1*49594Sbostic /*- 2*49594Sbostic * Copyright (c) 1982, 1986, 1990 The Regents of the University of California. 3*49594Sbostic * Copyright (c) 1991 The Regents of the University of California. 4*49594Sbostic * All rights reserved. 523376Smckusick * 6*49594Sbostic * %sccs.include.redist.c% 7*49594Sbostic * 8*49594Sbostic * @(#)kern_synch.c 7.17 (Berkeley) 05/09/91 923376Smckusick */ 1033Sbill 1117093Sbloom #include "param.h" 1217093Sbloom #include "systm.h" 1317093Sbloom #include "proc.h" 1417093Sbloom #include "kernel.h" 1517093Sbloom #include "buf.h" 1649095Skarels #include "signalvar.h" 1749095Skarels #include "resourcevar.h" 189756Ssam 1947544Skarels #include "machine/cpu.h" 2045742Smckusick 2149226Skarels u_char curpri; /* usrpri of curproc */ 2249226Skarels 238102Sroot /* 248102Sroot * Force switch among equal priority processes every 100ms. 258102Sroot */ 268102Sroot roundrobin() 278102Sroot { 288102Sroot 2947544Skarels need_resched(); 308624Sroot timeout(roundrobin, (caddr_t)0, hz / 10); 318102Sroot } 328102Sroot 3332908Smckusick /* 3432908Smckusick * constants for digital decay and forget 3532908Smckusick * 90% of (p_cpu) usage in 5*loadav time 3632908Smckusick * 95% of (p_pctcpu) usage in 60 seconds (load insensitive) 3732908Smckusick * Note that, as ps(1) mentions, this can let percentages 3832908Smckusick * total over 100% (I've seen 137.9% for 3 processes). 3932908Smckusick * 4032908Smckusick * Note that hardclock updates p_cpu and p_cpticks independently. 4132908Smckusick * 4232908Smckusick * We wish to decay away 90% of p_cpu in (5 * loadavg) seconds. 4332908Smckusick * That is, the system wants to compute a value of decay such 4432908Smckusick * that the following for loop: 4532908Smckusick * for (i = 0; i < (5 * loadavg); i++) 4632908Smckusick * p_cpu *= decay; 4732908Smckusick * will compute 4832908Smckusick * p_cpu *= 0.1; 4932908Smckusick * for all values of loadavg: 5032908Smckusick * 5132908Smckusick * Mathematically this loop can be expressed by saying: 5232908Smckusick * decay ** (5 * loadavg) ~= .1 5332908Smckusick * 5432908Smckusick * The system computes decay as: 5532908Smckusick * decay = (2 * loadavg) / (2 * loadavg + 1) 5632908Smckusick * 5732908Smckusick * We wish to prove that the system's computation of decay 5832908Smckusick * will always fulfill the equation: 5932908Smckusick * decay ** (5 * loadavg) ~= .1 6032908Smckusick * 6132908Smckusick * If we compute b as: 6232908Smckusick * b = 2 * loadavg 6332908Smckusick * then 6432908Smckusick * decay = b / (b + 1) 6532908Smckusick * 6632908Smckusick * We now need to prove two things: 6732908Smckusick * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1) 6832908Smckusick * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg) 6932908Smckusick * 7032908Smckusick * Facts: 7132908Smckusick * For x close to zero, exp(x) =~ 1 + x, since 7232908Smckusick * exp(x) = 0! + x**1/1! + x**2/2! + ... . 7332908Smckusick * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b. 7432908Smckusick * For x close to zero, ln(1+x) =~ x, since 7532908Smckusick * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1 7632908Smckusick * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1). 