1 /* uipc_socket2.c 6.1 83/07/29 */ 2 3 #include "../h/param.h" 4 #include "../h/systm.h" 5 #include "../h/dir.h" 6 #include "../h/user.h" 7 #include "../h/proc.h" 8 #include "../h/file.h" 9 #include "../h/inode.h" 10 #include "../h/buf.h" 11 #include "../h/mbuf.h" 12 #include "../h/protosw.h" 13 #include "../h/socket.h" 14 #include "../h/socketvar.h" 15 16 /* 17 * Primitive routines for operating on sockets and socket buffers 18 */ 19 20 /* 21 * Procedures to manipulate state flags of socket 22 * and do appropriate wakeups. Normal sequence from the 23 * active (originating) side is that soisconnecting() is 24 * called during processing of connect() call, 25 * resulting in an eventual call to soisconnected() if/when the 26 * connection is established. When the connection is torn down 27 * soisdisconnecting() is called during processing of disconnect() call, 28 * and soisdisconnected() is called when the connection to the peer 29 * is totally severed. The semantics of these routines are such that 30 * connectionless protocols can call soisconnected() and soisdisconnected() 31 * only, bypassing the in-progress calls when setting up a ``connection'' 32 * takes no time. 33 * 34 * From the passive side, a socket is created with 35 * two queues of sockets: so_q0 for connections in progress 36 * and so_q for connections already made and awaiting user acceptance. 37 * As a protocol is preparing incoming connections, it creates a socket 38 * structure queued on so_q0 by calling sonewconn(). When the connection 39 * is established, soisconnected() is called, and transfers the 40 * socket structure to so_q, making it available to accept(). 41 * 42 * If a socket is closed with sockets on either 43 * so_q0 or so_q, these sockets are dropped. 44 * 45 * If higher level protocols are implemented in 46 * the kernel, the wakeups done here will sometimes 47 * cause software-interrupt process scheduling. 48 */ 49 50 soisconnecting(so) 51 register struct socket *so; 52 { 53 54 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 55 so->so_state |= SS_ISCONNECTING; 56 wakeup((caddr_t)&so->so_timeo); 57 } 58 59 soisconnected(so) 60 register struct socket *so; 61 { 62 register struct socket *head = so->so_head; 63 64 if (head) { 65 if (soqremque(so, 0) == 0) 66 panic("soisconnected"); 67 soqinsque(head, so, 1); 68 sorwakeup(head); 69 wakeup((caddr_t)&head->so_timeo); 70 } 71 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING); 72 so->so_state |= SS_ISCONNECTED; 73 wakeup((caddr_t)&so->so_timeo); 74 sorwakeup(so); 75 sowwakeup(so); 76 } 77 78 soisdisconnecting(so) 79 register struct socket *so; 80 { 81 82 so->so_state &= ~SS_ISCONNECTING; 83 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE); 84 wakeup((caddr_t)&so->so_timeo); 85 sowwakeup(so); 86 sorwakeup(so); 87 } 88 89 soisdisconnected(so) 90 register struct socket *so; 91 { 92 93 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 94 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE); 95 wakeup((caddr_t)&so->so_timeo); 96 sowwakeup(so); 97 sorwakeup(so); 98 } 99 100 /* 101 * When an attempt at a new connection is noted on a socket 102 * which accepts connections, sonewconn is called. If the 103 * connection is possible (subject to space constraints, etc.) 104 * then we allocate a new structure, propoerly linked into the 105 * data structure of the original socket, and return this. 106 */ 107 struct socket * 108 sonewconn(head) 109 register struct socket *head; 110 { 111 register struct socket *so; 112 register struct mbuf *m; 113 114 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) 115 goto bad; 116 m = m_getclr(M_DONTWAIT, MT_SOCKET); 117 if (m == NULL) 118 goto bad; 119 so = mtod(m, struct socket *); 120 so->so_type = head->so_type; 121 so->so_options = head->so_options &~ SO_ACCEPTCONN; 122 so->so_linger = head->so_linger; 123 so->so_state = head->so_state | SS_NOFDREF; 124 so->so_proto = head->so_proto; 125 so->so_timeo = head->so_timeo; 126 so->so_pgrp = head->so_pgrp; 127 soqinsque(head, so, 0); 128 if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH, 129 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0)) { 130 (void) soqremque(so, 0); 131 (void) m_free(m); 