xref: /csrg-svn/sys/kern/kern_sig.c (revision 29946)
1 /*
2  * Copyright (c) 1982, 1986 Regents of the University of California.
3  * All rights reserved.  The Berkeley software License Agreement
4  * specifies the terms and conditions for redistribution.
5  *
6  *	@(#)kern_sig.c	7.2 (Berkeley) 11/03/86
7  */
8 
9 #include "../machine/reg.h"
10 #include "../machine/pte.h"
11 #include "../machine/psl.h"
12 #include "../machine/mtpr.h"
13 
14 #include "param.h"
15 #include "systm.h"
16 #include "dir.h"
17 #include "user.h"
18 #include "inode.h"
19 #include "proc.h"
20 #include "timeb.h"
21 #include "times.h"
22 #include "buf.h"
23 #include "mount.h"
24 #include "text.h"
25 #include "seg.h"
26 #include "vm.h"
27 #include "acct.h"
28 #include "uio.h"
29 #include "kernel.h"
30 
31 #define	cantmask	(sigmask(SIGKILL)|sigmask(SIGCONT)|sigmask(SIGSTOP))
32 #define	stopsigmask	(sigmask(SIGSTOP)|sigmask(SIGTSTP)| \
33 			sigmask(SIGTTIN)|sigmask(SIGTTOU))
34 
35 /*
36  * Generalized interface signal handler.
37  */
38 sigvec()
39 {
40 	register struct a {
41 		int	signo;
42 		struct	sigvec *nsv;
43 		struct	sigvec *osv;
44 	} *uap = (struct a  *)u.u_ap;
45 	struct sigvec vec;
46 	register struct sigvec *sv;
47 	register int sig;
48 	int bit;
49 
50 	sig = uap->signo;
51 	if (sig <= 0 || sig >= NSIG || sig == SIGKILL || sig == SIGSTOP) {
52 		u.u_error = EINVAL;
53 		return;
54 	}
55 	sv = &vec;
56 	if (uap->osv) {
57 		sv->sv_handler = u.u_signal[sig];
58 		sv->sv_mask = u.u_sigmask[sig];
59 		bit = sigmask(sig);
60 		sv->sv_flags = 0;
61 		if ((u.u_sigonstack & bit) != 0)
62 			sv->sv_flags |= SV_ONSTACK;
63 		if ((u.u_sigintr & bit) != 0)
64 			sv->sv_flags |= SV_INTERRUPT;
65 		u.u_error =
66 		    copyout((caddr_t)sv, (caddr_t)uap->osv, sizeof (vec));
67 		if (u.u_error)
68 			return;
69 	}
70 	if (uap->nsv) {
71 		u.u_error =
72 		    copyin((caddr_t)uap->nsv, (caddr_t)sv, sizeof (vec));
73 		if (u.u_error)
74 			return;
75 		if (sig == SIGCONT && sv->sv_handler == SIG_IGN) {
76 			u.u_error = EINVAL;
77 			return;
78 		}
79 		setsigvec(sig, sv);
80 	}
81 }
82 
83 setsigvec(sig, sv)
84 	int sig;
85 	register struct sigvec *sv;
86 {
87 	register struct proc *p;
88 	register int bit;
89 
90 	bit = sigmask(sig);
91 	p = u.u_procp;
92 	/*
93 	 * Change setting atomically.
