1 /* 2 * Copyright (c) 1982, 1986, 1989 Regents of the University of California. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms are permitted 6 * provided that the above copyright notice and this paragraph are 7 * duplicated in all such forms and that any documentation, 8 * advertising materials, and other materials related to such 9 * distribution and use acknowledge that the software was developed 10 * by the University of California, Berkeley. The name of the 11 * University may not be used to endorse or promote products derived 12 * from this software without specific prior written permission. 13 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR 14 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED 15 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. 16 * 17 * @(#)kern_time.c 7.11 (Berkeley) 06/21/90 18 */ 19 20 #include "param.h" 21 #include "syscontext.h" 22 #include "kernel.h" 23 #include "proc.h" 24 25 #include "machine/reg.h" 26 #include "machine/cpu.h" 27 28 /* 29 * Time of day and interval timer support. 30 * 31 * These routines provide the kernel entry points to get and set 32 * the time-of-day and per-process interval timers. Subroutines 33 * here provide support for adding and subtracting timeval structures 34 * and decrementing interval timers, optionally reloading the interval 35 * timers when they expire. 36 */ 37 38 /* ARGSUSED */ 39 gettimeofday(p, uap, retval) 40 struct proc *p; 41 register struct args { 42 struct timeval *tp; 43 struct timezone *tzp; 44 } *uap; 45 int *retval; 46 { 47 struct timeval atv; 48 int error = 0; 49 50 if (uap->tp) { 51 microtime(&atv); 52 if (error = copyout((caddr_t)&atv, (caddr_t)uap->tp, 53 sizeof (atv))) 54 RETURN (error); 55 } 56 if (uap->tzp) 57 error = copyout((caddr_t)&tz, (caddr_t)uap->tzp, 58 sizeof (tz)); 59 RETURN (error); 60 } 61 62 settimeofday(p, uap, retval) 63 struct proc *p; 64 struct args { 65 struct timeval *tv; 66 struct timezone *tzp; 67 } *uap; 68 int *retval; 69 { 70 struct timeval atv; 71 struct timezone atz; 72 int error, s; 73 74 if (error = suser(u.u_cred, &u.u_acflag)) 75 RETURN (error); 76 if (uap->tv) { 77 if (error = copyin((caddr_t)uap->tv, (caddr_t)&atv, 78 sizeof (struct timeval))) 79 RETURN (error); 80 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */ 81 boottime.tv_sec += atv.tv_sec - time.tv_sec; 82 s = splhigh(); time = atv; splx(s); 83 resettodr(); 84 } 85 if (uap->tzp && (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, 86 sizeof (atz))) == 0) 87 tz = atz; 88 RETURN (error); 89 } 90 91 extern int tickadj; /* "standard" clock skew, us./tick */ 92 int tickdelta; /* current clock skew, us. per tick */ 93 long timedelta; /* unapplied time correction, us. */ 94 long bigadj = 1000000; /* use 10x skew above bigadj us. */ 95 96 /* ARGSUSED */ 97 adjtime(p, uap, retval) 98 struct proc *p; 99 register struct args { 100 struct timeval *delta; 101 struct timeval *olddelta; 102 } *uap; 103 int *retval; 104 { 105 struct timeval atv, oatv; 106 register long ndelta; 107 int s, error; 108 109 if (error = suser(u.u_cred, &u.u_acflag)) 110 RETURN (error); 111 if (error = 112 copyin((caddr_t)uap->delta, (caddr_t)&atv, sizeof (struct timeval))) 113 RETURN (error); 114 ndelta = atv.tv_sec * 1000000 + atv.tv_usec; 115 if (timedelta == 0) 116 if (ndelta > bigadj) 117 tickdelta = 10 * tickadj; 118 else 119 tickdelta = tickadj; 120 if (ndelta % tickdelta) 121 ndelta = ndelta / tickadj * tickadj; 122 123 s = splclock(); 124 if (uap->olddelta) { 125 oatv.tv_sec = timedelta / 1000000; 126 oatv.tv_usec = timedelta % 1000000; 127 } 128 timedelta = ndelta; 129 splx(s); 130 131 if (uap->olddelta) 132 (void) copyout((caddr_t)&oatv, (caddr_t)uap->olddelta, 133 sizeof (struct timeval)); 134 RETURN (0); 135 } 136 137 /* 138 * Get value of an interval timer. The process virtual and 139 * profiling virtual time timers are kept in the u. area, since 140 * they can be swapped out. These are kept internally in the 141 * way they are specified externally: in time until they expire. 142 * 143 * The real time interval timer is kept in the process table slot 144 * for the process, and its value (it_value) is kept as an 145 * absolute time rather than as a delta, so that it is easy to keep 146 * periodic real-time signals from drifting. 147 * 148 * Virtual time timers are processed in the hardclock() routine of 149 * kern_clock.c. The real time timer is processed by a timeout 150 * routine, called from the softclock() routine. Since a callout 151 * may be delayed in real time due to interrupt processing in the system, 152 * it is possible for the real time timeout routine (realitexpire, given below), 153 * to be delayed in real time past when it is supposed to occur. It 154 * does not suffice, therefore, to reload the real timer .it_value from the 155 * real time timers .it_interval. Rather, we compute the next time in 156 * absolute time the timer should go off. 157 */ 158 /* ARGSUSED */ 159 getitimer(p, uap, retval) 160 struct proc *p; 161 register struct args { 162 u_int which; 163 struct itimerval *itv; 164 } *uap; 165 int *retval; 166 { 167 struct itimerval aitv; 168 int s; 169 170 if (uap->which > ITIMER_PROF) 171 RETURN (EINVAL); 172 s = splclock(); 173 if (uap->which == ITIMER_REAL) { 174 /* 175 * Convert from absoulte to relative time in .it_value 176 * part of real time timer. If time for real time timer 177 * has passed return 0, else return difference between 178 * current time and time for the timer to go off. 179 */ 180 aitv = p->p_realtimer; 181 if (timerisset(&aitv.it_value)) 182 if (timercmp(&aitv.it_value, &time, <)) 183 timerclear(&aitv.it_value); 184 else 185 timevalsub(&aitv.it_value, &time); 186 } else 187 aitv = u.u_timer[uap->which]; 188 splx(s); 189 RETURN (copyout((caddr_t)&aitv, (caddr_t)uap->itv, 190 sizeof (struct itimerval))); 191 } 192 193 /* ARGSUSED */ 194 setitimer(p, uap, retval) 195 struct proc *p; 196 register struct args { 197 u_int which; 198 struct itimerval *itv, *oitv; 199 } *uap; 200 int *retval; 201 { 202 struct itimerval aitv; 203 register struct itimerval *itvp; 204 int s, error; 205 206 if (uap->which > ITIMER_PROF) 207 RETURN (EINVAL); 208 itvp = uap->itv; 209 if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv, 210 sizeof(struct itimerval)))) 211 RETURN (error); 212 if ((uap->itv = uap->oitv) && (error = getitimer(p, uap, retval))) 213 RETURN (error); 214 if (itvp == 0) 215 return (0); 216 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval)) 217 RETURN (EINVAL); 218 s = splclock(); 219 if (uap->which == ITIMER_REAL) { 220 untimeout(realitexpire, (caddr_t)p); 221 if (timerisset(&aitv.it_value)) { 222 timevaladd(&aitv.it_value, &time); 223 timeout(realitexpire, (caddr_t)p, hzto(&aitv.it_value)); 224 } 225 p->p_realtimer = aitv; 226 } else 227 u.u_timer[uap->which] = aitv; 228 splx(s); 229 RETURN (0); 230 } 231 232 /* 233 * Real interval timer expired: 234 * send process whose timer expired an alarm signal. 