123376Smckusick /* 2*49095Skarels * Copyright (c) 1982, 1986, 1990, 1991 Regents of the University of California. 323376Smckusick * All rights reserved. The Berkeley software License Agreement 423376Smckusick * specifies the terms and conditions for redistribution. 523376Smckusick * 6*49095Skarels * @(#)kern_synch.c 7.15 (Berkeley) 05/04/91 723376Smckusick */ 833Sbill 917093Sbloom #include "param.h" 1017093Sbloom #include "systm.h" 1117093Sbloom #include "proc.h" 1217093Sbloom #include "kernel.h" 1317093Sbloom #include "buf.h" 14*49095Skarels #include "signalvar.h" 15*49095Skarels #include "resourcevar.h" 169756Ssam 1747544Skarels #include "machine/cpu.h" 1845742Smckusick 198102Sroot /* 208102Sroot * Force switch among equal priority processes every 100ms. 218102Sroot */ 228102Sroot roundrobin() 238102Sroot { 248102Sroot 2547544Skarels need_resched(); 268624Sroot timeout(roundrobin, (caddr_t)0, hz / 10); 278102Sroot } 288102Sroot 2932908Smckusick /* 3032908Smckusick * constants for digital decay and forget 3132908Smckusick * 90% of (p_cpu) usage in 5*loadav time 3232908Smckusick * 95% of (p_pctcpu) usage in 60 seconds (load insensitive) 3332908Smckusick * Note that, as ps(1) mentions, this can let percentages 3432908Smckusick * total over 100% (I've seen 137.9% for 3 processes). 3532908Smckusick * 3632908Smckusick * Note that hardclock updates p_cpu and p_cpticks independently. 3732908Smckusick * 3832908Smckusick * We wish to decay away 90% of p_cpu in (5 * loadavg) seconds. 3932908Smckusick * That is, the system wants to compute a value of decay such 4032908Smckusick * that the following for loop: 4132908Smckusick * for (i = 0; i < (5 * loadavg); i++) 4232908Smckusick * p_cpu *= decay; 4332908Smckusick * will compute 4432908Smckusick * p_cpu *= 0.1; 4532908Smckusick * for all values of loadavg: 4632908Smckusick * 4732908Smckusick * Mathematically this loop can be expressed by saying: 4832908Smckusick * decay ** (5 * loadavg) ~= .1 4932908Smckusick * 5032908Smckusick * The system computes decay as: 5132908Smckusick * decay = (2 * loadavg) / (2 * loadavg + 1) 5232908Smckusick * 5332908Smckusick * We wish to prove that the system's computation of decay 5432908Smckusick * will always fulfill the equation: 5532908Smckusick * decay ** (5 * loadavg) ~= .1 5632908Smckusick * 5732908Smckusick * If we compute b as: 5832908Smckusick * b = 2 * loadavg 5932908Smckusick * then 6032908Smckusick * decay = b / (b + 1) 6132908Smckusick * 6232908Smckusick * We now need to prove two things: 6332908Smckusick * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1) 6432908Smckusick * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg) 6532908Smckusick * 6632908Smckusick * Facts: 6732908Smckusick * For x close to zero, exp(x) =~ 1 + x, since 6832908Smckusick * exp(x) = 0! + x**1/1! + x**2/2! + ... . 6932908Smckusick * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b. 7032908Smckusick * For x close to zero, ln(1+x) =~ x, since 7132908Smckusick * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1 7232908Smckusick * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1). 