xref: /csrg-svn/sys/kern/uipc_socket2.c (revision 26363)
1 /*
2  * Copyright (c) 1982 Regents of the University of California.
3  * All rights reserved.  The Berkeley software License Agreement
4  * specifies the terms and conditions for redistribution.
5  *
6  *	@(#)uipc_socket2.c	6.15 (Berkeley) 02/23/86
7  */
8 
9 #include "param.h"
10 #include "systm.h"
11 #include "dir.h"
12 #include "user.h"
13 #include "proc.h"
14 #include "file.h"
15 #include "inode.h"
16 #include "buf.h"
17 #include "mbuf.h"
18 #include "protosw.h"
19 #include "socket.h"
20 #include "socketvar.h"
21 
22 /*
23  * Primitive routines for operating on sockets and socket buffers
24  */
25 
26 /*
27  * Procedures to manipulate state flags of socket
28  * and do appropriate wakeups.  Normal sequence from the
29  * active (originating) side is that soisconnecting() is
30  * called during processing of connect() call,
31  * resulting in an eventual call to soisconnected() if/when the
32  * connection is established.  When the connection is torn down
33  * soisdisconnecting() is called during processing of disconnect() call,
34  * and soisdisconnected() is called when the connection to the peer
35  * is totally severed.  The semantics of these routines are such that
36  * connectionless protocols can call soisconnected() and soisdisconnected()
37  * only, bypassing the in-progress calls when setting up a ``connection''
38  * takes no time.
39  *
40  * From the passive side, a socket is created with
41  * two queues of sockets: so_q0 for connections in progress
42  * and so_q for connections already made and awaiting user acceptance.
43  * As a protocol is preparing incoming connections, it creates a socket
44  * structure queued on so_q0 by calling sonewconn().  When the connection
45  * is established, soisconnected() is called, and transfers the
46  * socket structure to so_q, making it available to accept().
47  *
48  * If a socket is closed with sockets on either
49  * so_q0 or so_q, these sockets are dropped.
50  *
51  * If higher level protocols are implemented in
52  * the kernel, the wakeups done here will sometimes
53  * cause software-interrupt process scheduling.
54  */
55 
56 soisconnecting(so)
57 	register struct socket *so;
58 {
59 
60 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
61 	so->so_state |= SS_ISCONNECTING;
62 	wakeup((caddr_t)&so->so_timeo);
63 }
64 
65 soisconnected(so)
66 	register struct socket *so;
67 {
68 	register struct socket *head = so->so_head;
69 
70 	if (head) {
71 		if (soqremque(so, 0) == 0)
72 			panic("soisconnected");
73 		soqinsque(head, so, 1);
74 		sorwakeup(head);
75 		wakeup((caddr_t)&head->so_timeo);
76 	}
77 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING);
78 	so->so_state |= SS_ISCONNECTED;
79 	wakeup((caddr_t)&so->so_timeo);
80 	sorwakeup(so);
81 	sowwakeup(so);
82 }
83 
84 soisdisconnecting(so)
85 	register struct socket *so;
86 {
87 
88 	so->so_state &= ~SS_ISCONNECTING;
89 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
90 	wakeup((caddr_t)&so->so_timeo);
91 	sowwakeup(so);
92 	sorwakeup(so);
93 }
94 
95 soisdisconnected(so)
96 	register struct socket *so;
97 {
98 
99 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
100 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
101 	wakeup((caddr_t)&so->so_timeo);
102 	sowwakeup(so);
103 	sorwakeup(so);
104 }
105 
106 /*
107  * When an attempt at a new connection is noted on a socket
108  * which accepts connections, sonewconn is called.  If the
109  * connection is possible (subject to space constraints, etc.)
110  * then we allocate a new structure, propoerly linked into the
111  * data structure of the original socket, and return this.