7732908Smckusick * ln(.1) =~ -2.30 7832908Smckusick * 7932908Smckusick * Proof of (1): 8032908Smckusick * Solve (factor)**(power) =~ .1 given power (5*loadav): 8132908Smckusick * solving for factor, 8232908Smckusick * ln(factor) =~ (-2.30/5*loadav), or 8347544Skarels * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) = 8432908Smckusick * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED 8532908Smckusick * 8632908Smckusick * Proof of (2): 8732908Smckusick * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)): 8832908Smckusick * solving for power, 8932908Smckusick * power*ln(b/(b+1)) =~ -2.30, or 9032908Smckusick * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED 9132908Smckusick * 9232908Smckusick * Actual power values for the implemented algorithm are as follows: 9332908Smckusick * loadav: 1 2 3 4 9432908Smckusick * power: 5.68 10.32 14.94 19.55 9532908Smckusick */ 9617541Skarels 9738164Smckusick /* calculations for digital decay to forget 90% of usage in 5*loadav sec */ 9847544Skarels #define loadfactor(loadav) (2 * (loadav)) 9947544Skarels #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE)) 1008102Sroot 10138164Smckusick /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */ 10238164Smckusick fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */ 10338164Smckusick 1048102Sroot /* 10538164Smckusick * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the 10638164Smckusick * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below 10738164Smckusick * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT). 10838164Smckusick * 10938164Smckusick * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used: 11038164Smckusick * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits). 11138164Smckusick * 11238164Smckusick * If you dont want to bother with the faster/more-accurate formula, you 11338164Smckusick * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate 11438164Smckusick * (more general) method of calculating the %age of CPU used by a process. 11538164Smckusick */ 11638164Smckusick #define CCPU_SHIFT 11 11738164Smckusick 11838164Smckusick /* 1198102Sroot * Recompute process priorities, once a second 1208102Sroot */ 1218102Sroot schedcpu() 1228102Sroot { 12347544Skarels register fixpt_t loadfac = loadfactor(averunnable[0]); 1248102Sroot register struct proc *p; 12547544Skarels register int s; 12647544Skarels register unsigned int newcpu; 1278102Sroot 1288102Sroot wakeup((caddr_t)&lbolt); 12916532Skarels for (p = allproc; p != NULL; p = p->p_nxt) { 13047544Skarels /* 13147544Skarels * Increment time in/out of memory and sleep time 13247544Skarels * (if sleeping). We ignore overflow; with 16-bit int's 13347544Skarels * (remember them?) overflow takes 45 days. 13447544Skarels */ 13547544Skarels p->p_time++; 13647544Skarels if (p->p_stat == SSLEEP || p->p_stat == SSTOP) 13747544Skarels p->p_slptime++; 13838164Smckusick p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT; 13917541Skarels /* 14017541Skarels * If the process has slept the entire second, 14117541Skarels * stop recalculating its priority until it wakes up. 14217541Skarels */ 14338164Smckusick if (p->p_slptime > 1) 14417541Skarels continue; 14517541Skarels /* 14617541Skarels * p_pctcpu is only for ps. 14717541Skarels */ 14838164Smckusick #if (FSHIFT >= CCPU_SHIFT) 14938164Smckusick p->p_pctcpu += (hz == 100)? 