132 goto bad; 133 } 134 return (so); 135 bad: 136 return ((struct socket *)0); 137 } 138 139 soqinsque(head, so, q) 140 register struct socket *head, *so; 141 int q; 142 { 143 144 so->so_head = head; 145 if (q == 0) { 146 head->so_q0len++; 147 so->so_q0 = head->so_q0; 148 head->so_q0 = so; 149 } else { 150 head->so_qlen++; 151 so->so_q = head->so_q; 152 head->so_q = so; 153 } 154 } 155 156 soqremque(so, q) 157 register struct socket *so; 158 int q; 159 { 160 register struct socket *head, *prev, *next; 161 162 head = so->so_head; 163 prev = head; 164 for (;;) { 165 next = q ? prev->so_q : prev->so_q0; 166 if (next == so) 167 break; 168 if (next == head) 169 return (0); 170 prev = next; 171 } 172 if (q == 0) { 173 prev->so_q0 = next->so_q0; 174 head->so_q0len--; 175 } else { 176 prev->so_q = next->so_q; 177 head->so_qlen--; 178 } 179 next->so_q0 = next->so_q = 0; 180 next->so_head = 0; 181 return (1); 182 } 183 184 /* 185 * Socantsendmore indicates that no more data will be sent on the 186 * socket; it would normally be applied to a socket when the user 187 * informs the system that no more data is to be sent, by the protocol 188 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data 189 * will be received, and will normally be applied to the socket by a 190 * protocol when it detects that the peer will send no more data. 191 * Data queued for reading in the socket may yet be read. 192 */ 193 194 socantsendmore(so) 195 struct socket *so; 196 { 197 198 so->so_state |= SS_CANTSENDMORE; 199 sowwakeup(so); 200 } 201 202 socantrcvmore(so) 203 struct socket *so; 204 { 205 206 so->so_state |= SS_CANTRCVMORE; 207 sorwakeup(so); 208 } 209 210 /* 211 * Socket select/wakeup routines. 212 */ 213 214 /* 215 * Queue a process for a select on a socket buffer. 216 */ 217 sbselqueue(sb) 218 struct sockbuf *sb; 219 { 220 register struct proc *p; 221 222 if ((p = sb->sb_sel) && p->p_wchan == (caddr_t)&selwait) 223 sb->sb_flags |= SB_COLL; 224 else 225 sb->sb_sel = u.u_procp; 226 } 227 228 /* 229 * Wait for data to arrive at/drain from a socket buffer. 230 */ 231 sbwait(sb) 232 struct sockbuf *sb; 233 { 234 235 sb->sb_flags |= SB_WAIT; 236 sleep((caddr_t)&sb->sb_cc, PZERO+1); 237 } 238 239 /* 240 * Wakeup processes waiting on a socket buffer. 241 */ 242 sbwakeup(sb) 243 register struct sockbuf *sb; 244 { 245 246 if (sb->sb_sel) { 247 selwakeup(sb->sb_sel, sb->sb_flags & SB_COLL); 248 sb->sb_sel = 0; 249 sb->sb_flags &= ~SB_COLL; 250 } 251 if (sb->sb_flags & SB_WAIT) { 252 sb->sb_flags &= ~SB_WAIT; 253 wakeup((caddr_t)&sb->sb_cc); 254 } 255 } 256 257 /* 258 * Socket buffer (struct sockbuf) utility routines. 259 * 260 * Each socket contains two socket buffers: one for sending data and 261 * one for receiving data. Each buffer contains a queue of mbufs, 262 * information about the number of mbufs and amount of data in the 263 * queue, and other fields allowing select() statements and notification 264 * on data availability to be implemented. 265 * 266 * Before using a new socket structure it is first necessary to reserve 267 * buffer space to the socket, by calling sbreserve. This commits 268 * some of the available buffer space in the system buffer pool for the 269 * socket. The space should be released by calling sbrelease when the 270 * socket is destroyed. 271 * 272 * The routine sbappend() is normally called to append new mbufs 273 * to a socket buffer, after checking that adequate space is available 274 * comparing the function spspace() with the amount of data to be added. 275 * Data is normally removed from a socket buffer in a protocol by 276 * first calling m_copy on the socket buffer mbuf chain and sending this 277 * to a peer, and then removing the data from the socket buffer with 278 * sbdrop when the data is acknowledged by the peer (or immediately 279 * in the case of unreliable protocols.) 