1 /* 2 * Copyright (c) 1982, 1986 Regents of the University of California. 3 * All rights reserved. The Berkeley software License Agreement 4 * specifies the terms and conditions for redistribution. 5 * 6 * @(#)init_main.c 7.4 (Berkeley) 02/19/87 7 */ 8 9 #include "../machine/pte.h" 10 11 #include "param.h" 12 #include "systm.h" 13 #include "dir.h" 14 #include "user.h" 15 #include "kernel.h" 16 #include "fs.h" 17 #include "mount.h" 18 #include "map.h" 19 #include "proc.h" 20 #include "inode.h" 21 #include "seg.h" 22 #include "conf.h" 23 #include "buf.h" 24 #include "vm.h" 25 #include "cmap.h" 26 #include "text.h" 27 #include "clist.h" 28 #include "protosw.h" 29 #include "quota.h" 30 #include "../machine/reg.h" 31 #include "../machine/cpu.h" 32 33 int cmask = CMASK; 34 /* 35 * Initialization code. 36 * Called from cold start routine as 37 * soon as a stack and segmentation 38 * have been established. 39 * Functions: 40 * clear and free user core 41 * turn on clock 42 * hand craft 0th process 43 * call all initialization routines 44 * fork - process 0 to schedule 45 * - process 1 execute bootstrap 46 * - process 2 to page out 47 */ 48 main(firstaddr) 49 int firstaddr; 50 { 51 register int i; 52 register struct proc *p; 53 struct fs *fs; 54 int s; 55 56 rqinit(); 57 #include "loop.h" 58 startup(firstaddr); 59 60 /* 61 * set up system process 0 (swapper) 62 */ 63 p = &proc[0]; 64 #if defined(tahoe) 65 #ifndef lint 66 #define initkey(which, p, index) \ 67 which/**/_cache[index] = 1, which/**/_cnt[index] = 1; \ 68 p->p_/**/which = index; 69 initkey(ckey, p, MAXCKEY); 70 initkey(dkey, p, MAXDKEY); 71 #endif 72 #endif 73 p->p_p0br = u.u_pcb.pcb_p0br; 74 p->p_szpt = 1; 75 p->p_addr = uaddr(p); 76 p->p_stat = SRUN; 77 p->p_flag |= SLOAD|SSYS; 78 p->p_nice = NZERO; 79 setredzone(p->p_addr, (caddr_t)&u); 80 u.u_procp = p; 81 /* 82 * These assume that the u. area is always mapped 83 * to the same virtual address. Otherwise must be 84 * handled when copying the u. area in newproc(). 85 */ 86 u.u_nd.ni_iov = &u.u_nd.ni_iovec; 87 u.u_ap = u.u_arg; 88 u.u_nd.ni_iovcnt = 1; 89 90 u.u_cmask = cmask; 91 u.u_lastfile = -1; 92 for (i = 1; i < NGROUPS; i++) 93 u.u_groups[i] = NOGROUP; 94 for (i = 0; i < sizeof(u.u_rlimit)/sizeof(u.u_rlimit[0]); i++) 95 u.u_rlimit[i].rlim_cur = u.u_rlimit[i].rlim_max = 96 RLIM_INFINITY; 97 /* 98 * configure virtual memory system, 99 * set vm rlimits 100 */ 101 vminit(); 102 103 #if defined(QUOTA) 104 qtinit(); 105 p->p_quota = u.u_quota = getquota(0, 0, Q_NDQ); 106 #endif 107 startrtclock(); 108 #if defined(vax) 109 #include "kg.h" 110 #if NKG > 0 111 startkgclock(); 112 #endif 113 #endif 114 115 /* 116 * Initialize tables, protocols, and set up well-known inodes. 117 */ 118 mbinit(); 119 cinit(); 120 #include "sl.h" 121 #if NSL > 0 122 slattach(); /* XXX */ 123 #endif 124 #if NLOOP > 0 125 loattach(); /* XXX */ 126 #endif 127 /* 128 * Block reception of incoming packets 129 * until protocols have been initialized. 130 */ 131 s = splimp(); 132 ifinit(); 133 domaininit(); 134 splx(s); 135 pqinit(); 136 xinit(); 137 ihinit(); 138 swapinit(); 139 nchinit(); 140 #ifdef GPROF 141 kmstartup(); 142 #endif 143 144 fs = mountfs(rootdev, 0, (struct inode *)0); 145 if (fs == 0) 146 panic("iinit"); 147 bcopy("/", fs->fs_fsmnt, 2); 148 149 inittodr(fs->fs_time); 150 boottime = time; 151 152 /* kick off timeout driven events by calling first time */ 153 roundrobin(); 154 schedcpu(); 155 schedpaging(); 156 157 /* set up the root file system */ 158 rootdir = iget(rootdev, fs, (ino_t)ROOTINO); 159 iunlock(rootdir); 160 u.u_cdir = iget(rootdev, fs, (ino_t)ROOTINO); 161 iunlock(u.u_cdir); 162 u.u_rdir = NULL; 163 164 u.u_dmap = zdmap; 