149594Sbostic /*- 249594Sbostic * Copyright (c) 1982, 1986, 1990 The Regents of the University of California. 349594Sbostic * Copyright (c) 1991 The Regents of the University of California. 449594Sbostic * All rights reserved. 523376Smckusick * 649594Sbostic * %sccs.include.redist.c% 749594Sbostic * 8*52498Smarc * @(#)kern_synch.c 7.19 (Berkeley) 02/14/92 923376Smckusick */ 1033Sbill 1117093Sbloom #include "param.h" 1217093Sbloom #include "systm.h" 1317093Sbloom #include "proc.h" 1417093Sbloom #include "kernel.h" 1517093Sbloom #include "buf.h" 1649095Skarels #include "signalvar.h" 1749095Skarels #include "resourcevar.h" 18*52498Smarc #ifdef KTRACE 19*52498Smarc #include "ktrace.h" 20*52498Smarc #endif 219756Ssam 2247544Skarels #include "machine/cpu.h" 2345742Smckusick 2449226Skarels u_char curpri; /* usrpri of curproc */ 2549226Skarels 268102Sroot /* 278102Sroot * Force switch among equal priority processes every 100ms. 288102Sroot */ 298102Sroot roundrobin() 308102Sroot { 318102Sroot 3247544Skarels need_resched(); 338624Sroot timeout(roundrobin, (caddr_t)0, hz / 10); 348102Sroot } 358102Sroot 3632908Smckusick /* 3732908Smckusick * constants for digital decay and forget 3832908Smckusick * 90% of (p_cpu) usage in 5*loadav time 3932908Smckusick * 95% of (p_pctcpu) usage in 60 seconds (load insensitive) 4032908Smckusick * Note that, as ps(1) mentions, this can let percentages 4132908Smckusick * total over 100% (I've seen 137.9% for 3 processes). 4232908Smckusick * 4332908Smckusick * Note that hardclock updates p_cpu and p_cpticks independently. 4432908Smckusick * 4532908Smckusick * We wish to decay away 90% of p_cpu in (5 * loadavg) seconds. 4632908Smckusick * That is, the system wants to compute a value of decay such 4732908Smckusick * that the following for loop: 4832908Smckusick * for (i = 0; i < (5 * loadavg); i++) 4932908Smckusick * p_cpu *= decay; 5032908Smckusick * will compute 5132908Smckusick * p_cpu *= 0.1; 5232908Smckusick * for all values of loadavg: 5332908Smckusick * 5432908Smckusick * Mathematically this loop can be expressed by saying: 5532908Smckusick * decay ** (5 * loadavg) ~= .1 5632908Smckusick * 5732908Smckusick * The system computes decay as: 5832908Smckusick * decay = (2 * loadavg) / (2 * loadavg + 1) 5932908Smckusick * 6032908Smckusick * We wish to prove that the system's computation of decay 6132908Smckusick * will always fulfill the equation: 6232908Smckusick * decay ** (5 * loadavg) ~= .1 6332908Smckusick * 6432908Smckusick * If we compute b as: 6532908Smckusick * b = 2 * loadavg 6632908Smckusick * then 6732908Smckusick * decay = b / (b + 1) 6832908Smckusick * 6932908Smckusick * We now need to prove two things: 7032908Smckusick * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1) 7132908Smckusick * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg) 7232908Smckusick * 7332908Smckusick * Facts: 7432908Smckusick * For x close to zero, exp(x) =~ 1 + x, since 7532908Smckusick * exp(x) = 0! + x**1/1! + x**2/2! + ... . 7632908Smckusick * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b. 7732908Smckusick * For x close to zero, ln(1+x) =~ x, since 7832908Smckusick * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1 7932908Smckusick * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1). 