94 	 */
95 	(void) splhigh();
96 	u.u_signal[sig] = sv->sv_handler;
97 	u.u_sigmask[sig] = sv->sv_mask &~ cantmask;
98 	if (sv->sv_flags & SV_INTERRUPT)
99 		u.u_sigintr |= bit;
100 	else
101 		u.u_sigintr &= ~bit;
102 	if (sv->sv_flags & SV_ONSTACK)
103 		u.u_sigonstack |= bit;
104 	else
105 		u.u_sigonstack &= ~bit;
106 	if (sv->sv_handler == SIG_IGN) {
107 		p->p_sig &= ~bit;		/* never to be seen again */
108 		p->p_sigignore |= bit;
109 		p->p_sigcatch &= ~bit;
110 	} else {
111 		p->p_sigignore &= ~bit;
112 		if (sv->sv_handler == SIG_DFL)
113 			p->p_sigcatch &= ~bit;
114 		else
115 			p->p_sigcatch |= bit;
116 	}
117 	(void) spl0();
118 }
119 
120 sigblock()
121 {
122 	struct a {
123 		int	mask;
124 	} *uap = (struct a *)u.u_ap;
125 	register struct proc *p = u.u_procp;
126 
127 	(void) splhigh();
128 	u.u_r.r_val1 = p->p_sigmask;
129 	p->p_sigmask |= uap->mask &~ cantmask;
130 	(void) spl0();
131 }
132 
133 sigsetmask()
134 {
135 	struct a {
136 		int	mask;
137 	} *uap = (struct a *)u.u_ap;
138 	register struct proc *p = u.u_procp;
139 
140 	(void) splhigh();
141 	u.u_r.r_val1 = p->p_sigmask;
142 	p->p_sigmask = uap->mask &~ cantmask;
143 	(void) spl0();
144 }
145 
146 sigpause()
147 {
148 	struct a {
149 		int	mask;
150 	} *uap = (struct a *)u.u_ap;
151 	register struct proc *p = u.u_procp;
152 
153 	/*
154 	 * When returning from sigpause, we want
155 	 * the old mask to be restored after the
156 	 * signal handler has finished.  Thus, we
157 	 * save it here and mark the proc structure
158 	 * to indicate this (should be in u.).
159 	 */
160 	u.u_oldmask = p->p_sigmask;
161 	p->p_flag |= SOMASK;
162 	p->p_sigmask = uap->mask &~ cantmask;
163 	for (;;)
164 		sleep((caddr_t)&u, PSLEP);
165 	/*NOTREACHED*/
166 }
167 #undef cantmask
168 
169 sigstack()
170 {
171 	register struct a {
172 		struct	sigstack *nss;
173 		struct	sigstack *oss;
174 	} *uap = (struct a *)u.u_ap;
175 	struct sigstack ss;
176 
177 	if (uap->oss) {
178 		u.u_error = copyout((caddr_t)&u.u_sigstack, (caddr_t)uap->oss,
179 		    sizeof (struct sigstack));
180 		if (u.u_error)
181 			return;
182 	}
183 	if (uap->nss) {
184 		u.u_error =
185 		    copyin((caddr_t)uap->nss, (caddr_t)&ss, sizeof (ss));
186 		if (u.u_error == 0)
187 			u.u_sigstack = ss;
188 	}
189 }
190 
191 kill()
192 {
193 	register struct a {
194 		int	pid;
195 		int	signo;
196 	} *uap = (struct a *)u.u_ap;
197 	register struct proc *p;
198 
199 	if (uap->signo < 0 || uap->signo > NSIG) {
200 		u.u_error = EINVAL;
201 		return;
202 	}
203 	if (uap->pid > 0) {
204 		/* kill single process */
205 		p = pfind(uap->pid);
206 		if (p == 0) {
207 			u.u_error = ESRCH;
208 			return;
209 		}
210 		if (u.u_uid && u.u_uid != p->p_uid)
211 			u.u_error = EPERM;
212 		else if (uap->signo)
213 			psignal(p, uap->signo);
214 		return;
215 	}
216 	switch (uap->pid) {
217 	case -1:		/* broadcast signal */
218 		u.u_error = killpg1(uap->signo, 0, 1);
219 		break;
220 	case 0:			/* signal own process group */
221 		u.u_error = killpg1(uap->signo, 0, 0);
222 		break;
223 	default:		/* negative explicit process group */
224 		u.u_error = killpg1(uap->signo, -uap->pid, 0);
225 		break;
226 	}
227 	return;
228 }
229 
230 killpg()
231 {
232 	register struct a {
233 		int	pgrp;
234 		int	signo;
235 	} *uap = (struct a *)u.u_ap;
236 
237 	if (uap->signo < 0 || uap->signo > NSIG) {
238 		u.u_error = EINVAL;
239 		return;
240 	}
241 	u.u_error = killpg1(uap->signo, uap->pgrp, 0);
242 }
243 
244 /* KILL CODE SHOULDNT KNOW ABOUT PROCESS INTERNALS !?! */
245 
246 killpg1(signo, pgrp, all)
247 	int signo, pgrp, all;
248 {
249 	register struct proc *p;
250 	int f, error = 0;
251 
252 	if (!all && pgrp == 0) {
253 		/*
254 		 * Zero process id means send to my process group.