7332908Smckusick * ln(.1) =~ -2.30 7432908Smckusick * 7532908Smckusick * Proof of (1): 7632908Smckusick * Solve (factor)**(power) =~ .1 given power (5*loadav): 7732908Smckusick * solving for factor, 7832908Smckusick * ln(factor) =~ (-2.30/5*loadav), or 7947544Skarels * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) = 8032908Smckusick * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED 8132908Smckusick * 8232908Smckusick * Proof of (2): 8332908Smckusick * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)): 8432908Smckusick * solving for power, 8532908Smckusick * power*ln(b/(b+1)) =~ -2.30, or 8632908Smckusick * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED 8732908Smckusick * 8832908Smckusick * Actual power values for the implemented algorithm are as follows: 8932908Smckusick * loadav: 1 2 3 4 9032908Smckusick * power: 5.68 10.32 14.94 19.55 9132908Smckusick */ 9217541Skarels 9338164Smckusick /* calculations for digital decay to forget 90% of usage in 5*loadav sec */ 9447544Skarels #define loadfactor(loadav) (2 * (loadav)) 9547544Skarels #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE)) 968102Sroot 9738164Smckusick /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */ 9838164Smckusick fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */ 9938164Smckusick 1008102Sroot /* 10138164Smckusick * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the 10238164Smckusick * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below 10338164Smckusick * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT). 10438164Smckusick * 10538164Smckusick * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used: 10638164Smckusick * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits). 10738164Smckusick * 10838164Smckusick * If you dont want to bother with the faster/more-accurate formula, you 10938164Smckusick * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate 11038164Smckusick * (more general) method of calculating the %age of CPU used by a process. 11138164Smckusick */ 11238164Smckusick #define CCPU_SHIFT 11 11338164Smckusick 11438164Smckusick /* 1158102Sroot * Recompute process priorities, once a second 1168102Sroot */ 1178102Sroot schedcpu() 1188102Sroot { 11947544Skarels register fixpt_t loadfac = loadfactor(averunnable[0]); 1208102Sroot register struct proc *p; 12147544Skarels register int s; 12247544Skarels register unsigned int newcpu; 1238102Sroot 1248102Sroot wakeup((caddr_t)&lbolt); 12516532Skarels for (p = allproc; p != NULL; p = p->p_nxt) { 12647544Skarels /* 12747544Skarels * Increment time in/out of memory and sleep time 12847544Skarels * (if sleeping). We ignore overflow; with 16-bit int's 12947544Skarels * (remember them?) overflow takes 45 days. 13047544Skarels */ 13147544Skarels p->p_time++; 13247544Skarels if (p->p_stat == SSLEEP || p->p_stat == SSTOP) 13347544Skarels p->p_slptime++; 13438164Smckusick p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT; 13517541Skarels /* 13617541Skarels * If the process has slept the entire second, 13717541Skarels * stop recalculating its priority until it wakes up. 13817541Skarels */ 13938164Smckusick if (p->p_slptime > 1) 14017541Skarels continue; 14117541Skarels /* 14217541Skarels * p_pctcpu is only for ps. 14317541Skarels */ 14438164Smckusick #if (FSHIFT >= CCPU_SHIFT) 14538164Smckusick p->p_pctcpu += (hz == 100)? 