112  */
113 struct socket *
114 sonewconn(head)
115 	register struct socket *head;
116 {
117 	register struct socket *so;
118 	register struct mbuf *m;
119 
120 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
121 		goto bad;
122 	m = m_getclr(M_DONTWAIT, MT_SOCKET);
123 	if (m == NULL)
124 		goto bad;
125 	so = mtod(m, struct socket *);
126 	so->so_type = head->so_type;
127 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
128 	so->so_linger = head->so_linger;
129 	so->so_state = head->so_state | SS_NOFDREF;
130 	so->so_proto = head->so_proto;
131 	so->so_timeo = head->so_timeo;
132 	so->so_pgrp = head->so_pgrp;
133 	soqinsque(head, so, 0);
134 	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
135 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0)) {
136 		(void) soqremque(so, 0);
137 		(void) m_free(m);
138 		goto bad;
139 	}
140 	return (so);
141 bad:
142 	return ((struct socket *)0);
143 }
144 
145 soqinsque(head, so, q)
146 	register struct socket *head, *so;
147 	int q;
148 {
149 
150 	so->so_head = head;
151 	if (q == 0) {
152 		head->so_q0len++;
153 		so->so_q0 = head->so_q0;
154 		head->so_q0 = so;
155 	} else {
156 		head->so_qlen++;
157 		so->so_q = head->so_q;
158 		head->so_q = so;
159 	}
160 }
161 
162 soqremque(so, q)
163 	register struct socket *so;
164 	int q;
165 {
166 	register struct socket *head, *prev, *next;
167 
168 	head = so->so_head;
169 	prev = head;
170 	for (;;) {
171 		next = q ? prev->so_q : prev->so_q0;
172 		if (next == so)
173 			break;
174 		if (next == head)
175 			return (0);
176 		prev = next;
177 	}
178 	if (q == 0) {
179 		prev->so_q0 = next->so_q0;
180 		head->so_q0len--;
181 	} else {
182 		prev->so_q = next->so_q;
183 		head->so_qlen--;
184 	}
185 	next->so_q0 = next->so_q = 0;
186 	next->so_head = 0;
187 	return (1);
188 }
189 
190 /*
191  * Socantsendmore indicates that no more data will be sent on the
192  * socket; it would normally be applied to a socket when the user
193  * informs the system that no more data is to be sent, by the protocol
194  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
195  * will be received, and will normally be applied to the socket by a
196  * protocol when it detects that the peer will send no more data.
197  * Data queued for reading in the socket may yet be read.
198  */
199 
200 socantsendmore(so)
201 	struct socket *so;
202 {
203 
204 	so->so_state |= SS_CANTSENDMORE;
205 	sowwakeup(so);
206 }
207 
208 socantrcvmore(so)
209 	struct socket *so;
210 {
211 
212 	so->so_state |= SS_CANTRCVMORE;
213 	sorwakeup(so);
214 }
215 
216 /*
217  * Socket select/wakeup routines.
218  */
219 
220 /*
221  * Queue a process for a select on a socket buffer.
222  */
223 sbselqueue(sb)
224 	struct sockbuf *sb;
225 {
226 	register struct proc *p;
227 
228 	if ((p = sb->sb_sel) && p->p_wchan == (caddr_t)&selwait)
229 		sb->sb_flags |= SB_COLL;
230 	else
231 		sb->sb_sel = u.u_procp;
232 }
233 
234 /*
235  * Wait for data to arrive at/drain from a socket buffer.
236  */
237 sbwait(sb)
238 	struct sockbuf *sb;
239 {
240 
241 	sb->sb_flags |= SB_WAIT;
242 	sleep((caddr_t)&sb->sb_cc, PZERO+1);
243 }
244 
245 /*
246  * Wakeup processes waiting on a socket buffer.
247  */
248 sbwakeup(sb)
249 	register struct sockbuf *sb;
250 {
251 
252 	if (sb->sb_sel) {
253 		selwakeup(sb->sb_sel, sb->sb_flags & SB_COLL);
254 		sb->sb_sel = 0;
255 		sb->sb_flags &= ~SB_COLL;
256 	}
257 	if (sb->sb_flags & SB_WAIT) {
258 		sb->sb_flags &= ~SB_WAIT;
259 		wakeup((caddr_t)&sb->sb_cc);
260 	}
261 }
262 
263 /*
264  * Wakeup socket readers and writers.