15038164Smckusick ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT): 15138164Smckusick 100 * (((fixpt_t) p->p_cpticks) 15238164Smckusick << (FSHIFT - CCPU_SHIFT)) / hz; 15338164Smckusick #else 15438164Smckusick p->p_pctcpu += ((FSCALE - ccpu) * 15538164Smckusick (p->p_cpticks * FSCALE / hz)) >> FSHIFT; 15638164Smckusick #endif 1578102Sroot p->p_cpticks = 0; 15847544Skarels newcpu = (u_int) decay_cpu(loadfac, p->p_cpu) + p->p_nice; 15947544Skarels p->p_cpu = min(newcpu, UCHAR_MAX); 16047544Skarels setpri(p); 16117541Skarels s = splhigh(); /* prevent state changes */ 1628102Sroot if (p->p_pri >= PUSER) { 16347544Skarels #define PPQ (128 / NQS) /* priorities per queue */ 16449095Skarels if ((p != curproc) && 1658102Sroot p->p_stat == SRUN && 1668102Sroot (p->p_flag & SLOAD) && 16716795Skarels (p->p_pri / PPQ) != (p->p_usrpri / PPQ)) { 1688102Sroot remrq(p); 1698102Sroot p->p_pri = p->p_usrpri; 1708102Sroot setrq(p); 1718102Sroot } else 1728102Sroot p->p_pri = p->p_usrpri; 1738102Sroot } 1748102Sroot splx(s); 1758102Sroot } 1768102Sroot vmmeter(); 1778102Sroot if (bclnlist != NULL) 17847544Skarels wakeup((caddr_t)pageproc); 1798624Sroot timeout(schedcpu, (caddr_t)0, hz); 1808102Sroot } 1818102Sroot 18217541Skarels /* 18317541Skarels * Recalculate the priority of a process after it has slept for a while. 18447544Skarels * For all load averages >= 1 and max p_cpu of 255, sleeping for at least 18547544Skarels * six times the loadfactor will decay p_cpu to zero. 18617541Skarels */ 18717541Skarels updatepri(p) 18817541Skarels register struct proc *p; 18917541Skarels { 19047544Skarels register unsigned int newcpu = p->p_cpu; 19147544Skarels register fixpt_t loadfac = loadfactor(averunnable[0]); 19217541Skarels 19347544Skarels if (p->p_slptime > 5 * loadfac) 19447544Skarels p->p_cpu = 0; 19547544Skarels else { 19647544Skarels p->p_slptime--; /* the first time was done in schedcpu */ 19747544Skarels while (newcpu && --p->p_slptime) 19847544Skarels newcpu = (int) decay_cpu(loadfac, newcpu); 19947544Skarels p->p_cpu = min(newcpu, UCHAR_MAX); 20047544Skarels } 20147544Skarels setpri(p); 20217541Skarels } 20317541Skarels 20433Sbill #define SQSIZE 0100 /* Must be power of 2 */ 20533Sbill #define HASH(x) (( (int) x >> 5) & (SQSIZE-1)) 20621099Smckusick struct slpque { 20721099Smckusick struct proc *sq_head; 20821099Smckusick struct proc **sq_tailp; 20921099Smckusick } slpque[SQSIZE]; 21033Sbill 21133Sbill /* 21245671Skarels * During autoconfiguration or after a panic, a sleep will simply 21345671Skarels * lower the priority briefly to allow interrupts, then return. 21445671Skarels * The priority to be used (safepri) is machine-dependent, thus this 21545671Skarels * value is initialized and maintained in the machine-dependent layers. 21645671Skarels * This priority will typically be 0, or the lowest priority 21745671Skarels * that is safe for use on the interrupt stack; it can be made 21845671Skarels * higher to block network software interrupts after panics. 21945671Skarels */ 22045671Skarels int safepri; 22145671Skarels 22245671Skarels /* 22340711Skarels * General sleep call. 22440711Skarels * Suspends current process until a wakeup is made on chan. 22540711Skarels * The process will then be made runnable with priority pri. 22640711Skarels * Sleeps at most timo/hz seconds (0 means no timeout). 22740711Skarels * If pri includes PCATCH flag, signals are checked 22840711Skarels * before and after sleeping, else signals are not checked. 22940711Skarels * Returns 0 if awakened, EWOULDBLOCK if the timeout expires. 