8032908Smckusick * ln(.1) =~ -2.30 8132908Smckusick * 8232908Smckusick * Proof of (1): 8332908Smckusick * Solve (factor)**(power) =~ .1 given power (5*loadav): 8432908Smckusick * solving for factor, 8532908Smckusick * ln(factor) =~ (-2.30/5*loadav), or 8647544Skarels * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) = 8732908Smckusick * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED 8832908Smckusick * 8932908Smckusick * Proof of (2): 9032908Smckusick * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)): 9132908Smckusick * solving for power, 9232908Smckusick * power*ln(b/(b+1)) =~ -2.30, or 9332908Smckusick * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED 9432908Smckusick * 9532908Smckusick * Actual power values for the implemented algorithm are as follows: 9632908Smckusick * loadav: 1 2 3 4 9732908Smckusick * power: 5.68 10.32 14.94 19.55 9832908Smckusick */ 9917541Skarels 10038164Smckusick /* calculations for digital decay to forget 90% of usage in 5*loadav sec */ 10147544Skarels #define loadfactor(loadav) (2 * (loadav)) 10247544Skarels #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE)) 1038102Sroot 10438164Smckusick /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */ 10538164Smckusick fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */ 10638164Smckusick 1078102Sroot /* 10838164Smckusick * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the 10938164Smckusick * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below 11038164Smckusick * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT). 11138164Smckusick * 11238164Smckusick * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used: 11338164Smckusick * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits). 11438164Smckusick * 11538164Smckusick * If you dont want to bother with the faster/more-accurate formula, you 11638164Smckusick * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate 11738164Smckusick * (more general) method of calculating the %age of CPU used by a process. 11838164Smckusick */ 11938164Smckusick #define CCPU_SHIFT 11 12038164Smckusick 12138164Smckusick /* 1228102Sroot * Recompute process priorities, once a second 1238102Sroot */ 1248102Sroot schedcpu() 1258102Sroot { 12647544Skarels register fixpt_t loadfac = loadfactor(averunnable[0]); 1278102Sroot register struct proc *p; 12847544Skarels register int s; 12947544Skarels register unsigned int newcpu; 1308102Sroot 1318102Sroot wakeup((caddr_t)&lbolt); 13216532Skarels for (p = allproc; p != NULL; p = p->p_nxt) { 13347544Skarels /* 13447544Skarels * Increment time in/out of memory and sleep time 13547544Skarels * (if sleeping). We ignore overflow; with 16-bit int's 13647544Skarels * (remember them?) overflow takes 45 days. 13747544Skarels */ 13847544Skarels p->p_time++; 13947544Skarels if (p->p_stat == SSLEEP || p->p_stat == SSTOP) 14047544Skarels p->p_slptime++; 14138164Smckusick p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT; 14217541Skarels /* 14317541Skarels * If the process has slept the entire second, 14417541Skarels * stop recalculating its priority until it wakes up. 14517541Skarels */ 14638164Smckusick if (p->p_slptime > 1) 14717541Skarels continue; 14817541Skarels /* 14917541Skarels * p_pctcpu is only for ps. 15017541Skarels */ 15138164Smckusick #if (FSHIFT >= CCPU_SHIFT) 15238164Smckusick p->p_pctcpu += (hz == 100)? 