255 		 */
256 		pgrp = u.u_procp->p_pgrp;
257 		if (pgrp == 0)
258 			return (ESRCH);
259 	}
260 	for (f = 0, p = allproc; p != NULL; p = p->p_nxt) {
261 		if ((p->p_pgrp != pgrp && !all) || p->p_ppid == 0 ||
262 		    (p->p_flag&SSYS) || (all && p == u.u_procp))
263 			continue;
264 		if (u.u_uid != 0 && u.u_uid != p->p_uid &&
265 		    (signo != SIGCONT || !inferior(p))) {
266 			if (!all)
267 				error = EPERM;
268 			continue;
269 		}
270 		f++;
271 		if (signo)
272 			psignal(p, signo);
273 	}
274 	return (error ? error : (f == 0 ? ESRCH : 0));
275 }
276 
277 /*
278  * Send the specified signal to
279  * all processes with 'pgrp' as
280  * process group.
281  */
282 gsignal(pgrp, sig)
283 	register int pgrp;
284 {
285 	register struct proc *p;
286 
287 	if (pgrp == 0)
288 		return;
289 	for (p = allproc; p != NULL; p = p->p_nxt)
290 		if (p->p_pgrp == pgrp)
291 			psignal(p, sig);
292 }
293 
294 /*
295  * Send the specified signal to
296  * the specified process.
297  */
298 psignal(p, sig)
299 	register struct proc *p;
300 	register int sig;
301 {
302 	register int s;
303 	register int (*action)();
304 	int mask;
305 
306 	if ((unsigned)sig >= NSIG)
307 		return;
308 	mask = sigmask(sig);
309 
310 	/*
311 	 * If proc is traced, always give parent a chance.
312 	 */
313 	if (p->p_flag & STRC)
314 		action = SIG_DFL;
315 	else {
316 		/*
317 		 * If the signal is being ignored,
318 		 * then we forget about it immediately.
319 		 */
320 		if (p->p_sigignore & mask)
321 			return;
322 		if (p->p_sigmask & mask)
323 			action = SIG_HOLD;
324 		else if (p->p_sigcatch & mask)
325 			action = SIG_CATCH;
326 		else
327 			action = SIG_DFL;
328 	}
329 	if (sig) {
330 		p->p_sig |= mask;
331 		switch (sig) {
332 
333 		case SIGTERM:
334 			if ((p->p_flag&STRC) || action != SIG_DFL)
335 				break;
336 			/* fall into ... */
337 
338 		case SIGKILL:
339 			if (p->p_nice > NZERO)
340 				p->p_nice = NZERO;
341 			break;
342 
343 		case SIGCONT:
344 			p->p_sig &= ~stopsigmask;
345 			break;
346 
347 		case SIGSTOP:
348 		case SIGTSTP:
349 		case SIGTTIN:
350 		case SIGTTOU:
351 			p->p_sig &= ~sigmask(SIGCONT);
352 			break;
353 		}
354 	}
355 	/*
356 	 * Defer further processing for signals which are held.
357 	 */
358 	if (action == SIG_HOLD)
359 		return;
360 	s = splhigh();
361 	switch (p->p_stat) {
362 
363 	case SSLEEP:
364 		/*
365 		 * If process is sleeping at negative priority
366 		 * we can't interrupt the sleep... the signal will
367 		 * be noticed when the process returns through
368 		 * trap() or syscall().
369 		 */
370 		if (p->p_pri <= PZERO)
371 			goto out;
372 		/*
373 		 * Process is sleeping and traced... make it runnable
374 		 * so it can discover the signal in issig() and stop
375 		 * for the parent.
376 		 */
377 		if (p->p_flag&STRC)
378 			goto run;
379 		switch (sig) {
380 
381 		case SIGSTOP:
382 		case SIGTSTP:
383 		case SIGTTIN:
384 		case SIGTTOU:
385 			/*
386 			 * These are the signals which by default
387 			 * stop a process.
388 			 */
389 			if (action != SIG_DFL)
390 				goto run;
391 			/*
392 			 * Don't clog system with children of init
393 			 * stopped from the keyboard.
394 			 */
395 			if (sig != SIGSTOP && p->p_pptr == &proc[1]) {
396 				psignal(p, SIGKILL);
397 				p->p_sig &= ~mask;
398 				splx(s);
399 				return;
400 			}
401 			/*
402 			 * If a child in vfork(), stopping could
403 			 * cause deadlock.
