = (struct llinfo_x25 *)rt->rt_llinfo) == 0)) {
286 		senderr(ENETUNREACH);
287 	}
288 if ((m->m_flags & M_PKTHDR) == 0) {
289 	if_x25stats.ifx_nophdr++;
290 	m = m_gethdr(M_NOWAIT, MT_HEADER);
291 	if (m == 0)
292 		senderr(ENOBUFS);
293 	m->m_pkthdr.len = plen;
294 	m->m_next = m0;
295 }
296 if (plen != m->m_pkthdr.len) {
297 	if_x25stats.ifx_wrongplen++;
298 	m->m_pkthdr.len = plen;
299 }
300 next_circuit:
301 	lcp = lx->lx_lcd;
302 	if (lcp == 0) {
303 		lx->lx_lcd = lcp = pk_attach((struct socket *)0);
304 		if (lcp == 0)
305 			senderr(ENOBUFS);
306 		lcp->lcd_upper = x25_connect_callback;
307 		lcp->lcd_upnext = (caddr_t)lx;
308 		lcp->lcd_packetsize = lx->lx_ia->ia_xc.xc_psize;
309 		lcp->lcd_flags = X25_MBS_HOLD;
310 	}
311 	switch (lcp->lcd_state) {
312 	case READY:
313 		if (dst->sa_family == AF_INET &&
314 		    ifp->if_type == IFT_X25DDN &&
315 		    rt->rt_gateway->sa_family != AF_CCITT)
316 			x25_ddnip_to_ccitt(dst, rt);
317 		if (rt->rt_gateway->sa_family != AF_CCITT) {
318 			if ((rt->rt_flags & RTF_XRESOLVE) == 0)
319 				senderr(EHOSTUNREACH);
320 		} else if (x25_autoconnect)
321 			error = pk_connect(lcp,
322 					(struct sockaddr_x25 *)rt->rt_gateway);
323 		if (error)
324 			senderr(error);
325 		/* FALLTHROUGH */
326 	case SENT_CALL:
327 	case DATA_TRANSFER:
328 		if (sbspace(&lcp->lcd_sb) < 0) {
329 			lx = lx->lx_next;
330 			if (lx->lx_rt != rt)
331 				senderr(ENOSPC);
332 			goto next_circuit;
333 		}
334 		if (lx->lx_ia)
335 			lcp->lcd_dg_timer =
336 				       lx->lx_ia->ia_xc.xc_dg_idletimo;
337 		pk_send(lcp, m);
338 		break;
339 	default:
340 		/*
341 		 * We count on the timer routine to close idle
342 		 * connections, if there are not enough circuits to go
343 		 * around.
344 		 *
345 		 * So throw away data for now.
346 		 * After we get it all working, we'll rewrite to handle
347 		 * actively closing connections (other than by timers),
348 		 * when circuits get tight.
349 		 *
350 		 * In the DDN case, the imp itself closes connections
351 		 * under heavy load.
352 		 */
353 		error = ENOBUFS;
354 	bad:
355 		if (m)
356 			m_freem(m);
357 	}
358 	return (error);
359 }
360 
361 /*
362  * Simpleminded timer routine.
363  */
364 x25_iftimeout(ifp)
365 struct ifnet *ifp;
366 {
367 	register struct pkcb *pkcb = 0;
368 	register struct pklcd **lcpp, *lcp;
369 	int s = splimp();
370 
371 	FOR_ALL_PKCBS(pkcb)
372 	    if (pkcb->pk_ia->ia_ifp == ifp)
373 		for (lcpp = pkcb->pk_chan + pkcb->pk_maxlcn;
374 		     --lcpp > pkcb->pk_chan;)
375 			if ((lcp = *lcpp) &&
376 			    lcp->lcd_state == DATA_TRANSFER &&
377 			    (lcp->lcd_flags & X25_DG_CIRCUIT) &&
378 			    (lcp->lcd_dg_timer && --lcp->lcd_dg_timer == 0)) {
379 				lcp->lcd_upper(lcp, 0);
380 			}
381 	splx(s);
382 }
383 /*
384  * This routine gets called when validating additions of new routes
385  * or deletions of old ones.