14638164Smckusick ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT): 14738164Smckusick 100 * (((fixpt_t) p->p_cpticks) 14838164Smckusick << (FSHIFT - CCPU_SHIFT)) / hz; 14938164Smckusick #else 15038164Smckusick p->p_pctcpu += ((FSCALE - ccpu) * 15138164Smckusick (p->p_cpticks * FSCALE / hz)) >> FSHIFT; 15238164Smckusick #endif 1538102Sroot p->p_cpticks = 0; 15447544Skarels newcpu = (u_int) decay_cpu(loadfac, p->p_cpu) + p->p_nice; 15547544Skarels p->p_cpu = min(newcpu, UCHAR_MAX); 15647544Skarels setpri(p); 15717541Skarels s = splhigh(); /* prevent state changes */ 1588102Sroot if (p->p_pri >= PUSER) { 15947544Skarels #define PPQ (128 / NQS) /* priorities per queue */ 160*49095Skarels if ((p != curproc) && 1618102Sroot p->p_stat == SRUN && 1628102Sroot (p->p_flag & SLOAD) && 16316795Skarels (p->p_pri / PPQ) != (p->p_usrpri / PPQ)) { 1648102Sroot remrq(p); 1658102Sroot p->p_pri = p->p_usrpri; 1668102Sroot setrq(p); 1678102Sroot } else 1688102Sroot p->p_pri = p->p_usrpri; 1698102Sroot } 1708102Sroot splx(s); 1718102Sroot } 1728102Sroot vmmeter(); 1738102Sroot if (bclnlist != NULL) 17447544Skarels wakeup((caddr_t)pageproc); 1758624Sroot timeout(schedcpu, (caddr_t)0, hz); 1768102Sroot } 1778102Sroot 17817541Skarels /* 17917541Skarels * Recalculate the priority of a process after it has slept for a while. 18047544Skarels * For all load averages >= 1 and max p_cpu of 255, sleeping for at least 18147544Skarels * six times the loadfactor will decay p_cpu to zero. 18217541Skarels */ 18317541Skarels updatepri(p) 18417541Skarels register struct proc *p; 18517541Skarels { 18647544Skarels register unsigned int newcpu = p->p_cpu; 18747544Skarels register fixpt_t loadfac = loadfactor(averunnable[0]); 18817541Skarels 18947544Skarels if (p->p_slptime > 5 * loadfac) 19047544Skarels p->p_cpu = 0; 19147544Skarels else { 19247544Skarels p->p_slptime--; /* the first time was done in schedcpu */ 19347544Skarels while (newcpu && --p->p_slptime) 19447544Skarels newcpu = (int) decay_cpu(loadfac, newcpu); 19547544Skarels p->p_cpu = min(newcpu, UCHAR_MAX); 19647544Skarels } 19747544Skarels setpri(p); 19817541Skarels } 19917541Skarels 20033Sbill #define SQSIZE 0100 /* Must be power of 2 */ 20133Sbill #define HASH(x) (( (int) x >> 5) & (SQSIZE-1)) 20221099Smckusick struct slpque { 20321099Smckusick struct proc *sq_head; 20421099Smckusick struct proc **sq_tailp; 20521099Smckusick } slpque[SQSIZE]; 20633Sbill 20733Sbill /* 20845671Skarels * During autoconfiguration or after a panic, a sleep will simply 20945671Skarels * lower the priority briefly to allow interrupts, then return. 21045671Skarels * The priority to be used (safepri) is machine-dependent, thus this 21145671Skarels * value is initialized and maintained in the machine-dependent layers. 21245671Skarels * This priority will typically be 0, or the lowest priority 21345671Skarels * that is safe for use on the interrupt stack; it can be made 21445671Skarels * higher to block network software interrupts after panics. 21545671Skarels */ 21645671Skarels int safepri; 21745671Skarels 21845671Skarels /* 21940711Skarels * General sleep call. 22040711Skarels * Suspends current process until a wakeup is made on chan. 22140711Skarels * The process will then be made runnable with priority pri. 22240711Skarels * Sleeps at most timo/hz seconds (0 means no timeout). 22340711Skarels * If pri includes PCATCH flag, signals are checked 22440711Skarels * before and after sleeping, else signals are not checked. 22540711Skarels * Returns 0 if awakened, EWOULDBLOCK if the timeout expires. 