15338164Smckusick ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT): 15438164Smckusick 100 * (((fixpt_t) p->p_cpticks) 15538164Smckusick << (FSHIFT - CCPU_SHIFT)) / hz; 15638164Smckusick #else 15738164Smckusick p->p_pctcpu += ((FSCALE - ccpu) * 15838164Smckusick (p->p_cpticks * FSCALE / hz)) >> FSHIFT; 15938164Smckusick #endif 1608102Sroot p->p_cpticks = 0; 16147544Skarels newcpu = (u_int) decay_cpu(loadfac, p->p_cpu) + p->p_nice; 16247544Skarels p->p_cpu = min(newcpu, UCHAR_MAX); 16347544Skarels setpri(p); 16417541Skarels s = splhigh(); /* prevent state changes */ 1658102Sroot if (p->p_pri >= PUSER) { 16647544Skarels #define PPQ (128 / NQS) /* priorities per queue */ 16749095Skarels if ((p != curproc) && 1688102Sroot p->p_stat == SRUN && 1698102Sroot (p->p_flag & SLOAD) && 17016795Skarels (p->p_pri / PPQ) != (p->p_usrpri / PPQ)) { 1718102Sroot remrq(p); 1728102Sroot p->p_pri = p->p_usrpri; 1738102Sroot setrq(p); 1748102Sroot } else 1758102Sroot p->p_pri = p->p_usrpri; 1768102Sroot } 1778102Sroot splx(s); 1788102Sroot } 1798102Sroot vmmeter(); 1808102Sroot if (bclnlist != NULL) 18147544Skarels wakeup((caddr_t)pageproc); 1828624Sroot timeout(schedcpu, (caddr_t)0, hz); 1838102Sroot } 1848102Sroot 18517541Skarels /* 18617541Skarels * Recalculate the priority of a process after it has slept for a while. 18747544Skarels * For all load averages >= 1 and max p_cpu of 255, sleeping for at least 18847544Skarels * six times the loadfactor will decay p_cpu to zero. 18917541Skarels */ 19017541Skarels updatepri(p) 19117541Skarels register struct proc *p; 19217541Skarels { 19347544Skarels register unsigned int newcpu = p->p_cpu; 19447544Skarels register fixpt_t loadfac = loadfactor(averunnable[0]); 19517541Skarels 19647544Skarels if (p->p_slptime > 5 * loadfac) 19747544Skarels p->p_cpu = 0; 19847544Skarels else { 19947544Skarels p->p_slptime--; /* the first time was done in schedcpu */ 20047544Skarels while (newcpu && --p->p_slptime) 20147544Skarels newcpu = (int) decay_cpu(loadfac, newcpu); 20247544Skarels p->p_cpu = min(newcpu, UCHAR_MAX); 20347544Skarels } 20447544Skarels setpri(p); 20517541Skarels } 20617541Skarels 20733Sbill #define SQSIZE 0100 /* Must be power of 2 */ 20833Sbill #define HASH(x) (( (int) x >> 5) & (SQSIZE-1)) 20921099Smckusick struct slpque { 21021099Smckusick struct proc *sq_head; 21121099Smckusick struct proc **sq_tailp; 21221099Smckusick } slpque[SQSIZE]; 21333Sbill 21433Sbill /* 21545671Skarels * During autoconfiguration or after a panic, a sleep will simply 21645671Skarels * lower the priority briefly to allow interrupts, then return. 21745671Skarels * The priority to be used (safepri) is machine-dependent, thus this 21845671Skarels * value is initialized and maintained in the machine-dependent layers. 21945671Skarels * This priority will typically be 0, or the lowest priority 22045671Skarels * that is safe for use on the interrupt stack; it can be made 22145671Skarels * higher to block network software interrupts after panics. 22245671Skarels */ 22345671Skarels int safepri; 22445671Skarels 22545671Skarels /* 22640711Skarels * General sleep call. 22740711Skarels * Suspends current process until a wakeup is made on chan. 22840711Skarels * The process will then be made runnable with priority pri. 22940711Skarels * Sleeps at most timo/hz seconds (0 means no timeout). 23040711Skarels * If pri includes PCATCH flag, signals are checked 23140711Skarels * before and after sleeping, else signals are not checked. 23240711Skarels * Returns 0 if awakened, EWOULDBLOCK if the timeout expires. 23340711Skarels * If PCATCH is set and a signal needs to be delivered, 23440711Skarels * ERESTART is returned if the current system call should be restarted 23540711Skarels * if possible, and EINTR is returned if the system call should 23640711Skarels * be interrupted by the signal (return EINTR). 