386  */
387 x25_rtrequest(cmd, rt, dst)
388 register struct rtentry *rt;
389 struct sockaddr *dst;
390 {
391 	register struct llinfo_x25 *lx = (struct llinfo_x25 *)rt->rt_llinfo;
392 	register struct sockaddr_x25 *sa =(struct sockaddr_x25 *)rt->rt_gateway;
393 	register struct pklcd *lcp;
394 
395 	/* would put this pk_init, except routing table doesn't
396 	   exist yet. */
397 	if (x25_dgram_sockmask == 0) {
398 		struct radix_node *rn_addmask();
399 		x25_dgram_sockmask =
400 			SA(rn_addmask((caddr_t)&x25_dgmask, 0, 4)->rn_key);
401 	}
402 	if (rt->rt_flags & RTF_GATEWAY) {
403 		if (rt->rt_llinfo)
404 			RTFREE((struct rtentry *)rt->rt_llinfo);
405 		rt->rt_llinfo = (cmd == RTM_ADD) ?
406 			(caddr_t)rtalloc1(rt->rt_gateway, 1) : 0;
407 		return;
408 	}
409 	if ((rt->rt_flags & RTF_HOST) == 0)
410 		return;
411 	if (cmd == RTM_DELETE) {
412 		while (rt->rt_llinfo)
413 			x25_lxfree((struct llinfo *)rt->rt_llinfo);
414 		x25_rtinvert(RTM_DELETE, rt->rt_gateway, rt);
415 		return;
416 	}
417 	if (lx == 0 && (lx = x25_lxalloc(rt)) == 0)
418 		return;
419 	if ((lcp = lx->lx_lcd) && lcp->lcd_state != READY) {
420 		/*
421 		 * This can only happen on a RTM_CHANGE operation
422 		 * though cmd will be RTM_ADD.
423 		 */
424 		if (lcp->lcd_ceaddr &&
425 		    Bcmp(rt->rt_gateway, lcp->lcd_ceaddr,
426 					 lcp->lcd_ceaddr->x25_len) != 0) {
427 			x25_rtinvert(RTM_DELETE, lcp->lcd_ceaddr, rt);
428 			lcp->lcd_upper = 0;
429 			pk_disconnect(lcp);
430 		}
431 		lcp = 0;
432 	}
433 	x25_rtinvert(RTM_ADD, rt->rt_gateway, rt);
434 }
435 
436 int x25_dont_rtinvert = 0;
437 
438 x25_rtinvert(cmd, sa, rt)
439 register struct sockaddr *sa;
440 register struct rtentry *rt;
441 {
442 	struct rtentry *rt2 = 0;
443 	/*
444 	 * rt_gateway contains PID indicating which proto
445 	 * family on the other end, so will be different
446 	 * from general host route via X.25.
447 	 */
448 	if (rt->rt_ifp->if_type == IFT_X25DDN || x25_dont_rtinvert)
449 		return;
450 	if (sa->sa_family != AF_CCITT)
451 		return;
452 	if (cmd != RTM_DELETE) {
453 		rtrequest(RTM_ADD, sa, rt_key(rt), x25_dgram_sockmask,
454 				RTF_PROTO2, &rt2);
455 		if (rt2) {
456 			rt2->rt_llinfo = (caddr_t) rt;
457 			rt->rt_refcnt++;
458 		}
459 		return;
460 	}
461 	rt2 = rt;
462 	if ((rt = rtalloc1(sa, 0)) == 0 ||
463 	    (rt->rt_flags & RTF_PROTO2) == 0 ||
464 	    rt->rt_llinfo != (caddr_t)rt2) {
465 		printf("x25_rtchange: inverse route screwup\n");
466 		return;
467 	} else
468 		rt2->rt_refcnt--;
469 	rtrequest(RTM_DELETE, sa, rt_key(rt2), x25_dgram_sockmask,
470 				0, (struct rtentry **) 0);
471 }
472 
473 static struct sockaddr_x25 blank_x25 = {sizeof blank_x25, AF_CCITT};
474 /*
475  * IP to X25 address routine copyright ACC, used by permission.