23040711Skarels * If PCATCH is set and a signal needs to be delivered, 23140711Skarels * ERESTART is returned if the current system call should be restarted 23240711Skarels * if possible, and EINTR is returned if the system call should 23340711Skarels * be interrupted by the signal (return EINTR). 23433Sbill */ 23540711Skarels tsleep(chan, pri, wmesg, timo) 23640710Smarc caddr_t chan; 23740710Smarc int pri; 23840710Smarc char *wmesg; 23940710Smarc int timo; 24040710Smarc { 24149095Skarels register struct proc *p = curproc; 24240710Smarc register struct slpque *qp; 24340710Smarc register s; 24440711Skarels int sig, catch = pri & PCATCH; 24540710Smarc extern int cold; 24640710Smarc int endtsleep(); 24740710Smarc 24840710Smarc s = splhigh(); 24940710Smarc if (cold || panicstr) { 25040710Smarc /* 25140710Smarc * After a panic, or during autoconfiguration, 25240710Smarc * just give interrupts a chance, then just return; 25340710Smarc * don't run any other procs or panic below, 25440710Smarc * in case this is the idle process and already asleep. 25540710Smarc */ 25645671Skarels splx(safepri); 25740710Smarc splx(s); 25840710Smarc return (0); 25940710Smarc } 26040710Smarc #ifdef DIAGNOSTIC 26147544Skarels if (chan == 0 || p->p_stat != SRUN || p->p_rlink) 26240711Skarels panic("tsleep"); 26340710Smarc #endif 26447544Skarels p->p_wchan = chan; 26547544Skarels p->p_wmesg = wmesg; 26647544Skarels p->p_slptime = 0; 26747544Skarels p->p_pri = pri & PRIMASK; 26840710Smarc qp = &slpque[HASH(chan)]; 26940710Smarc if (qp->sq_head == 0) 27047544Skarels qp->sq_head = p; 27140710Smarc else 27247544Skarels *qp->sq_tailp = p; 27347544Skarels *(qp->sq_tailp = &p->p_link) = 0; 27445671Skarels if (timo) 27547544Skarels timeout(endtsleep, (caddr_t)p, timo); 27640710Smarc /* 27747544Skarels * We put ourselves on the sleep queue and start our timeout 27847544Skarels * before calling CURSIG, as we could stop there, and a wakeup 27947544Skarels * or a SIGCONT (or both) could occur while we were stopped. 28045671Skarels * A SIGCONT would cause us to be marked as SSLEEP 28145671Skarels * without resuming us, thus we must be ready for sleep 28245671Skarels * when CURSIG is called. If the wakeup happens while we're 28347544Skarels * stopped, p->p_wchan will be 0 upon return from CURSIG. 28440710Smarc */ 28540711Skarels if (catch) { 28647544Skarels p->p_flag |= SSINTR; 28747544Skarels if (sig = CURSIG(p)) { 28847544Skarels if (p->p_wchan) 28947544Skarels unsleep(p); 29047544Skarels p->p_stat = SRUN; 29145671Skarels goto resume; 29240711Skarels } 29347544Skarels if (p->p_wchan == 0) { 29445671Skarels catch = 0; 29545671Skarels goto resume; 29640711Skarels } 29740710Smarc } 29847544Skarels p->p_stat = SSLEEP; 29940710Smarc (void) spl0(); 30047544Skarels p->p_stats->p_ru.ru_nvcsw++; 30140710Smarc swtch(); 30245671Skarels resume: 30347544Skarels curpri = p->p_usrpri; 30440710Smarc splx(s); 30547544Skarels p->p_flag &= ~SSINTR; 30647544Skarels if (p->p_flag & STIMO) { 30747544Skarels p->p_flag &= ~STIMO; 30845671Skarels if (catch == 0 || sig == 0) 30945671Skarels return (EWOULDBLOCK); 31045671Skarels } else if (timo) 31147544Skarels untimeout(endtsleep, (caddr_t)p); 31247544Skarels if (catch && (sig != 0 || (sig = CURSIG(p)))) { 31347544Skarels if (p->p_sigacts->ps_sigintr & sigmask(sig)) 31440711Skarels return (EINTR); 31540711Skarels return (ERESTART); 31640711Skarels } 31740710Smarc return (0); 31840710Smarc } 31940710Smarc 32040710Smarc /* 32140710Smarc * Implement timeout for tsleep. 