265  * Do asynchronous notification via SIGIO
266  * if the socket has the SS_ASYNC flag set.
267  */
268 sowakeup(so, sb)
269 	register struct socket *so;
270 	struct sockbuf *sb;
271 {
272 	register struct proc *p;
273 
274 	sbwakeup(sb);
275 	if (so->so_state & SS_ASYNC) {
276 		if (so->so_pgrp < 0)
277 			gsignal(-so->so_pgrp, SIGIO);
278 		else if (so->so_pgrp > 0 && (p = pfind(so->so_pgrp)) != 0)
279 			psignal(p, SIGIO);
280 	}
281 }
282 
283 /*
284  * Socket buffer (struct sockbuf) utility routines.
285  *
286  * Each socket contains two socket buffers: one for sending data and
287  * one for receiving data.  Each buffer contains a queue of mbufs,
288  * information about the number of mbufs and amount of data in the
289  * queue, and other fields allowing select() statements and notification
290  * on data availability to be implemented.
291  *
292  * Data stored in a socket buffer is maintained as a list of records.
293  * Each record is a list of mbufs chained together with the m_next
294  * field.  Records are chained together with the m_act field. The upper
295  * level routine soreceive() expects the following conventions to be
296  * observed when placing information in the receive buffer:
297  *
298  * 1. If the protocol requires each message be preceded by the sender's
299  *    name, then a record containing that name must be present before
300  *    any associated data (mbuf's must be of type MT_SONAME).
301  * 2. If the protocol supports the exchange of ``access rights'' (really
302  *    just additional data associated with the message), and there are
303  *    ``rights'' to be received, then a record containing this data
304  *    should be present (mbuf's must be of type MT_RIGHTS).
305  * 3. If a name or rights record exists, then it must be followed by
306  *    a data record, perhaps of zero length.
307  *
308  * Before using a new socket structure it is first necessary to reserve
309  * buffer space to the socket, by calling sbreserve().  This commits
310  * some of the available buffer space in the system buffer pool for the
311  * socket.  The space should be released by calling sbrelease() when the
312  * socket is destroyed.
313  */
314 
315 soreserve(so, sndcc, rcvcc)
316 	register struct socket *so;
317 	int sndcc, rcvcc;
318 {
319 
320 	if (sbreserve(&so->so_snd, sndcc) == 0)
321 		goto bad;
322 	if (sbreserve(&so->so_rcv, rcvcc) == 0)
323 		goto bad2;
324 	return (0);
325 bad2:
326 	sbrelease(&so->so_snd);
327 bad:
328 	return (ENOBUFS);
329 }
330 
331 /*
332  * Allot mbufs to a sockbuf.
333  */
334 sbreserve(sb, cc)
335 	struct sockbuf *sb;
336 {
337 
338 	if ((unsigned) cc > SB_MAX)
339 		return (0);
340 	/* someday maybe this routine will fail... */
341 	sb->sb_hiwat = cc;
342 	/* * 2 implies names can be no more than 1 mbuf each */
343 	sb->sb_mbmax = MIN(cc * 2, SB_MAX);
344 	return (1);
345 }
346 
347 /*
348  * Free mbufs held by a socket, and reserved mbuf space.
349  */
350 sbrelease(sb)
351 	struct sockbuf *sb;
352 {
353 
354 	sbflush(sb);
355 	sb->sb_hiwat = sb->sb_mbmax = 0;
356 }
357 
358 /*
359  * Routines to add and remove
360  * data from an mbuf queue.
361  *
362  * The routines sbappend() or sbappendrecord() are normally called to
363  * append new mbufs to a socket buffer, after checking that adequate
364  * space is available, comparing the function sbspace() with the amount
365  * of data to be added.  sbappendrecord() differs from sbappend() in
366  * that data supplied is treated as the beginning of a new record.