404 			 */
405 			if (p->p_flag&SVFORK)
406 				goto out;
407 			p->p_sig &= ~mask;
408 			p->p_cursig = sig;
409 			psignal(p->p_pptr, SIGCHLD);
410 			stop(p);
411 			goto out;
412 
413 		case SIGIO:
414 		case SIGURG:
415 		case SIGCHLD:
416 		case SIGWINCH:
417 			/*
418 			 * These signals are special in that they
419 			 * don't get propogated... if the process
420 			 * isn't interested, forget it.
421 			 */
422 			if (action != SIG_DFL)
423 				goto run;
424 			p->p_sig &= ~mask;		/* take it away */
425 			goto out;
426 
427 		default:
428 			/*
429 			 * All other signals cause the process to run
430 			 */
431 			goto run;
432 		}
433 		/*NOTREACHED*/
434 
435 	case SSTOP:
436 		/*
437 		 * If traced process is already stopped,
438 		 * then no further action is necessary.
439 		 */
440 		if (p->p_flag&STRC)
441 			goto out;
442 		switch (sig) {
443 
444 		case SIGKILL:
445 			/*
446 			 * Kill signal always sets processes running.
447 			 */
448 			goto run;
449 
450 		case SIGCONT:
451 			/*
452 			 * If the process catches SIGCONT, let it handle
453 			 * the signal itself.  If it isn't waiting on
454 			 * an event, then it goes back to run state.
455 			 * Otherwise, process goes back to sleep state.
456 			 */
457 			if (action != SIG_DFL || p->p_wchan == 0)
458 				goto run;
459 			p->p_stat = SSLEEP;
460 			goto out;
461 
462 		case SIGSTOP:
463 		case SIGTSTP:
464 		case SIGTTIN:
465 		case SIGTTOU:
466 			/*
467 			 * Already stopped, don't need to stop again.
468 			 * (If we did the shell could get confused.)
469 			 */
470 			p->p_sig &= ~mask;		/* take it away */
471 			goto out;
472 
473 		default:
474 			/*
475 			 * If process is sleeping interruptibly, then
476 			 * unstick it so that when it is continued
477 			 * it can look at the signal.
478 			 * But don't setrun the process as its not to
479 			 * be unstopped by the signal alone.
480 			 */
481 			if (p->p_wchan && p->p_pri > PZERO)
482 				unsleep(p);
483 			goto out;
484 		}
485 		/*NOTREACHED*/
486 
487 	default:
488 		/*
489 		 * SRUN, SIDL, SZOMB do nothing with the signal,
490 		 * other than kicking ourselves if we are running.
491 		 * It will either never be noticed, or noticed very soon.
492 		 */
493 		if (p == u.u_procp && !noproc)
494 			aston();
495 		goto out;
496 	}
497 	/*NOTREACHED*/
498 run:
499 	/*
500 	 * Raise priority to at least PUSER.
501 	 */
502 	if (p->p_pri > PUSER)
503 		p->p_pri = PUSER;
504 	setrun(p);
505 out:
506 	splx(s);
507 }
508 
509 /*
510  * Returns true if the current
511  * process has a signal to process.
512  * The signal to process is put in p_cursig.
513  * This is asked at least once each time a process enters the
514  * system (though this can usually be done without actually
515  * calling issig by checking the pending signal masks.)
516  * A signal does not do anything
517  * directly to a process; it sets
518  * a flag that asks the process to
519  * do something to itself.
520  */
521 issig()
522 {
523 	register struct proc *p;
524 	register int sig;
525 	int sigbits, mask;
526 
527 	p = u.u_procp;
528 	for (;;) {
529 		sigbits = p->p_sig &~ p->p_sigmask;
530 		if ((p->p_flag&STRC) == 0)
531 			sigbits &= ~p->p_sigignore;
532 		if (p->p_flag&SVFORK)
533 			sigbits &= ~stopsigmask;
534 		if (sigbits == 0)
535 			break;
536 		sig = ffs((long)sigbits);
537 		mask = sigmask(sig);
538 		p->p_sig &= ~mask;		/* take the signal! */
539 		p->p_cursig = sig;
540 		if (p->p_flag&STRC && (p->p_flag&SVFORK) == 0) {
541 			/*
542 			 * If traced, always stop, and stay
543 			 * stopped until released by the parent.
