xref: /csrg-svn/sys/kern/kern_time.c (revision 23377)
1 /*
2  * Copyright (c) 1982 Regents of the University of California.
3  * All rights reserved.  The Berkeley software License Agreement
4  * specifies the terms and conditions for redistribution.
5  *
6  *	@(#)kern_time.c	6.5 (Berkeley) 06/08/85
7  */
8 
9 #include "../machine/reg.h"
10 
11 #include "param.h"
12 #include "dir.h"		/* XXX */
13 #include "user.h"
14 #include "kernel.h"
15 #include "inode.h"
16 #include "proc.h"
17 
18 /*
19  * Time of day and interval timer support.
20  *
21  * These routines provide the kernel entry points to get and set
22  * the time-of-day and per-process interval timers.  Subroutines
23  * here provide support for adding and subtracting timeval structures
24  * and decrementing interval timers, optionally reloading the interval
25  * timers when they expire.
26  */
27 
28 gettimeofday()
29 {
30 	register struct a {
31 		struct	timeval *tp;
32 		struct	timezone *tzp;
33 	} *uap = (struct a *)u.u_ap;
34 	struct timeval atv;
35 	int s;
36 
37 	s = spl7(); atv = time; splx(s);
38 	u.u_error = copyout((caddr_t)&atv, (caddr_t)uap->tp, sizeof (atv));
39 	if (u.u_error)
40 		return;
41 	if (uap->tzp == 0)
42 		return;
43 	/* SHOULD HAVE PER-PROCESS TIMEZONE */
44 	u.u_error = copyout((caddr_t)&tz, (caddr_t)uap->tzp, sizeof (tz));
45 }
46 
47 settimeofday()
48 {
49 	register struct a {
50 		struct	timeval *tv;
51 		struct	timezone *tzp;
52 	} *uap = (struct a *)u.u_ap;
53 	struct timeval atv;
54 	struct timezone atz;
55 
56 	u.u_error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
57 		sizeof (struct timeval));
58 	if (u.u_error)
59 		return;
60 	setthetime(&atv);
61 	if (uap->tzp && suser()) {
62 		u.u_error = copyin((caddr_t)uap->tzp, (caddr_t)&atz,
63 			sizeof (atz));
64 		if (u.u_error == 0)
65 			tz = atz;
66 	}
67 }
68 
69 setthetime(tv)
70 	struct timeval *tv;
71 {
72 	int s;
73 
74 	if (!suser())
75 		return;
76 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
77 	boottime.tv_sec += tv->tv_sec - time.tv_sec;
78 	s = spl7(); time = *tv; splx(s);
79 	resettodr();
80 }
81 
82 int adjtimedelta;
83 
84 adjtime()
85 {
86 	register struct a {
87 		struct timeval *delta;
88 		struct timeval *olddelta;
89 	} *uap = (struct a *)u.u_ap;
90 
91 	struct timeval atv, oatv;
92 
93 	if (!suser())
94 		return;
95 	u.u_error = copyin((caddr_t)uap->delta, (caddr_t)&atv,
96 		sizeof (struct timeval));
97 	if (u.u_error)
98 		return;
99 	if (uap->olddelta) {
100 		oatv.tv_sec = adjtimedelta / 1000000;
101 		oatv.tv_usec = adjtimedelta % 1000000;
102 		(void) copyout((caddr_t)&oatv, (caddr_t)uap->olddelta,
103 			sizeof (struct timeval));
104 	}
105 	adjtimedelta = atv.tv_sec * 1000000 + atv.tv_usec;
106 }
107 
108 /*
109  * Get value of an interval timer.  The process virtual and
110  * profiling virtual time timers are kept in the u. area, since
111  * they can be swapped out.  These are kept internally in the
112  * way they are specified externally: in time until they expire.
113  *
114  * The real time interval timer is kept in the process table slot
115  * for the process, and its value (it_value) is kept as an
116  * absolute time rather than as a delta, so that it is easy to keep
117  * periodic real-time signals from drifting.
118  *
119  * Virtual time timers are processed in the hardclock() routine of
120  * kern_clock.c.  The real time timer is processed by a timeout
121  * routine, called from the softclock() routine.  Since a callout
122  * may be delayed in real time due to interrupt processing in the system,
123  * it is possible for the real time timeout routine (realitexpire, given below),
124  * to be delayed in real time past when it is supposed to occur.  It
125  * does not suffice, therefore, to reload the real timer .it_value from the
126  * real time timers .it_interval.  Rather, we compute the next time in
127  * absolute time the timer should go off.
128  */
129 getitimer()
130 {
131 	register struct a {
132 		u_int	which;
133 		struct	itimerval *itv;
134 	} *uap = (struct a *)u.u_ap;
135 	struct itimerval aitv;
136 	int s;
137 
138 	if (uap->which > 2) {
139 		u.u_error = EINVAL;
140 		return;
141 	}
142 	s = spl7();
143 	if (uap->which == ITIMER_REAL) {
144 		/*
145 		 * Convert from absoulte to relative time in .it_value
146 		 * part of real time timer.  If time for real time timer
147 		 * has passed return 0, else return difference between
148 		 * current time and time for the timer to go off.