23733Sbill */ 23840711Skarels tsleep(chan, pri, wmesg, timo) 23940710Smarc caddr_t chan; 24040710Smarc int pri; 24140710Smarc char *wmesg; 24240710Smarc int timo; 24340710Smarc { 24449095Skarels register struct proc *p = curproc; 24540710Smarc register struct slpque *qp; 24640710Smarc register s; 24740711Skarels int sig, catch = pri & PCATCH; 24840710Smarc extern int cold; 24940710Smarc int endtsleep(); 25040710Smarc 251*52498Smarc #ifdef KTRACE 252*52498Smarc if (KTRPOINT(p, KTR_CSW)) 253*52498Smarc ktrcsw(p->p_tracep, 1, 0); 254*52498Smarc #endif 25540710Smarc s = splhigh(); 25640710Smarc if (cold || panicstr) { 25740710Smarc /* 25840710Smarc * After a panic, or during autoconfiguration, 25940710Smarc * just give interrupts a chance, then just return; 26040710Smarc * don't run any other procs or panic below, 26140710Smarc * in case this is the idle process and already asleep. 26240710Smarc */ 26345671Skarels splx(safepri); 26440710Smarc splx(s); 26540710Smarc return (0); 26640710Smarc } 26740710Smarc #ifdef DIAGNOSTIC 26847544Skarels if (chan == 0 || p->p_stat != SRUN || p->p_rlink) 26940711Skarels panic("tsleep"); 27040710Smarc #endif 27147544Skarels p->p_wchan = chan; 27247544Skarels p->p_wmesg = wmesg; 27347544Skarels p->p_slptime = 0; 27447544Skarels p->p_pri = pri & PRIMASK; 27540710Smarc qp = &slpque[HASH(chan)]; 27640710Smarc if (qp->sq_head == 0) 27747544Skarels qp->sq_head = p; 27840710Smarc else 27947544Skarels *qp->sq_tailp = p; 28047544Skarels *(qp->sq_tailp = &p->p_link) = 0; 28145671Skarels if (timo) 28247544Skarels timeout(endtsleep, (caddr_t)p, timo); 28340710Smarc /* 28447544Skarels * We put ourselves on the sleep queue and start our timeout 28547544Skarels * before calling CURSIG, as we could stop there, and a wakeup 28647544Skarels * or a SIGCONT (or both) could occur while we were stopped. 28745671Skarels * A SIGCONT would cause us to be marked as SSLEEP 28845671Skarels * without resuming us, thus we must be ready for sleep 28945671Skarels * when CURSIG is called. If the wakeup happens while we're 29047544Skarels * stopped, p->p_wchan will be 0 upon return from CURSIG. 29140710Smarc */ 29240711Skarels if (catch) { 29347544Skarels p->p_flag |= SSINTR; 29447544Skarels if (sig = CURSIG(p)) { 29547544Skarels if (p->p_wchan) 29647544Skarels unsleep(p); 29747544Skarels p->p_stat = SRUN; 29845671Skarels goto resume; 29940711Skarels } 30047544Skarels if (p->p_wchan == 0) { 30145671Skarels catch = 0; 30245671Skarels goto resume; 30340711Skarels } 30440710Smarc } 30547544Skarels p->p_stat = SSLEEP; 30647544Skarels p->p_stats->p_ru.ru_nvcsw++; 30740710Smarc swtch(); 30845671Skarels resume: 30947544Skarels curpri = p->p_usrpri; 31040710Smarc splx(s); 31147544Skarels p->p_flag &= ~SSINTR; 31247544Skarels if (p->p_flag & STIMO) { 31347544Skarels p->p_flag &= ~STIMO; 314*52498Smarc if (catch == 0 || sig == 0) { 315*52498Smarc #ifdef KTRACE 316*52498Smarc if (KTRPOINT(p, KTR_CSW)) 317*52498Smarc ktrcsw(p->p_tracep, 0, 0); 318*52498Smarc #endif 31945671Skarels return (EWOULDBLOCK); 320*52498Smarc } 32145671Skarels } else if (timo) 32247544Skarels untimeout(endtsleep, (caddr_t)p); 32347544Skarels if (catch && (sig != 0 || (sig = CURSIG(p)))) { 324*52498Smarc #ifdef KTRACE 325*52498Smarc if (KTRPOINT(p, KTR_CSW)) 326*52498Smarc ktrcsw(p->p_tracep, 0, 0); 327*52498Smarc #endif 32847544Skarels if (p->p_sigacts->ps_sigintr & sigmask(sig)) 32940711Skarels return (EINTR); 33040711Skarels return (ERESTART); 33140711Skarels } 332*52498Smarc #ifdef KTRACE 333*52498Smarc if (KTRPOINT(p, KTR_CSW)) 334*52498Smarc ktrcsw(p->p_tracep, 0, 0); 335*52498Smarc #endif 33640710Smarc return (0); 33740710Smarc } 33840710Smarc 33940710Smarc /* 34040710Smarc * Implement timeout for tsleep. 