476  */
477 union imp_addr {
478 	struct in_addr  ip;
479 	struct imp {
480 		u_char		s_net;
481 		u_char		s_host;
482 		u_char		s_lh;
483 		u_char		s_impno;
484 	}		    imp;
485 };
486 
487 /*
488  * The following is totally bogus and here only to preserve
489  * the IP to X.25 translation.
490  */
491 x25_ddnip_to_ccitt(src, rt)
492 struct sockaddr_in *src;
493 register struct rtentry *rt;
494 {
495 	register struct sockaddr_x25 *dst = (struct sockaddr_x25 *)rt->rt_gateway;
496 	union imp_addr imp_addr;
497 	int             imp_no, imp_port, temp;
498 	char *x25addr = dst->x25_addr;
499 
500 
501 	imp_addr.ip = src->sin_addr;
502 	*dst = blank_x25;
503 	if ((imp_addr.imp.s_net & 0x80) == 0x00) {	/* class A */
504 	    imp_no = imp_addr.imp.s_impno;
505 	    imp_port = imp_addr.imp.s_host;
506 	} else if ((imp_addr.imp.s_net & 0xc0) == 0x80) {	/* class B */
507 	    imp_no = imp_addr.imp.s_impno;
508 	    imp_port = imp_addr.imp.s_lh;
509 	} else {		/* class C */
510 	    imp_no = imp_addr.imp.s_impno / 32;
511 	    imp_port = imp_addr.imp.s_impno % 32;
512 	}
513 
514 	x25addr[0] = 12; /* length */
515 	/* DNIC is cleared by struct copy above */
516 
517 	if (imp_port < 64) {	/* Physical:  0000 0 IIIHH00 [SS] *//* s_impno
518 				 *  -> III, s_host -> HH */
519 	    x25addr[5] = 0;	/* set flag bit */
520 	    x25addr[6] = imp_no / 100;
521 	    x25addr[7] = (imp_no % 100) / 10;
522 	    x25addr[8] = imp_no % 10;
523 	    x25addr[9] = imp_port / 10;
524 	    x25addr[10] = imp_port % 10;
525 	} else {		/* Logical:   0000 1 RRRRR00 [SS]	 *//* s
526 				 * _host * 256 + s_impno -> RRRRR */
527 	    temp = (imp_port << 8) + imp_no;
528 	    x25addr[5] = 1;
529 	    x25addr[6] = temp / 10000;
530 	    x25addr[7] = (temp % 10000) / 1000;
531 	    x25addr[8] = (temp % 1000) / 100;
532 	    x25addr[9] = (temp % 100) / 10;
533 	    x25addr[10] = temp % 10;
534 	}
535 }
536 
537 /*
538  * This routine is a sketch and is not to be believed!!!!!
539  *
540  * This is a utility routine to be called by x25 devices when a
541  * call request is honored with the intent of starting datagram forwarding.
542  */
543 x25_dg_rtinit(dst, ia, af)
544 struct sockaddr_x25 *dst;
545 register struct x25_ifaddr *ia;
546 {
547 	struct sockaddr *sa = 0;
548 	struct rtentry *rt;
549 	struct in_addr my_addr;
550 	static struct sockaddr_in sin = {sizeof(sin), AF_INET};
551 
552 	if (ia->ia_ifp->if_type == IFT_X25DDN && af == AF_INET) {
553 	/*
554 	 * Inverse X25 to IP mapping copyright and courtesy ACC.