22640711Skarels * If PCATCH is set and a signal needs to be delivered, 22740711Skarels * ERESTART is returned if the current system call should be restarted 22840711Skarels * if possible, and EINTR is returned if the system call should 22940711Skarels * be interrupted by the signal (return EINTR). 23033Sbill */ 23140711Skarels tsleep(chan, pri, wmesg, timo) 23240710Smarc caddr_t chan; 23340710Smarc int pri; 23440710Smarc char *wmesg; 23540710Smarc int timo; 23640710Smarc { 237*49095Skarels register struct proc *p = curproc; 23840710Smarc register struct slpque *qp; 23940710Smarc register s; 24040711Skarels int sig, catch = pri & PCATCH; 24140710Smarc extern int cold; 24240710Smarc int endtsleep(); 24340710Smarc 24440710Smarc s = splhigh(); 24540710Smarc if (cold || panicstr) { 24640710Smarc /* 24740710Smarc * After a panic, or during autoconfiguration, 24840710Smarc * just give interrupts a chance, then just return; 24940710Smarc * don't run any other procs or panic below, 25040710Smarc * in case this is the idle process and already asleep. 25140710Smarc */ 25245671Skarels splx(safepri); 25340710Smarc splx(s); 25440710Smarc return (0); 25540710Smarc } 25640710Smarc #ifdef DIAGNOSTIC 25747544Skarels if (chan == 0 || p->p_stat != SRUN || p->p_rlink) 25840711Skarels panic("tsleep"); 25940710Smarc #endif 26047544Skarels p->p_wchan = chan; 26147544Skarels p->p_wmesg = wmesg; 26247544Skarels p->p_slptime = 0; 26347544Skarels p->p_pri = pri & PRIMASK; 26440710Smarc qp = &slpque[HASH(chan)]; 26540710Smarc if (qp->sq_head == 0) 26647544Skarels qp->sq_head = p; 26740710Smarc else 26847544Skarels *qp->sq_tailp = p; 26947544Skarels *(qp->sq_tailp = &p->p_link) = 0; 27045671Skarels if (timo) 27147544Skarels timeout(endtsleep, (caddr_t)p, timo); 27240710Smarc /* 27347544Skarels * We put ourselves on the sleep queue and start our timeout 27447544Skarels * before calling CURSIG, as we could stop there, and a wakeup 27547544Skarels * or a SIGCONT (or both) could occur while we were stopped. 27645671Skarels * A SIGCONT would cause us to be marked as SSLEEP 27745671Skarels * without resuming us, thus we must be ready for sleep 27845671Skarels * when CURSIG is called. If the wakeup happens while we're 27947544Skarels * stopped, p->p_wchan will be 0 upon return from CURSIG. 28040710Smarc */ 28140711Skarels if (catch) { 28247544Skarels p->p_flag |= SSINTR; 28347544Skarels if (sig = CURSIG(p)) { 28447544Skarels if (p->p_wchan) 28547544Skarels unsleep(p); 28647544Skarels p->p_stat = SRUN; 28745671Skarels goto resume; 28840711Skarels } 28947544Skarels if (p->p_wchan == 0) { 29045671Skarels catch = 0; 29145671Skarels goto resume; 29240711Skarels } 29340710Smarc } 29447544Skarels p->p_stat = SSLEEP; 29540710Smarc (void) spl0(); 29647544Skarels p->p_stats->p_ru.ru_nvcsw++; 29740710Smarc swtch(); 29845671Skarels resume: 29947544Skarels curpri = p->p_usrpri; 30040710Smarc splx(s); 30147544Skarels p->p_flag &= ~SSINTR; 30247544Skarels if (p->p_flag & STIMO) { 30347544Skarels p->p_flag &= ~STIMO; 30445671Skarels if (catch == 0 || sig == 0) 30545671Skarels return (EWOULDBLOCK); 30645671Skarels } else if (timo) 30747544Skarels untimeout(endtsleep, (caddr_t)p); 30847544Skarels if (catch && (sig != 0 || (sig = CURSIG(p)))) { 30947544Skarels if (p->p_sigacts->ps_sigintr & sigmask(sig)) 31040711Skarels return (EINTR); 31140711Skarels return (ERESTART); 31240711Skarels } 31340710Smarc return (0); 31440710Smarc } 31540710Smarc 31640710Smarc /* 31740710Smarc * Implement timeout for tsleep. 