280 * 281 * Protocols which do not require connections place both source address 282 * and data information in socket buffer queues. The source addresses 283 * are stored in single mbufs after each data item, and are easily found 284 * as the data items are all marked with end of record markers. The 285 * sbappendaddr() routine stores a datum and associated address in 286 * a socket buffer. Note that, unlike sbappend(), this routine checks 287 * for the caller that there will be enough space to store the data. 288 * It fails if there is not enough space, or if it cannot find 289 * a mbuf to store the address in. 290 * 291 * The higher-level routines sosend and soreceive (in socket.c) 292 * also add data to, and remove data from socket buffers repectively. 293 */ 294 295 soreserve(so, sndcc, rcvcc) 296 register struct socket *so; 297 int sndcc, rcvcc; 298 { 299 300 if (sbreserve(&so->so_snd, sndcc) == 0) 301 goto bad; 302 if (sbreserve(&so->so_rcv, rcvcc) == 0) 303 goto bad2; 304 return (0); 305 bad2: 306 sbrelease(&so->so_snd); 307 bad: 308 return (ENOBUFS); 309 } 310 311 /* 312 * Allot mbufs to a sockbuf. 313 */ 314 sbreserve(sb, cc) 315 struct sockbuf *sb; 316 { 317 318 /* someday maybe this routine will fail... */ 319 sb->sb_hiwat = cc; 320 /* * 2 implies names can be no more than 1 mbuf each */ 321 sb->sb_mbmax = cc<<1; 322 return (1); 323 } 324 325 /* 326 * Free mbufs held by a socket, and reserved mbuf space. 327 */ 328 sbrelease(sb) 329 struct sockbuf *sb; 330 { 331 332 sbflush(sb); 333 sb->sb_hiwat = sb->sb_mbmax = 0; 334 } 335 336 /* 337 * Routines to add (at the end) and remove (from the beginning) 338 * data from a mbuf queue. 339 */ 340 341 /* 342 * Append mbuf queue m to sockbuf sb. 343 */ 344 sbappend(sb, m) 345 register struct mbuf *m; 346 register struct sockbuf *sb; 347 { 348 register struct mbuf *n; 349 350 n = sb->sb_mb; 351 if (n) 352 while (n->m_next) 353 n = n->m_next; 354 while (m) { 355 if (m->m_len == 0 && (int)m->m_act == 0) { 356 m = m_free(m); 357 continue; 358 } 359 if (n && n->m_off <= MMAXOFF && m->m_off <= MMAXOFF && 360 (int)n->m_act == 0 && (int)m->m_act == 0 && 361 (n->m_off + n->m_len + m->m_len) <= MMAXOFF) { 362 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len, 363 (unsigned)m->m_len); 364 n->m_len += m->m_len; 365 sb->sb_cc += m->m_len; 366 m = m_free(m); 367 continue; 368 } 369 sballoc(sb, m); 370 if (n == 0) 371 sb->sb_mb = m; 372 else 373 n->m_next = m; 374 n = m; 375 m = m->m_next; 376 n->m_next = 0; 377 } 378 } 379 380 /* 381 * Append data and address. 382 * Return 0 if no space in sockbuf or if 383 * can't get mbuf to stuff address in. 384 */ 385 sbappendaddr(sb, asa, m0, rights0) 386 struct sockbuf *sb; 387 struct sockaddr *asa; 388 struct mbuf *m0, *rights0; 389 { 390 register struct mbuf *m; 391 register int len = sizeof (struct sockaddr); 392 register struct mbuf *rights; 393 394 if (rights0) 395 len += rights0->m_len; 396 m = m0; 397 if (m == 0) 398 panic("sbappendaddr"); 399 for (;;) { 400 len += m->m_len; 401 if (m->m_next == 0) { 402 m->m_act = (struct mbuf *)1; 403 break; 404 } 405 m = m->m_next; 406 } 407 if (len > sbspace(sb)) 408 return (0); 409 m = m_get(M_DONTWAIT, MT_SONAME); 410 if (m == NULL) 411 return (0); 412 m->m_len = sizeof (struct sockaddr); 413 m->m_act = (struct mbuf *)1; 414 *mtod(m, struct sockaddr *) = *asa; 415 if (rights0 == 0 || rights0->m_len == 0) { 416 rights = m_get(M_DONTWAIT, MT_SONAME); 417 if (rights) 418 rights->m_len = 0; 419 } else 420 rights = m_copy(rights0, 0, rights0->m_len); 421 if (rights == 0) { 422 m_freem(m); 423 return (0); 424 } 425 rights->m_act = (struct mbuf *)1; 426 m->m_next = rights; 427 rights->m_next = m0; 428 sbappend(sb, m); 429 return (1); 430 } 431 432 /* 433 * Free all mbufs on a sockbuf mbuf chain. 434 * Check that resource allocations return to 0. 435 */ 436 sbflush(sb) 437 register struct sockbuf *sb; 438 { 439 440 if (sb->sb_flags & SB_LOCK) 441 panic("sbflush"); 442 if (sb->sb_cc) 443 sbdrop(sb, sb->sb_cc); 444 if (sb->sb_cc || sb->sb_mbcnt || sb->sb_mb) 445 panic("sbflush 2"); 446 } 447 448 /* 449 * Drop data from (the front of) a sockbuf chain. 450 */ 451 sbdrop(sb, len) 452 register struct sockbuf *sb; 453 register int len; 454 { 455 register struct mbuf *m = sb->sb_mb, *mn; 456 457 while (len > 0) { 458 if (m == 0) 459 panic("sbdrop"); 460 if (m->m_len > len) { 461 m->m_len -= len; 462 m->m_off += len; 463 sb->sb_cc -= len; 464 break; 465 } 466 len -= m->m_len; 467 sbfree(sb, m); 468 MFREE(m, mn); 469 m = mn; 470 } 471 sb->sb_mb = m; 472 } 473