555 	 */
556 		int             imp_no, imp_port, temp;
557 		union imp_addr imp_addr;
558 	    {
559 		/*
560 		 * First determine our IP addr for network
561 		 */
562 		register struct in_ifaddr *ina;
563 		extern struct in_ifaddr *in_ifaddr;
564 
565 		for (ina = in_ifaddr; ina; ina = ina->ia_next)
566 			if (ina->ia_ifp == ia->ia_ifp) {
567 				my_addr = ina->ia_addr.sin_addr;
568 				break;
569 			}
570 	    }
571 	    {
572 
573 		register char *x25addr = dst->x25_addr;
574 
575 		switch (x25addr[5] & 0x0f) {
576 		  case 0:	/* Physical:  0000 0 IIIHH00 [SS]	 */
577 		    imp_no =
578 			((int) (x25addr[6] & 0x0f) * 100) +
579 			((int) (x25addr[7] & 0x0f) * 10) +
580 			((int) (x25addr[8] & 0x0f));
581 
582 
583 		    imp_port =
584 			((int) (x25addr[9] & 0x0f) * 10) +
585 			((int) (x25addr[10] & 0x0f));
586 		    break;
587 		  case 1:	/* Logical:   0000 1 RRRRR00 [SS]	 */
588 		    temp = ((int) (x25addr[6] & 0x0f) * 10000)
589 			+ ((int) (x25addr[7] & 0x0f) * 1000)
590 			+ ((int) (x25addr[8] & 0x0f) * 100)
591 			+ ((int) (x25addr[9] & 0x0f) * 10)
592 			+ ((int) (x25addr[10] & 0x0f));
593 
594 		    imp_port = temp >> 8;
595 		    imp_no = temp & 0xff;
596 		    break;
597 		  default:
598 		    return (0L);
599 		}
600 		imp_addr.ip = my_addr;
601 		if ((imp_addr.imp.s_net & 0x80) == 0x00) {
602 		/* class A */
603 		    imp_addr.imp.s_host = imp_port;
604 		    imp_addr.imp.s_impno = imp_no;
605 		    imp_addr.imp.s_lh = 0;
606 		} else if ((imp_addr.imp.s_net & 0xc0) == 0x80) {
607 		/* class B */
608 		    imp_addr.imp.s_lh = imp_port;
609 		    imp_addr.imp.s_impno = imp_no;
610 		} else {
611 		/* class C */
612 		    imp_addr.imp.s_impno = (imp_no << 5) + imp_port;
613 		}
614 	    }
615 		sin.sin_addr = imp_addr.ip;
616 		sa = (struct sockaddr *)&sin;
617 	} else {
618 		/*
619 		 * This uses the X25 routing table to do inverse
620 		 * lookup of x25 address to sockaddr.
621 		 */
622 		if (rt = rtalloc1(dst, 0)) {
623 			sa = rt->rt_gateway;
624 			rt->rt_refcnt--;
625 		}
626 	}
627 	/*
628 	 * Call to rtalloc1 will create rtentry for reverse path
629 	 * to callee by virtue of cloning magic and will allocate
630 	 * space for local control block.
631 	 */
632 	if (sa && (rt = rtalloc1(sa, 1)))
633 		rt->rt_refcnt--;
634 }
635 int x25_startproto = 1;
636 
637 pk_init()
638 {
639 	/*
640 	 * warning, sizeof (struct sockaddr_x25) > 32,
641 	 * but contains no data of interest beyond 32
642 	 */
643 	if (x25_startproto) {
644 		pk_protolisten(0xcc, 1, x25_dgram_incoming);
645 		pk_protolisten(0x81, 1, x25_dgram_incoming);
646 	}
647 }
648 
649 struct x25_dgproto {
650 	u_char spi;
651 	u_char spilen;
652 	int (*f)();
653 } x25_dgprototab[] = {
654 #if defined(ISO) && defined(TPCONS)
655 { 0x0, 0, tp_incoming},
656 #endif
657 { 0xcc, 1, x25_dgram_incoming},
658 { 0xcd, 1, x25_dgram_incoming},
659 { 0x81, 1, x25_dgram_incoming},
660 };
661 
662 pk_user_protolisten(info)
663 register u_char *info;
664 {
665 	register struct x25_dgproto *dp = x25_dgprototab
666 		    + ((sizeof x25_dgprototab) / (sizeof *dp));
667 	register struct pklcd *lcp;
668 
669 	while (dp > x25_dgprototab)
670 		if ((--dp)->spi == info[0])
671 			goto gotspi;
672 	return ESRCH;
673 
674 gotspi:	if (info[1])
675 		return pk_protolisten(dp->spi, dp->spilen, dp->f);
676 	for (lcp = pk_listenhead; lcp; lcp = lcp->lcd_listen)
677 		if (lcp->lcd_laddr.x25_udlen == dp->spilen &&
678 		    Bcmp(&dp->spi, lcp->lcd_laddr.x25_udata, dp->spilen) == 0) {
679 			pk_disconnect(lcp);
680 			return 0;
681 		}
682 	return ESRCH;
683 }
684 
685 /*
686  * This routine transfers an X.25 circuit to or from a routing entry.