149 		 */
150 		aitv = u.u_procp->p_realtimer;
151 		if (timerisset(&aitv.it_value))
152 			if (timercmp(&aitv.it_value, &time, <))
153 				timerclear(&aitv.it_value);
154 			else
155 				timevalsub(&aitv.it_value, &time);
156 	} else
157 		aitv = u.u_timer[uap->which];
158 	splx(s);
159 	u.u_error = copyout((caddr_t)&aitv, (caddr_t)uap->itv,
160 	    sizeof (struct itimerval));
161 	splx(s);
162 }
163 
164 setitimer()
165 {
166 	register struct a {
167 		u_int	which;
168 		struct	itimerval *itv, *oitv;
169 	} *uap = (struct a *)u.u_ap;
170 	struct itimerval aitv;
171 	int s;
172 	register struct proc *p = u.u_procp;
173 
174 	if (uap->which > 2) {
175 		u.u_error = EINVAL;
176 		return;
177 	}
178 	u.u_error = copyin((caddr_t)uap->itv, (caddr_t)&aitv,
179 	    sizeof (struct itimerval));
180 	if (u.u_error)
181 		return;
182 	if (uap->oitv) {
183 		uap->itv = uap->oitv;
184 		getitimer();
185 	}
186 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval)) {
187 		u.u_error = EINVAL;
188 		return;
189 	}
190 	s = spl7();
191 	if (uap->which == ITIMER_REAL) {
192 		untimeout(realitexpire, (caddr_t)p);
193 		if (timerisset(&aitv.it_value)) {
194 			timevaladd(&aitv.it_value, &time);
195 			timeout(realitexpire, (caddr_t)p, hzto(&aitv.it_value));
196 		}
197 		p->p_realtimer = aitv;
198 	} else
199 		u.u_timer[uap->which] = aitv;
200 	splx(s);
201 }
202 
203 /*
204  * Real interval timer expired:
205  * send process whose timer expired an alarm signal.
206  * If time is not set up to reload, then just return.
207  * Else compute next time timer should go off which is > current time.
208  * This is where delay in processing this timeout causes multiple
209  * SIGALRM calls to be compressed into one.
210  */
211 realitexpire(p)
212 	register struct proc *p;
213 {
214 	int s;
215 
216 	psignal(p, SIGALRM);
217 	if (!timerisset(&p->p_realtimer.it_interval)) {
218 		timerclear(&p->p_realtimer.it_value);
219 		return;
220 	}
221 	for (;;) {
222 		s = spl7();
223 		timevaladd(&p->p_realtimer.it_value,
224 		    &p->p_realtimer.it_interval);
225 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
226 			timeout(realitexpire, (caddr_t)p,
227 			    hzto(&p->p_realtimer.it_value));
228 			splx(s);
229 			return;
230 		}
231 		splx(s);
232 	}
233 }
234 
235 /*
236  * Check that a proposed value to load into the .it_value or
237  * .it_interval part of an interval timer is acceptable, and
238  * fix it to have at least minimal value (i.e. if it is less
239  * than the resolution of the clock, round it up.)
240  */
241 itimerfix(tv)
242 	struct timeval *tv;
243 {
244 
245 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
246 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
247 		return (EINVAL);
248 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
249 		tv->tv_usec = tick;
250 	return (0);
251 }
252 
253 /*
254  * Decrement an interval timer by a specified number
255  * of microseconds, which must be less than a second,
256  * i.e. < 1000000.  If the timer expires, then reload
257  * it.  In this case, carry over (usec - old value) to
258  * reducint the value reloaded into the timer so that
259  * the timer does not drift.  This routine assumes
260  * that it is called in a context where the timers
261  * on which it is operating cannot change in value.
262  */
263 itimerdecr(itp, usec)
264 	register struct itimerval *itp;
265 	int usec;
266 {
267 
268 	if (itp->it_value.tv_usec < usec) {
269 		if (itp->it_value.tv_sec == 0) {
270 			/* expired, and already in next interval */
271 			usec -= itp->it_value.tv_usec;
272 			goto expire;
273 		}
274 		itp->it_value.tv_usec += 1000000;
275 		itp->it_value.tv_sec--;
276 	}
277 	itp->it_value.tv_usec -= usec;
278 	usec = 0;
279 	if (timerisset(&itp->it_value))
280 		return (1);
281 	/* expired, exactly at end of interval */
282 expire:
283 	if (timerisset(&itp->it_interval)) {
284 		itp->it_value = itp->it_interval;
285 		itp->it_value.tv_usec -= usec;
286 		if (itp->it_value.tv_usec < 0) {
287 			itp->it_value.tv_usec += 1000000;
288 			itp->it_value.tv_sec--;
289 		}
290 	} else
291 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
292 	return (0);
293 }
294 
295 /*
296  * Add and subtract routines for timevals.
297  * N.B.: subtract routine doesn't deal with
298  * results which are before the beginning,
299  * it just gets very confused in this case.
300  * Caveat emptor.
301  */
302 timevaladd(t1, t2)
303 	struct timeval *t1, *t2;
304 {
305 
306 	t1->tv_sec += t2->tv_sec;
307 	t1->tv_usec += t2->tv_usec;
308 	timevalfix(t1);
309 }
310 
311 timevalsub(t1, t2)
312 	struct timeval *t1, *t2;
313 {
314 
315 	t1->tv_sec -= t2->tv_sec;
316 	t1->tv_usec -= t2->tv_usec;
317 	timevalfix(t1);
318 }
319 
320 timevalfix(t1)
321 	struct timeval *t1;
322 {
323 
324 	if (t1->tv_usec < 0) {
325 		t1->tv_sec--;
326 		t1->tv_usec += 1000000;
327 	}
328 	if (t1->tv_usec >= 1000000) {
329 		t1->tv_sec++;
330 		t1->tv_usec -= 1000000;
331 	}
332 }
333