34140710Smarc * If process hasn't been awakened (wchan non-zero), 34240710Smarc * set timeout flag and undo the sleep. If proc 34340710Smarc * is stopped, just unsleep so it will remain stopped. 34440710Smarc */ 34540710Smarc endtsleep(p) 34640710Smarc register struct proc *p; 34740710Smarc { 34840710Smarc int s = splhigh(); 34940710Smarc 35040710Smarc if (p->p_wchan) { 35140710Smarc if (p->p_stat == SSLEEP) 35240710Smarc setrun(p); 35340710Smarc else 35440710Smarc unsleep(p); 35540710Smarc p->p_flag |= STIMO; 35640710Smarc } 35740710Smarc splx(s); 35840710Smarc } 35940710Smarc 36040711Skarels /* 36140711Skarels * Short-term, non-interruptable sleep. 36240711Skarels */ 36333Sbill sleep(chan, pri) 3648033Sroot caddr_t chan; 3658033Sroot int pri; 36633Sbill { 36749095Skarels register struct proc *p = curproc; 36821099Smckusick register struct slpque *qp; 369207Sbill register s; 37030532Skarels extern int cold; 37133Sbill 37240711Skarels #ifdef DIAGNOSTIC 37340711Skarels if (pri > PZERO) { 37440711Skarels printf("sleep called with pri %d > PZERO, wchan: %x\n", 37540711Skarels pri, chan); 37640711Skarels panic("old sleep"); 37740711Skarels } 37840711Skarels #endif 37917541Skarels s = splhigh(); 38030532Skarels if (cold || panicstr) { 38118363Skarels /* 38230532Skarels * After a panic, or during autoconfiguration, 38330532Skarels * just give interrupts a chance, then just return; 38430532Skarels * don't run any other procs or panic below, 38530532Skarels * in case this is the idle process and already asleep. 38618363Skarels */ 38745671Skarels splx(safepri); 38818363Skarels splx(s); 38918363Skarels return; 39018363Skarels } 39140710Smarc #ifdef DIAGNOSTIC 39247544Skarels if (chan==0 || p->p_stat != SRUN || p->p_rlink) 39333Sbill panic("sleep"); 39440710Smarc #endif 39547544Skarels p->p_wchan = chan; 39647544Skarels p->p_wmesg = NULL; 39747544Skarels p->p_slptime = 0; 39847544Skarels p->p_pri = pri; 39921099Smckusick qp = &slpque[HASH(chan)]; 40021099Smckusick if (qp->sq_head == 0) 40147544Skarels qp->sq_head = p; 40221099Smckusick else 40347544Skarels *qp->sq_tailp = p; 40447544Skarels *(qp->sq_tailp = &p->p_link) = 0; 40547544Skarels p->p_stat = SSLEEP; 40647544Skarels p->p_stats->p_ru.ru_nvcsw++; 407*52498Smarc #ifdef KTRACE 408*52498Smarc if (KTRPOINT(p, KTR_CSW)) 409*52498Smarc ktrcsw(p->p_tracep, 1, 0); 410*52498Smarc #endif 41140711Skarels swtch(); 412*52498Smarc #ifdef KTRACE 413*52498Smarc if (KTRPOINT(p, KTR_CSW)) 414*52498Smarc ktrcsw(p->p_tracep, 0, 0); 415*52498Smarc #endif 41647544Skarels curpri = p->p_usrpri; 41733Sbill splx(s); 41833Sbill } 41933Sbill 42033Sbill /* 421181Sbill * Remove a process from its wait queue 422181Sbill */ 423181Sbill unsleep(p) 4244826Swnj register struct proc *p; 425181Sbill { 42621099Smckusick register struct slpque *qp; 427181Sbill register struct proc **hp; 42821099Smckusick int s; 429181Sbill 43017541Skarels s = splhigh(); 431181Sbill if (p->p_wchan) { 43221099Smckusick hp = &(qp = &slpque[HASH(p->p_wchan)])->sq_head; 433181Sbill while (*hp != p) 434181Sbill hp = &(*hp)->p_link; 435181Sbill *hp = p->p_link; 43621099Smckusick if (qp->sq_tailp == &p->p_link) 43721099Smckusick qp->sq_tailp = hp; 438181Sbill p->p_wchan = 0; 439181Sbill } 440181Sbill splx(s); 441181Sbill } 442181Sbill 443181Sbill /* 44447544Skarels * Wakeup on "chan"; set all processes 44547544Skarels * sleeping on chan to run state. 