32240710Smarc * If process hasn't been awakened (wchan non-zero), 32340710Smarc * set timeout flag and undo the sleep. If proc 32440710Smarc * is stopped, just unsleep so it will remain stopped. 32540710Smarc */ 32640710Smarc endtsleep(p) 32740710Smarc register struct proc *p; 32840710Smarc { 32940710Smarc int s = splhigh(); 33040710Smarc 33140710Smarc if (p->p_wchan) { 33240710Smarc if (p->p_stat == SSLEEP) 33340710Smarc setrun(p); 33440710Smarc else 33540710Smarc unsleep(p); 33640710Smarc p->p_flag |= STIMO; 33740710Smarc } 33840710Smarc splx(s); 33940710Smarc } 34040710Smarc 34140711Skarels /* 34240711Skarels * Short-term, non-interruptable sleep. 34340711Skarels */ 34433Sbill sleep(chan, pri) 3458033Sroot caddr_t chan; 3468033Sroot int pri; 34733Sbill { 34849095Skarels register struct proc *p = curproc; 34921099Smckusick register struct slpque *qp; 350207Sbill register s; 35130532Skarels extern int cold; 35233Sbill 35340711Skarels #ifdef DIAGNOSTIC 35440711Skarels if (pri > PZERO) { 35540711Skarels printf("sleep called with pri %d > PZERO, wchan: %x\n", 35640711Skarels pri, chan); 35740711Skarels panic("old sleep"); 35840711Skarels } 35940711Skarels #endif 36017541Skarels s = splhigh(); 36130532Skarels if (cold || panicstr) { 36218363Skarels /* 36330532Skarels * After a panic, or during autoconfiguration, 36430532Skarels * just give interrupts a chance, then just return; 36530532Skarels * don't run any other procs or panic below, 36630532Skarels * in case this is the idle process and already asleep. 36718363Skarels */ 36845671Skarels splx(safepri); 36918363Skarels splx(s); 37018363Skarels return; 37118363Skarels } 37240710Smarc #ifdef DIAGNOSTIC 37347544Skarels if (chan==0 || p->p_stat != SRUN || p->p_rlink) 37433Sbill panic("sleep"); 37540710Smarc #endif 37647544Skarels p->p_wchan = chan; 37747544Skarels p->p_wmesg = NULL; 37847544Skarels p->p_slptime = 0; 37947544Skarels p->p_pri = pri; 38021099Smckusick qp = &slpque[HASH(chan)]; 38121099Smckusick if (qp->sq_head == 0) 38247544Skarels qp->sq_head = p; 38321099Smckusick else 38447544Skarels *qp->sq_tailp = p; 38547544Skarels *(qp->sq_tailp = &p->p_link) = 0; 38647544Skarels p->p_stat = SSLEEP; 38740711Skarels (void) spl0(); 38847544Skarels p->p_stats->p_ru.ru_nvcsw++; 38940711Skarels swtch(); 39047544Skarels curpri = p->p_usrpri; 39133Sbill splx(s); 39233Sbill } 39333Sbill 39433Sbill /* 395181Sbill * Remove a process from its wait queue 396181Sbill */ 397181Sbill unsleep(p) 3984826Swnj register struct proc *p; 399181Sbill { 40021099Smckusick register struct slpque *qp; 401181Sbill register struct proc **hp; 40221099Smckusick int s; 403181Sbill 40417541Skarels s = splhigh(); 405181Sbill if (p->p_wchan) { 40621099Smckusick hp = &(qp = &slpque[HASH(p->p_wchan)])->sq_head; 407181Sbill while (*hp != p) 408181Sbill hp = &(*hp)->p_link; 409181Sbill *hp = p->p_link; 41021099Smckusick if (qp->sq_tailp == &p->p_link) 41121099Smckusick qp->sq_tailp = hp; 412181Sbill p->p_wchan = 0; 413181Sbill } 414181Sbill splx(s); 415181Sbill } 416181Sbill 417181Sbill /* 41847544Skarels * Wakeup on "chan"; set all processes 41947544Skarels * sleeping on chan to run state. 