31840710Smarc * If process hasn't been awakened (wchan non-zero), 31940710Smarc * set timeout flag and undo the sleep. If proc 32040710Smarc * is stopped, just unsleep so it will remain stopped. 32140710Smarc */ 32240710Smarc endtsleep(p) 32340710Smarc register struct proc *p; 32440710Smarc { 32540710Smarc int s = splhigh(); 32640710Smarc 32740710Smarc if (p->p_wchan) { 32840710Smarc if (p->p_stat == SSLEEP) 32940710Smarc setrun(p); 33040710Smarc else 33140710Smarc unsleep(p); 33240710Smarc p->p_flag |= STIMO; 33340710Smarc } 33440710Smarc splx(s); 33540710Smarc } 33640710Smarc 33740711Skarels /* 33840711Skarels * Short-term, non-interruptable sleep. 33940711Skarels */ 34033Sbill sleep(chan, pri) 3418033Sroot caddr_t chan; 3428033Sroot int pri; 34333Sbill { 344*49095Skarels register struct proc *p = curproc; 34521099Smckusick register struct slpque *qp; 346207Sbill register s; 34730532Skarels extern int cold; 34833Sbill 34940711Skarels #ifdef DIAGNOSTIC 35040711Skarels if (pri > PZERO) { 35140711Skarels printf("sleep called with pri %d > PZERO, wchan: %x\n", 35240711Skarels pri, chan); 35340711Skarels panic("old sleep"); 35440711Skarels } 35540711Skarels #endif 35617541Skarels s = splhigh(); 35730532Skarels if (cold || panicstr) { 35818363Skarels /* 35930532Skarels * After a panic, or during autoconfiguration, 36030532Skarels * just give interrupts a chance, then just return; 36130532Skarels * don't run any other procs or panic below, 36230532Skarels * in case this is the idle process and already asleep. 36318363Skarels */ 36445671Skarels splx(safepri); 36518363Skarels splx(s); 36618363Skarels return; 36718363Skarels } 36840710Smarc #ifdef DIAGNOSTIC 36947544Skarels if (chan==0 || p->p_stat != SRUN || p->p_rlink) 37033Sbill panic("sleep"); 37140710Smarc #endif 37247544Skarels p->p_wchan = chan; 37347544Skarels p->p_wmesg = NULL; 37447544Skarels p->p_slptime = 0; 37547544Skarels p->p_pri = pri; 37621099Smckusick qp = &slpque[HASH(chan)]; 37721099Smckusick if (qp->sq_head == 0) 37847544Skarels qp->sq_head = p; 37921099Smckusick else 38047544Skarels *qp->sq_tailp = p; 38147544Skarels *(qp->sq_tailp = &p->p_link) = 0; 38247544Skarels p->p_stat = SSLEEP; 38340711Skarels (void) spl0(); 38447544Skarels p->p_stats->p_ru.ru_nvcsw++; 38540711Skarels swtch(); 38647544Skarels curpri = p->p_usrpri; 38733Sbill splx(s); 38833Sbill } 38933Sbill 39033Sbill /* 391181Sbill * Remove a process from its wait queue 392181Sbill */ 393181Sbill unsleep(p) 3944826Swnj register struct proc *p; 395181Sbill { 39621099Smckusick register struct slpque *qp; 397181Sbill register struct proc **hp; 39821099Smckusick int s; 399181Sbill 40017541Skarels s = splhigh(); 401181Sbill if (p->p_wchan) { 40221099Smckusick hp = &(qp = &slpque[HASH(p->p_wchan)])->sq_head; 403181Sbill while (*hp != p) 404181Sbill hp = &(*hp)->p_link; 405181Sbill *hp = p->p_link; 40621099Smckusick if (qp->sq_tailp == &p->p_link) 40721099Smckusick qp->sq_tailp = hp; 408181Sbill p->p_wchan = 0; 409181Sbill } 410181Sbill splx(s); 411181Sbill } 412181Sbill 413181Sbill /* 41447544Skarels * Wakeup on "chan"; set all processes 41547544Skarels * sleeping on chan to run state. 