44633Sbill */ 44733Sbill wakeup(chan) 4484826Swnj register caddr_t chan; 44933Sbill { 45021099Smckusick register struct slpque *qp; 45121099Smckusick register struct proc *p, **q; 45233Sbill int s; 45333Sbill 45417541Skarels s = splhigh(); 45521099Smckusick qp = &slpque[HASH(chan)]; 45633Sbill restart: 45721099Smckusick for (q = &qp->sq_head; p = *q; ) { 45840710Smarc #ifdef DIAGNOSTIC 459181Sbill if (p->p_rlink || p->p_stat != SSLEEP && p->p_stat != SSTOP) 46033Sbill panic("wakeup"); 46140710Smarc #endif 46247544Skarels if (p->p_wchan == chan) { 46333Sbill p->p_wchan = 0; 464187Sbill *q = p->p_link; 46521099Smckusick if (qp->sq_tailp == &p->p_link) 46621099Smckusick qp->sq_tailp = q; 467181Sbill if (p->p_stat == SSLEEP) { 468181Sbill /* OPTIMIZED INLINE EXPANSION OF setrun(p) */ 46921763Skarels if (p->p_slptime > 1) 47021763Skarels updatepri(p); 47147544Skarels p->p_slptime = 0; 472181Sbill p->p_stat = SRUN; 4732702Swnj if (p->p_flag & SLOAD) 474181Sbill setrq(p); 47516795Skarels /* 47616795Skarels * Since curpri is a usrpri, 47716795Skarels * p->p_pri is always better than curpri. 47816795Skarels */ 47947544Skarels if ((p->p_flag&SLOAD) == 0) 48047544Skarels wakeup((caddr_t)&proc0); 48147544Skarels else 48247544Skarels need_resched(); 483181Sbill /* END INLINE EXPANSION */ 484187Sbill goto restart; 48533Sbill } 486187Sbill } else 487187Sbill q = &p->p_link; 48833Sbill } 48933Sbill splx(s); 49033Sbill } 49133Sbill 49233Sbill /* 49333Sbill * Initialize the (doubly-linked) run queues 49433Sbill * to be empty. 49533Sbill */ 49633Sbill rqinit() 49733Sbill { 49833Sbill register int i; 49933Sbill 50033Sbill for (i = 0; i < NQS; i++) 50133Sbill qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i]; 50233Sbill } 50333Sbill 50433Sbill /* 50547544Skarels * Change process state to be runnable, 50647544Skarels * placing it on the run queue if it is in memory, 50747544Skarels * and awakening the swapper if it isn't in memory. 50833Sbill */ 50933Sbill setrun(p) 5104826Swnj register struct proc *p; 51133Sbill { 5124826Swnj register int s; 51333Sbill 51417541Skarels s = splhigh(); 51533Sbill switch (p->p_stat) { 51633Sbill 51733Sbill case 0: 51833Sbill case SWAIT: 51933Sbill case SRUN: 52033Sbill case SZOMB: 52133Sbill default: 52233Sbill panic("setrun"); 52333Sbill 524207Sbill case SSTOP: 52533Sbill case SSLEEP: 526181Sbill unsleep(p); /* e.g. when sending signals */ 52733Sbill break; 52833Sbill 52933Sbill case SIDL: 53033Sbill break; 53133Sbill } 53233Sbill p->p_stat = SRUN; 53333Sbill if (p->p_flag & SLOAD) 53433Sbill setrq(p); 53533Sbill splx(s); 53630232Skarels if (p->p_slptime > 1) 53730232Skarels updatepri(p); 53847544Skarels p->p_slptime = 0; 53947544Skarels if ((p->p_flag&SLOAD) == 0) 54047544Skarels wakeup((caddr_t)&proc0); 54147544Skarels else if (p->p_pri < curpri) 54247544Skarels need_resched(); 54333Sbill } 54433Sbill 54533Sbill /* 54647544Skarels * Compute priority of process when running in user mode. 54747544Skarels * Arrange to reschedule if the resulting priority 54847544Skarels * is better than that of the current process. 54933Sbill */ 55047544Skarels setpri(p) 55147544Skarels register struct proc *p; 55233Sbill { 55347544Skarels register unsigned int newpri; 55433Sbill 55547544Skarels newpri = PUSER + p->p_cpu / 4 + 2 * p->p_nice; 55647544Skarels newpri = min(newpri, MAXPRI); 55747544Skarels p->p_usrpri = newpri; 55847544Skarels if (newpri < curpri) 55947544Skarels need_resched(); 56033Sbill } 561