544 			 */
545 			psignal(p->p_pptr, SIGCHLD);
546 			do {
547 				stop(p);
548 				swtch();
549 			} while (!procxmt() && p->p_flag&STRC);
550 
551 			/*
552 			 * If the traced bit got turned off,
553 			 * then put the signal taken above back into p_sig
554 			 * and go back up to the top to rescan signals.
555 			 * This ensures that p_sig* and u_signal are consistent.
556 			 */
557 			if ((p->p_flag&STRC) == 0) {
558 				p->p_sig |= mask;
559 				continue;
560 			}
561 
562 			/*
563 			 * If parent wants us to take the signal,
564 			 * then it will leave it in p->p_cursig;
565 			 * otherwise we just look for signals again.
566 			 */
567 			sig = p->p_cursig;
568 			if (sig == 0)
569 				continue;
570 
571 			/*
572 			 * If signal is being masked put it back
573 			 * into p_sig and look for other signals.
574 			 */
575 			mask = sigmask(sig);
576 			if (p->p_sigmask & mask) {
577 				p->p_sig |= mask;
578 				continue;
579 			}
580 		}
581 		switch ((int)u.u_signal[sig]) {
582 
583 		case SIG_DFL:
584 			/*
585 			 * Don't take default actions on system processes.
586 			 */
587 			if (p->p_ppid == 0)
588 				break;
589 			switch (sig) {
590 
591 			case SIGTSTP:
592 			case SIGTTIN:
593 			case SIGTTOU:
594 				/*
595 				 * Children of init aren't allowed to stop
596 				 * on signals from the keyboard.
597 				 */
598 				if (p->p_pptr == &proc[1]) {
599 					psignal(p, SIGKILL);
600 					continue;
601 				}
602 				/* fall into ... */
603 
604 			case SIGSTOP:
605 				if (p->p_flag&STRC)
606 					continue;
607 				psignal(p->p_pptr, SIGCHLD);
608 				stop(p);
609 				swtch();
610 				continue;
611 
612 			case SIGCONT:
613 			case SIGCHLD:
614 			case SIGURG:
615 			case SIGIO:
616 			case SIGWINCH:
617 				/*
618 				 * These signals are normally not
619 				 * sent if the action is the default.
620 				 */
621 				continue;		/* == ignore */
622 
623 			default:
624 				goto send;
625 			}
626 			/*NOTREACHED*/
627 
628 		case SIG_HOLD:
629 		case SIG_IGN:
630 			/*
631 			 * Masking above should prevent us
632 			 * ever trying to take action on a held
633 			 * or ignored signal, unless process is traced.
634 			 */
635 			if ((p->p_flag&STRC) == 0)
636 				printf("issig\n");
637 			continue;
638 
639 		default:
640 			/*
641 			 * This signal has an action, let
642 			 * psig process it.
643 			 */
644 			goto send;
645 		}
646 		/*NOTREACHED*/
647 	}
648 	/*
649 	 * Didn't find a signal to send.
650 	 */
651 	p->p_cursig = 0;
652 	return (0);
653 
654 send:
655 	/*
656 	 * Let psig process the signal.
657 	 */
658 	return (sig);
659 }
660 
661 /*
662  * Put the argument process into the stopped
663  * state and notify the parent via wakeup.
664  * Signals are handled elsewhere.
665  */
666 stop(p)
667 	register struct proc *p;
668 {
669 
670 	p->p_stat = SSTOP;
671 	p->p_flag &= ~SWTED;
672 	wakeup((caddr_t)p->p_pptr);
673 }
674 
675 /*
676  * Perform the action specified by
677  * the current signal.
678  * The usual sequence is:
679  *	if (issig())
680  *		psig();
681  * The signal bit has already been cleared by issig,
682  * and the current signal number stored in p->p_cursig.
683  */
684 psig()
685 {
686 	register struct proc *p = u.u_procp;
687 	register int sig = p->p_cursig;
688 	int mask = sigmask(sig), returnmask;
689 	register int (*action)();
690 
691 	if (sig == 0)
692 		panic("psig");
693 	action = u.u_signal[sig];
694 	if (action != SIG_DFL) {
695 		if (action == SIG_IGN || (p->p_sigmask & mask))
696 			panic("psig action");
697 		u.u_error = 0;
698 		/*
699 		 * Set the new mask value and also defer further
700 		 * occurences of this signal (unless we're simulating
701 		 * the old signal facilities).