367  * To place a sender's address, optional access rights, and data in a
368  * socket receive buffer, sbappendaddr() should be used.  To place
369  * access rights and data in a socket receive buffer, sbappendrights()
370  * should be used.  In either case, the new data begins a new record.
371  * Note that unlike sbappend() and sbappendrecord(), these routines check
372  * for the caller that there will be enough space to store the data.
373  * Each fails if there is not enough space, or if it cannot find mbufs
374  * to store additional information in.
375  *
376  * Reliable protocols may use the socket send buffer to hold data
377  * awaiting acknowledgement.  Data is normally copied from a socket
378  * send buffer in a protocol with m_copy for output to a peer,
379  * and then removing the data from the socket buffer with sbdrop()
380  * or sbdroprecord() when the data is acknowledged by the peer.
381  */
382 
383 /*
384  * Append mbuf chain m to the last record in the
385  * socket buffer sb.  The additional space associated
386  * the mbuf chain is recorded in sb.  Empty mbufs are
387  * discarded and mbufs are compacted where possible.
388  */
389 sbappend(sb, m)
390 	struct sockbuf *sb;
391 	struct mbuf *m;
392 {
393 	register struct mbuf *n;
394 
395 	if (m == 0)
396 		return;
397 	if (n = sb->sb_mb) {
398 		while (n->m_act)
399 			n = n->m_act;
400 		while (n->m_next)
401 			n = n->m_next;
402 	}
403 	sbcompress(sb, m, n);
404 }
405 
406 /*
407  * As above, except the mbuf chain
408  * begins a new record.
409  */
410 sbappendrecord(sb, m0)
411 	register struct sockbuf *sb;
412 	register struct mbuf *m0;
413 {
414 	register struct mbuf *m;
415 
416 	if (m0 == 0)
417 		return;
418 	if (m = sb->sb_mb)
419 		while (m->m_act)
420 			m = m->m_act;
421 	/*
422 	 * Put the first mbuf on the queue.
423 	 * Note this permits zero length records.
424 	 */
425 	sballoc(sb, m0);
426 	if (m)
427 		m->m_act = m0;
428 	else
429 		sb->sb_mb = m0;
430 	m = m0->m_next;
431 	m0->m_next = 0;
432 	sbcompress(sb, m, m0);
433 }
434 
435 /*
436  * Append address and data, and optionally, rights
437  * to the receive queue of a socket.  Return 0 if
438  * no space in sockbuf or insufficient mbufs.
439  */
440 sbappendaddr(sb, asa, m0, rights0)
441 	register struct sockbuf *sb;
442 	struct sockaddr *asa;
443 	struct mbuf *rights0, *m0;
444 {
445 	register struct mbuf *m, *n;
446 	int space = sizeof (*asa);
447 
448 	for (m = m0; m; m = m->m_next)
449 		space += m->m_len;
450 	if (rights0)
451 		space += rights0->m_len;
452 	if (space > sbspace(sb))
453 		return (0);
454 	MGET(m, M_DONTWAIT, MT_SONAME);
455 	if (m == 0)
456 		return (0);
457 	*mtod(m, struct sockaddr *) = *asa;
458 	m->m_len = sizeof (*asa);
459 	if (rights0 && rights0->m_len) {
460 		m->m_next = m_copy(rights0, 0, rights0->m_len);
461 		if (m->m_next == 0) {
462 			m_freem(m);
463 			return (0);
464 		}
465 		sballoc(sb, m->m_next);
466 	}
467 	sballoc(sb, m);
468 	if (n = sb->sb_mb) {
469 		while (n->m_act)
470 			n = n->m_act;
471 		n->m_act = m;
472 	} else
473 		sb->sb_mb = m;
474 	if (m->m_next)
475 		m = m->m_next;
476 	if (m0)
477 		sbcompress(sb, m0, m);
478 	return (1);
479 }
480 
481 sbappendrights(sb, m0, rights)
482 	struct sockbuf *sb;
483 	struct mbuf *rights, *m0;
484 {
485 	register struct mbuf *m, *n;
486 	int space = 0;
487 
488 	if (rights == 0)
489 		panic("sbappendrights");
490 	for (m = m0; m; m = m->m_next)
491 		space += m->m_len;
492 	space += rights->m_len;
493 	if (space > sbspace(sb))
494 		return (0);
495 	m = m_copy(rights, 0, rights->m_len);
496 	if (m == 0)
497 		return (0);
498 	sballoc(sb, m);
499 	if (n = sb->sb_mb) {
500 		while (n->m_act)
501 			n = n->m_act;
502 		n->m_act = m;
503 	} else
504 		sb->sb_mb = m;
505 	if (m0)
506 		sbcompress(sb, m0, m);
507 	return (1);
508 }
509 
510 /*
511  * Compress mbuf chain m into the socket
512  * buffer sb following mbuf n.  If n
513  * is null, the buffer is presumed empty.