687  * If the supplied circuit is * in DATA_TRANSFER state, it is added to the
688  * routing entry.  If freshly allocated, it glues back the vc from
689  * the rtentry to the socket.
690  */
691 pk_rtattach(so, m0)
692 register struct socket *so;
693 struct mbuf *m0;
694 {
695 	register struct pklcd *lcp = (struct pklcd *)so->so_pcb;
696 	register struct mbuf *m = m0;
697 	struct sockaddr *dst = mtod(m, struct sockaddr *);
698 	register struct rtentry *rt = rtalloc1(dst, 0);
699 	register struct llinfo_x25 *lx;
700 	caddr_t cp;
701 #define ROUNDUP(a) \
702 	((a) > 0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long))
703 #define transfer_sockbuf(s, f, l) \
704 	while (m = (s)->sb_mb)\
705 		{(s)->sb_mb = m->m_act; m->m_act = 0; sbfree((s), m); f(l, m);}
706 
707 	if (rt)
708 		rt->rt_refcnt--;
709 	cp = (dst->sa_len < m->m_len) ? ROUNDUP(dst->sa_len) + (caddr_t)dst : 0;
710 	while (rt &&
711 	       ((cp == 0 && rt_mask(rt) != 0) ||
712 		(cp != 0 && (rt_mask(rt) == 0 ||
713 			     Bcmp(cp, rt_mask(rt), rt_mask(rt)->sa_len)) != 0)))
714 			rt = (struct rtentry *)rt->rt_nodes->rn_dupedkey;
715 	if (rt == 0 || (rt->rt_flags & RTF_GATEWAY) ||
716 	    (lx = (struct llinfo_x25 *)rt->rt_llinfo) == 0)
717 		return ESRCH;
718 	if (lcp == 0)
719 		return ENOTCONN;
720 	switch (lcp->lcd_state) {
721 	default:
722 		return ENOTCONN;
723 
724 	case READY:
725 		/* Detach VC from rtentry */
726 		if (lx->lx_lcd == 0)
727 			return ENOTCONN;
728 		lcp->lcd_so = 0;
729 		pk_close(lcp);
730 		lcp = lx->lx_lcd;
731 		if (lx->lx_next->lx_rt == rt)
732 			x25_lxfree(lx);
733 		lcp->lcd_so = so;
734 		lcp->lcd_upper = 0;
735 		lcp->lcd_upnext = 0;
736 		transfer_sockbuf(&lcp->lcd_sb, sbappendrecord, &so->so_snd);
737 		soisconnected(so);
738 		return 0;
739 
740 	case DATA_TRANSFER:
741 		/* Add VC to rtentry */
742 		lcp->lcd_so = 0;
743 		lcp->lcd_sb = so->so_snd; /* structure copy */
744 		bzero((caddr_t)&so->so_snd, sizeof(so->so_snd)); /* XXXXXX */
745 		so->so_pcb = 0;
746 		x25_rtattach(lcp, rt);
747 		transfer_sockbuf(&so->so_rcv, x25_ifinput, lcp);
748 		soisdisconnected(so);
749 	}
750 	return 0;
751 }
752 x25_rtattach(lcp0, rt)
753 register struct pklcd *lcp0;
754 struct rtentry *rt;
755 {
756 	register struct llinfo_x25 *lx = (struct llinfo_x25 *)rt->rt_llinfo;
757 	register struct pklcd *lcp;
758 	register struct mbuf *m;
759 	if (lcp = lx->lx_lcd) { /* adding an additional VC */
760 		if (lcp->lcd_state == READY) {
761 			transfer_sockbuf(&lcp->lcd_sb, pk_output, lcp0);
762 			lcp->lcd_upper = 0;
763 			pk_close(lcp);
764 		} else {
765 			lx = x25_lxalloc(rt);
766 			if (lx == 0)
767 				return ENOBUFS;
768 		}
769 	}
770 	lx->lx_lcd = lcp = lcp0;
771 	lcp->lcd_upper = x25_ifinput;
772 	lcp->lcd_upnext = (caddr_t)lx;
773 }
774