702 		 *
703 		 * Special case: user has done a sigpause.  Here the
704 		 * current mask is not of interest, but rather the
705 		 * mask from before the sigpause is what we want restored
706 		 * after the signal processing is completed.
707 		 */
708 		(void) splhigh();
709 		if (p->p_flag & SOUSIG) {
710 			if (sig != SIGILL && sig != SIGTRAP) {
711 				u.u_signal[sig] = SIG_DFL;
712 				p->p_sigcatch &= ~mask;
713 			}
714 			mask = 0;
715 		}
716 		if (p->p_flag & SOMASK) {
717 			returnmask = u.u_oldmask;
718 			p->p_flag &= ~SOMASK;
719 		} else
720 			returnmask = p->p_sigmask;
721 		p->p_sigmask |= u.u_sigmask[sig] | mask;
722 		(void) spl0();
723 		u.u_ru.ru_nsignals++;
724 		sendsig(action, sig, returnmask);
725 		p->p_cursig = 0;
726 		return;
727 	}
728 	u.u_acflag |= AXSIG;
729 	switch (sig) {
730 
731 	case SIGILL:
732 	case SIGIOT:
733 	case SIGBUS:
734 	case SIGQUIT:
735 	case SIGTRAP:
736 	case SIGEMT:
737 	case SIGFPE:
738 	case SIGSEGV:
739 	case SIGSYS:
740 		u.u_arg[0] = sig;
741 		if (core())
742 			sig += 0200;
743 	}
744 	exit(sig);
745 }
746 
747 /*
748  * Create a core image on the file "core"
749  * If you are looking for protection glitches,
750  * there are probably a wealth of them here
751  * when this occurs to a suid command.
752  *
753  * It writes UPAGES block of the
754  * user.h area followed by the entire
755  * data+stack segments.
756  */
757 core()
758 {
759 	register struct inode *ip;
760 	register struct nameidata *ndp = &u.u_nd;
761 
762 	if (u.u_uid != u.u_ruid || u.u_gid != u.u_rgid)
763 		return (0);
764 	if (ctob(UPAGES+u.u_dsize+u.u_ssize) >=
765 	    u.u_rlimit[RLIMIT_CORE].rlim_cur)
766 		return (0);
767 	if (u.u_procp->p_textp && access(u.u_procp->p_textp->x_iptr, IREAD))
768 		return (0);
769 	u.u_error = 0;
770 	ndp->ni_nameiop = CREATE | FOLLOW;
771 	ndp->ni_segflg = UIO_SYSSPACE;
772 	ndp->ni_dirp = "core";
773 	ip = namei(ndp);
774 	if (ip == NULL) {
775 		if (u.u_error)
776 			return (0);
777 		ip = maknode(0644, ndp);
778 		if (ip==NULL)
779 			return (0);
780 	}
781 	if (access(ip, IWRITE) ||
782 	   (ip->i_mode&IFMT) != IFREG ||
783 	   ip->i_nlink != 1) {
784 		u.u_error = EFAULT;
785 		goto out;
786 	}
787 	itrunc(ip, (u_long)0);
788 	u.u_acflag |= ACORE;
789 	u.u_error = rdwri(UIO_WRITE, ip,
790 	    (caddr_t)&u,
791 	    ctob(UPAGES),
792 	    (off_t)0, 1, (int *)0);
793 	if (u.u_error == 0)
794 		u.u_error = rdwri(UIO_WRITE, ip,
795 		    (caddr_t)ctob(dptov(u.u_procp, 0)),
796 		    (int)ctob(u.u_dsize),
797 		    (off_t)ctob(UPAGES), 0, (int *)0);
798 	if (u.u_error == 0)
799 		u.u_error = rdwri(UIO_WRITE, ip,
800 		    (caddr_t)ctob(sptov(u.u_procp, u.u_ssize - 1)),
801 		    (int)ctob(u.u_ssize),
802 		    (off_t)ctob(UPAGES)+ctob(u.u_dsize), 0, (int *)0);
803 out:
804 	iput(ip);
805 	return (u.u_error == 0);
806 }
807