42033Sbill */ 42133Sbill wakeup(chan) 4224826Swnj register caddr_t chan; 42333Sbill { 42421099Smckusick register struct slpque *qp; 42521099Smckusick register struct proc *p, **q; 42633Sbill int s; 42733Sbill 42817541Skarels s = splhigh(); 42921099Smckusick qp = &slpque[HASH(chan)]; 43033Sbill restart: 43121099Smckusick for (q = &qp->sq_head; p = *q; ) { 43240710Smarc #ifdef DIAGNOSTIC 433181Sbill if (p->p_rlink || p->p_stat != SSLEEP && p->p_stat != SSTOP) 43433Sbill panic("wakeup"); 43540710Smarc #endif 43647544Skarels if (p->p_wchan == chan) { 43733Sbill p->p_wchan = 0; 438187Sbill *q = p->p_link; 43921099Smckusick if (qp->sq_tailp == &p->p_link) 44021099Smckusick qp->sq_tailp = q; 441181Sbill if (p->p_stat == SSLEEP) { 442181Sbill /* OPTIMIZED INLINE EXPANSION OF setrun(p) */ 44321763Skarels if (p->p_slptime > 1) 44421763Skarels updatepri(p); 44547544Skarels p->p_slptime = 0; 446181Sbill p->p_stat = SRUN; 4472702Swnj if (p->p_flag & SLOAD) 448181Sbill setrq(p); 44916795Skarels /* 45016795Skarels * Since curpri is a usrpri, 45116795Skarels * p->p_pri is always better than curpri. 45216795Skarels */ 45347544Skarels if ((p->p_flag&SLOAD) == 0) 45447544Skarels wakeup((caddr_t)&proc0); 45547544Skarels else 45647544Skarels need_resched(); 457181Sbill /* END INLINE EXPANSION */ 458187Sbill goto restart; 45933Sbill } 460187Sbill } else 461187Sbill q = &p->p_link; 46233Sbill } 46333Sbill splx(s); 46433Sbill } 46533Sbill 46633Sbill /* 46733Sbill * Initialize the (doubly-linked) run queues 46833Sbill * to be empty. 46933Sbill */ 47033Sbill rqinit() 47133Sbill { 47233Sbill register int i; 47333Sbill 47433Sbill for (i = 0; i < NQS; i++) 47533Sbill qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i]; 47633Sbill } 47733Sbill 47833Sbill /* 47947544Skarels * Change process state to be runnable, 48047544Skarels * placing it on the run queue if it is in memory, 48147544Skarels * and awakening the swapper if it isn't in memory. 48233Sbill */ 48333Sbill setrun(p) 4844826Swnj register struct proc *p; 48533Sbill { 4864826Swnj register int s; 48733Sbill 48817541Skarels s = splhigh(); 48933Sbill switch (p->p_stat) { 49033Sbill 49133Sbill case 0: 49233Sbill case SWAIT: 49333Sbill case SRUN: 49433Sbill case SZOMB: 49533Sbill default: 49633Sbill panic("setrun"); 49733Sbill 498207Sbill case SSTOP: 49933Sbill case SSLEEP: 500181Sbill unsleep(p); /* e.g. when sending signals */ 50133Sbill break; 50233Sbill 50333Sbill case SIDL: 50433Sbill break; 50533Sbill } 50633Sbill p->p_stat = SRUN; 50733Sbill if (p->p_flag & SLOAD) 50833Sbill setrq(p); 50933Sbill splx(s); 51030232Skarels if (p->p_slptime > 1) 51130232Skarels updatepri(p); 51247544Skarels p->p_slptime = 0; 51347544Skarels if ((p->p_flag&SLOAD) == 0) 51447544Skarels wakeup((caddr_t)&proc0); 51547544Skarels else if (p->p_pri < curpri) 51647544Skarels need_resched(); 51733Sbill } 51833Sbill 51933Sbill /* 52047544Skarels * Compute priority of process when running in user mode. 52147544Skarels * Arrange to reschedule if the resulting priority 52247544Skarels * is better than that of the current process. 52333Sbill */ 52447544Skarels setpri(p) 52547544Skarels register struct proc *p; 52633Sbill { 52747544Skarels register unsigned int newpri; 52833Sbill 52947544Skarels newpri = PUSER + p->p_cpu / 4 + 2 * p->p_nice; 53047544Skarels newpri = min(newpri, MAXPRI); 53147544Skarels p->p_usrpri = newpri; 53247544Skarels if (newpri < curpri) 53347544Skarels need_resched(); 53433Sbill } 535