41633Sbill */ 41733Sbill wakeup(chan) 4184826Swnj register caddr_t chan; 41933Sbill { 42021099Smckusick register struct slpque *qp; 42121099Smckusick register struct proc *p, **q; 42233Sbill int s; 42333Sbill 42417541Skarels s = splhigh(); 42521099Smckusick qp = &slpque[HASH(chan)]; 42633Sbill restart: 42721099Smckusick for (q = &qp->sq_head; p = *q; ) { 42840710Smarc #ifdef DIAGNOSTIC 429181Sbill if (p->p_rlink || p->p_stat != SSLEEP && p->p_stat != SSTOP) 43033Sbill panic("wakeup"); 43140710Smarc #endif 43247544Skarels if (p->p_wchan == chan) { 43333Sbill p->p_wchan = 0; 434187Sbill *q = p->p_link; 43521099Smckusick if (qp->sq_tailp == &p->p_link) 43621099Smckusick qp->sq_tailp = q; 437181Sbill if (p->p_stat == SSLEEP) { 438181Sbill /* OPTIMIZED INLINE EXPANSION OF setrun(p) */ 43921763Skarels if (p->p_slptime > 1) 44021763Skarels updatepri(p); 44147544Skarels p->p_slptime = 0; 442181Sbill p->p_stat = SRUN; 4432702Swnj if (p->p_flag & SLOAD) 444181Sbill setrq(p); 44516795Skarels /* 44616795Skarels * Since curpri is a usrpri, 44716795Skarels * p->p_pri is always better than curpri. 44816795Skarels */ 44947544Skarels if ((p->p_flag&SLOAD) == 0) 45047544Skarels wakeup((caddr_t)&proc0); 45147544Skarels else 45247544Skarels need_resched(); 453181Sbill /* END INLINE EXPANSION */ 454187Sbill goto restart; 45533Sbill } 456187Sbill } else 457187Sbill q = &p->p_link; 45833Sbill } 45933Sbill splx(s); 46033Sbill } 46133Sbill 46233Sbill /* 46333Sbill * Initialize the (doubly-linked) run queues 46433Sbill * to be empty. 46533Sbill */ 46633Sbill rqinit() 46733Sbill { 46833Sbill register int i; 46933Sbill 47033Sbill for (i = 0; i < NQS; i++) 47133Sbill qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i]; 47233Sbill } 47333Sbill 47433Sbill /* 47547544Skarels * Change process state to be runnable, 47647544Skarels * placing it on the run queue if it is in memory, 47747544Skarels * and awakening the swapper if it isn't in memory. 47833Sbill */ 47933Sbill setrun(p) 4804826Swnj register struct proc *p; 48133Sbill { 4824826Swnj register int s; 48333Sbill 48417541Skarels s = splhigh(); 48533Sbill switch (p->p_stat) { 48633Sbill 48733Sbill case 0: 48833Sbill case SWAIT: 48933Sbill case SRUN: 49033Sbill case SZOMB: 49133Sbill default: 49233Sbill panic("setrun"); 49333Sbill 494207Sbill case SSTOP: 49533Sbill case SSLEEP: 496181Sbill unsleep(p); /* e.g. when sending signals */ 49733Sbill break; 49833Sbill 49933Sbill case SIDL: 50033Sbill break; 50133Sbill } 50233Sbill p->p_stat = SRUN; 50333Sbill if (p->p_flag & SLOAD) 50433Sbill setrq(p); 50533Sbill splx(s); 50630232Skarels if (p->p_slptime > 1) 50730232Skarels updatepri(p); 50847544Skarels p->p_slptime = 0; 50947544Skarels if ((p->p_flag&SLOAD) == 0) 51047544Skarels wakeup((caddr_t)&proc0); 51147544Skarels else if (p->p_pri < curpri) 51247544Skarels need_resched(); 51333Sbill } 51433Sbill 51533Sbill /* 51647544Skarels * Compute priority of process when running in user mode. 51747544Skarels * Arrange to reschedule if the resulting priority 51847544Skarels * is better than that of the current process. 51933Sbill */ 52047544Skarels setpri(p) 52147544Skarels register struct proc *p; 52233Sbill { 52347544Skarels register unsigned int newpri; 52433Sbill 52547544Skarels newpri = PUSER + p->p_cpu / 4 + 2 * p->p_nice; 52647544Skarels newpri = min(newpri, MAXPRI); 52747544Skarels p->p_usrpri = newpri; 52847544Skarels if (newpri < curpri) 52947544Skarels need_resched(); 53033Sbill } 531