235 * If time is not set up to reload, then just return. 236 * Else compute next time timer should go off which is > current time. 237 * This is where delay in processing this timeout causes multiple 238 * SIGALRM calls to be compressed into one. 239 */ 240 realitexpire(p) 241 register struct proc *p; 242 { 243 int s; 244 245 psignal(p, SIGALRM); 246 if (!timerisset(&p->p_realtimer.it_interval)) { 247 timerclear(&p->p_realtimer.it_value); 248 return; 249 } 250 for (;;) { 251 s = splclock(); 252 timevaladd(&p->p_realtimer.it_value, 253 &p->p_realtimer.it_interval); 254 if (timercmp(&p->p_realtimer.it_value, &time, >)) { 255 timeout(realitexpire, (caddr_t)p, 256 hzto(&p->p_realtimer.it_value)); 257 splx(s); 258 return; 259 } 260 splx(s); 261 } 262 } 263 264 /* 265 * Check that a proposed value to load into the .it_value or 266 * .it_interval part of an interval timer is acceptable, and 267 * fix it to have at least minimal value (i.e. if it is less 268 * than the resolution of the clock, round it up.) 269 */ 270 itimerfix(tv) 271 struct timeval *tv; 272 { 273 274 if (tv->tv_sec < 0 || tv->tv_sec > 100000000 || 275 tv->tv_usec < 0 || tv->tv_usec >= 1000000) 276 return (EINVAL); 277 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick) 278 tv->tv_usec = tick; 279 return (0); 280 } 281 282 /* 283 * Decrement an interval timer by a specified number 284 * of microseconds, which must be less than a second, 285 * i.e. < 1000000. If the timer expires, then reload 286 * it. In this case, carry over (usec - old value) to 287 * reducint the value reloaded into the timer so that 288 * the timer does not drift. This routine assumes 289 * that it is called in a context where the timers 290 * on which it is operating cannot change in value. 291 */ 292 itimerdecr(itp, usec) 293 register struct itimerval *itp; 294 int usec; 295 { 296 297 if (itp->it_value.tv_usec < usec) { 298 if (itp->it_value.tv_sec == 0) { 299 /* expired, and already in next interval */ 300 usec -= itp->it_value.tv_usec; 301 goto expire; 302 } 303 itp->it_value.tv_usec += 1000000; 304 itp->it_value.tv_sec--; 305 } 306 itp->it_value.tv_usec -= usec; 307 usec = 0; 308 if (timerisset(&itp->it_value)) 309 return (1); 310 /* expired, exactly at end of interval */ 311 expire: 312 if (timerisset(&itp->it_interval)) { 313 itp->it_value = itp->it_interval; 314 itp->it_value.tv_usec -= usec; 315 if (itp->it_value.tv_usec < 0) { 316 itp->it_value.tv_usec += 1000000; 317 itp->it_value.tv_sec--; 318 } 319 } else 320 itp->it_value.tv_usec = 0; /* sec is already 0 */ 321 return (0); 322 } 323 324 /* 325 * Add and subtract routines for timevals. 326 * N.B.: subtract routine doesn't deal with 327 * results which are before the beginning, 328 * it just gets very confused in this case. 329 * Caveat emptor. 330 */ 331 timevaladd(t1, t2) 332 struct timeval *t1, *t2; 333 { 334 335 t1->tv_sec += t2->tv_sec; 336 t1->tv_usec += t2->tv_usec; 337 timevalfix(t1); 338 } 339 340 timevalsub(t1, t2) 341 struct timeval *t1, *t2; 342 { 343 344 t1->tv_sec -= t2->tv_sec; 345 t1->tv_usec -= t2->tv_usec; 346 timevalfix(t1); 347 } 348 349 timevalfix(t1) 350 struct timeval *t1; 351 { 352 353 if (t1->tv_usec < 0) { 354 t1->tv_sec--; 355 t1->tv_usec += 1000000; 356 } 357 if (t1->tv_usec >= 1000000) { 358 t1->tv_sec++; 359 t1->tv_usec -= 1000000; 360 } 361 } 362