165 u.u_smap = zdmap; 166 167 enablertclock(); /* enable realtime clock interrupts */ 168 #if defined(tahoe) 169 clk_enable = 1; /* enable clock interrupt */ 170 #endif 171 /* 172 * make init process 173 */ 174 175 proc[0].p_szpt = CLSIZE; 176 if (newproc(0)) { 177 expand(clrnd((int)btoc(szicode)), 0); 178 (void) swpexpand(u.u_dsize, (size_t)0, &u.u_dmap, &u.u_smap); 179 (void) copyout((caddr_t)icode, (caddr_t)0, (unsigned)szicode); 180 /* 181 * Return goes to loc. 0 of user init 182 * code just copied out. 183 */ 184 return; 185 } 186 /* 187 * make page-out daemon (process 2) 188 * the daemon has ctopt(nswbuf*CLSIZE*KLMAX) pages of page 189 * table so that it can map dirty pages into 190 * its address space during asychronous pushes. 191 */ 192 proc[0].p_szpt = clrnd(ctopt(nswbuf*CLSIZE*KLMAX + UPAGES)); 193 if (newproc(0)) { 194 proc[2].p_flag |= SLOAD|SSYS; 195 proc[2].p_dsize = u.u_dsize = nswbuf*CLSIZE*KLMAX; 196 pageout(); 197 /*NOTREACHED*/ 198 } 199 200 /* 201 * enter scheduling loop 202 */ 203 proc[0].p_szpt = 1; 204 sched(); 205 } 206 207 /* 208 * Initialize hash links for buffers. 209 */ 210 bhinit() 211 { 212 register int i; 213 register struct bufhd *bp; 214 215 for (bp = bufhash, i = 0; i < BUFHSZ; i++, bp++) 216 bp->b_forw = bp->b_back = (struct buf *)bp; 217 } 218 219 /* 220 * Initialize the buffer I/O system by freeing 221 * all buffers and setting all device buffer lists to empty. 222 */ 223 binit() 224 { 225 register struct buf *bp, *dp; 226 register int i; 227 int base, residual; 228 229 for (dp = bfreelist; dp < &bfreelist[BQUEUES]; dp++) { 230 dp->b_forw = dp->b_back = dp->av_forw = dp->av_back = dp; 231 dp->b_flags = B_HEAD; 232 } 233 base = bufpages / nbuf; 234 residual = bufpages % nbuf; 235 for (i = 0; i < nbuf; i++) { 236 bp = &buf[i]; 237 bp->b_dev = NODEV; 238 bp->b_bcount = 0; 239 bp->b_un.b_addr = buffers + i * MAXBSIZE; 240 if (i < residual) 241 bp->b_bufsize = (base + 1) * CLBYTES; 242 else 243 bp->b_bufsize = base * CLBYTES; 244 binshash(bp, &bfreelist[BQ_AGE]); 245 bp->b_flags = B_BUSY|B_INVAL; 246 brelse(bp); 247 } 248 } 249 250 /* 251 * Set up swap devices. 252 * Initialize linked list of free swap 253 * headers. These do not actually point 254 * to buffers, but rather to pages that 255 * are being swapped in and out. 256 */ 257 swapinit() 258 { 259 register int i; 260 register struct buf *sp = swbuf; 261 struct swdevt *swp; 262 263 /* 264 * Count swap devices, and adjust total swap space available. 265 * Some of this space will not be available until a swapon() 266 * system is issued, usually when the system goes multi-user. 267 */ 268 nswdev = 0; 269 nswap = 0; 270 for (swp = swdevt; swp->sw_dev; swp++) { 271 nswdev++; 272 if (swp->sw_nblks > nswap) 273 nswap = swp->sw_nblks; 274 } 275 if (nswdev == 0) 276 panic("swapinit"); 277 if (nswdev > 1) 278 nswap = ((nswap + dmmax - 1) / dmmax) * dmmax; 279 nswap *= nswdev; 280 /* 281 * If there are multiple swap areas, 282 * allow more paging operations per second. 283 */ 284 if (nswdev > 1) 285 maxpgio = (maxpgio * (2 * nswdev - 1)) / 2; 286 swfree(0); 287 288 /* 289 * Now set up swap buffer headers. 290 */ 291 bswlist.av_forw = sp; 292 for (i=0; i<nswbuf-1; i++, sp++) 293 sp->av_forw = sp+1; 294 sp->av_forw = NULL; 295 } 296 297 /* 298 * Initialize clist by freeing all character blocks, then count 299 * number of character devices. (Once-only routine) 300 */ 301 cinit() 302 { 303 register int ccp; 304 register struct cblock *cp; 305 306 ccp = (int)cfree; 307 ccp = (ccp+CROUND) & ~CROUND; 308 for(cp=(struct cblock *)ccp; cp < &cfree[nclist-1]; cp++) { 309 cp->c_next = cfreelist; 310 cfreelist = cp; 311 cfreecount += CBSIZE; 312 } 313 } 314