514  */
515 sbcompress(sb, m, n)
516 	register struct sockbuf *sb;
517 	register struct mbuf *m, *n;
518 {
519 
520 	while (m) {
521 		if (m->m_len == 0) {
522 			m = m_free(m);
523 			continue;
524 		}
525 		if (n && n->m_off <= MMAXOFF && m->m_off <= MMAXOFF &&
526 		    (n->m_off + n->m_len + m->m_len) <= MMAXOFF &&
527 		    n->m_type == m->m_type) {
528 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
529 			    (unsigned)m->m_len);
530 			n->m_len += m->m_len;
531 			sb->sb_cc += m->m_len;
532 			m = m_free(m);
533 			continue;
534 		}
535 		sballoc(sb, m);
536 		if (n)
537 			n->m_next = m;
538 		else
539 			sb->sb_mb = m;
540 		n = m;
541 		m = m->m_next;
542 		n->m_next = 0;
543 	}
544 }
545 
546 /*
547  * Free all mbufs in a sockbuf.
548  * Check that all resources are reclaimed.
549  */
550 sbflush(sb)
551 	register struct sockbuf *sb;
552 {
553 
554 	if (sb->sb_flags & SB_LOCK)
555 		panic("sbflush");
556 	while (sb->sb_mbcnt)
557 		sbdrop(sb, (int)sb->sb_cc);
558 	if (sb->sb_cc || sb->sb_mbcnt || sb->sb_mb)
559 		panic("sbflush 2");
560 }
561 
562 /*
563  * Drop data from (the front of) a sockbuf.
564  */
565 sbdrop(sb, len)
566 	register struct sockbuf *sb;
567 	register int len;
568 {
569 	register struct mbuf *m, *mn;
570 	struct mbuf *next;
571 
572 	next = (m = sb->sb_mb) ? m->m_act : 0;
573 	while (len > 0) {
574 		if (m == 0) {
575 			if (next == 0)
576 				panic("sbdrop");
577 			m = next;
578 			next = m->m_act;
579 			continue;
580 		}
581 		if (m->m_len > len) {
582 			m->m_len -= len;
583 			m->m_off += len;
584 			sb->sb_cc -= len;
585 			break;
586 		}
587 		len -= m->m_len;
588 		sbfree(sb, m);
589 		MFREE(m, mn);
590 		m = mn;
591 	}
592 	while (m && m->m_len == 0) {
593 		sbfree(sb, m);
594 		MFREE(m, mn);
595 		m = mn;
596 	}
597 	if (m) {
598 		sb->sb_mb = m;
599 		m->m_act = next;
600 	} else
601 		sb->sb_mb = next;
602 }
603 
604 /*
605  * Drop a record off the front of a sockbuf
606  * and move the next record to the front.
607  */
608 sbdroprecord(sb)
609 	register struct sockbuf *sb;
610 {
611 	register struct mbuf *m, *mn;
612 
613 	m = sb->sb_mb;
614 	if (m) {
615 		sb->sb_mb = m->m_act;
616 		do {
617 			sbfree(sb, m);
618 			MFREE(m, mn);
619 		} while (m = mn);
620 	}
621 }
622