xref: /csrg-svn/sys/hp/hpux/hpux_compat.c (revision 53481)
1 /*
2  * Copyright (c) 1988 University of Utah.
3  * Copyright (c) 1990 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the Systems Programming Group of the University of Utah Computer
8  * Science Department.
9  *
10  * %sccs.include.redist.c%
11  *
12  * from: Utah $Hdr: hpux_compat.c 1.41 91/04/06$
13  *
14  *	@(#)hpux_compat.c	7.19 (Berkeley) 05/13/92
15  */
16 
17 /*
18  * Various HPUX compatibility routines
19  */
20 
21 #ifdef HPUXCOMPAT
22 
23 #include "param.h"
24 #include "systm.h"
25 #include "signalvar.h"
26 #include "kernel.h"
27 #include "filedesc.h"
28 #include "proc.h"
29 #include "buf.h"
30 #include "wait.h"
31 #include "file.h"
32 #include "namei.h"
33 #include "vnode.h"
34 #include "ioctl.h"
35 #include "ptrace.h"
36 #include "stat.h"
37 #include "syslog.h"
38 #include "malloc.h"
39 #include "mount.h"
40 #include "ipc.h"
41 #include "user.h"
42 
43 #include "machine/cpu.h"
44 #include "machine/reg.h"
45 #include "machine/psl.h"
46 #include "machine/vmparam.h"
47 #include "hpux.h"
48 #include "hpux_termio.h"
49 
50 #ifdef DEBUG
51 int unimpresponse = 0;
52 #endif
53 
54 /* SYS5 style UTSNAME info */
55 struct hpuxutsname protoutsname = {
56 	"4.4bsd", "", "2.0", "B", "9000/3?0", ""
57 };
58 
59 /* 6.0 and later style context */
60 #ifdef FPCOPROC
61 char hpuxcontext[] =
62 	"standalone HP-MC68881 HP-MC68020 HP-MC68010 localroot default";
63 #else
64 char hpuxcontext[] =
65 	"standalone HP-MC68020 HP-MC68010 localroot default";
66 #endif
67 
68 /* YP domainname */
69 char	domainname[MAXHOSTNAMELEN] = "unknown";
70 int	domainnamelen = 7;
71 
72 #define NERR	79
73 #define BERR	1000
74 
75 /* indexed by BSD errno */
76 short bsdtohpuxerrnomap[NERR] = {
77 /*00*/	  0,   1,   2,   3,   4,   5,   6,   7,   8,   9,
78 /*10*/	 10,  45,  12,  13,  14,  15,  16,  17,  18,  19,
79 /*20*/	 20,  21,  22,  23,  24,  25,  26,  27,  28,  29,
80 /*30*/	 30,  31,  32,  33,  34, 246, 245, 244, 216, 217,
81 /*40*/	218, 219, 220, 221, 222, 223, 224, 225, 226, 227,
82 /*50*/	228, 229, 230, 231, 232, 233, 234, 235, 236, 237,
83 /*60*/	238, 239, 249, 248, 241, 242, 247,BERR,BERR,BERR,
84 /*70*/   70,  71,BERR,BERR,BERR,BERR,BERR,  46,BERR
85 };
86 
87 notimp(p, uap, retval, code, nargs)
88 	struct proc *p;
89 	int *uap, *retval;
90 	int code, nargs;
91 {
92 	int error = 0;
93 #ifdef DEBUG
94 	register int *argp = uap;
95 	extern char *hpuxsyscallnames[];
96 
97 	printf("HPUX %s(", hpuxsyscallnames[code]);
98 	if (nargs)
99 		while (nargs--)
100 			printf("%x%c", *argp++, nargs? ',' : ')');
101 	else
102 		printf(")");
103 	printf("\n");
104 	switch (unimpresponse) {
105 	case 0:
106 		error = nosys(p, uap, retval);
107 		break;
108 	case 1:
109 		error = EINVAL;
110 		break;
111 	}
112 #else
113 	error = nosys(p, uap, retval);
114 #endif
115 	uprintf("HP-UX system call %d not implemented\n", code);
116 	return (error);
117 }
118 
119 hpuxexecv(p, uap, retval)
120 	struct proc *p;
121 	struct args {
122 		char	*fname;
123 		char	**argp;
124 		char	**envp;
125 	} *uap;
126 	int *retval;
127 {
128 	extern int execve();
129 
130 	uap->envp = NULL;
131 	return (execve(p, uap, retval));
132 }
133 
134 /*
135  * HPUX versions of wait and wait3 actually pass the parameters
136  * (status pointer, options, rusage) into the kernel rather than
137  * handling it in the C library stub.  We also need to map any
138  * termination signal from BSD to HPUX.
139  */
140 hpuxwait3(p, uap, retval)
141 	struct proc *p;
142 	struct args {
143 		int	*status;
144 		int	options;
145 		int	rusage;
146 	} *uap;
147 	int *retval;
148 {
149 	/* rusage pointer must be zero */
150 	if (uap->rusage)
151 		return (EINVAL);
152 	p->p_md.md_regs[PS] = PSL_ALLCC;
153 	p->p_md.md_regs[R0] = uap->options;
154 	p->p_md.md_regs[R1] = uap->rusage;
155 	return (hpuxwait(p, uap, retval));
156 }
157 
158 hpuxwait(p, uap, retval)
159 	struct proc *p;
160 	struct args {
161 		int	*status;
162 	} *uap;
163 	int *retval;
164 {
165 	int sig, *statp, error;
166 
167 	statp = uap->status;	/* owait clobbers first arg */
168 	error = owait(p, uap, retval);
169 	/*
170 	 * HP-UX wait always returns EINTR when interrupted by a signal
171 	 * (well, unless its emulating a BSD process, but we don't bother...)
172 	 */
173 	if (error == ERESTART)
174 		error = EINTR;
175 	if (error)
176 		return (error);
177 	sig = retval[1] & 0xFF;
178 	if (sig == WSTOPPED) {
179 		sig = (retval[1] >> 8) & 0xFF;
180 		retval[1] = (bsdtohpuxsig(sig) << 8) | WSTOPPED;
181 	} else if (sig)
182 		retval[1] = (retval[1] & 0xFF00) |
183 			bsdtohpuxsig(sig & 0x7F) | (sig & 0x80);
184 	if (statp)
185 		if (suword((caddr_t)statp, retval[1]))
186 			error = EFAULT;
187 	return (error);
188 }
189 
190 hpuxwaitpid(p, uap, retval)
191 	struct proc *p;
192 	struct args {
193 		int	pid;
194 		int	*status;
195 		int	options;
196 		struct	rusage *rusage;	/* wait4 arg */
197 	} *uap;
198 	int *retval;
199 {
200 	int sig, *statp, error;
201 
202 	uap->rusage = 0;
203 	error = wait4(p, uap, retval);
204 	/*
205 	 * HP-UX wait always returns EINTR when interrupted by a signal
206 	 * (well, unless its emulating a BSD process, but we don't bother...)
207 	 */
208 	if (error == ERESTART)
209 		error = EINTR;
210 	if (error)
211 		return (error);
212 	sig = retval[1] & 0xFF;
213 	if (sig == WSTOPPED) {
214 		sig = (retval[1] >> 8) & 0xFF;
215 		retval[1] = (bsdtohpuxsig(sig) << 8) | WSTOPPED;
216 	} else if (sig)
217 		retval[1] = (retval[1] & 0xFF00) |
218 			bsdtohpuxsig(sig & 0x7F) | (sig & 0x80);
219 	if (statp)
220 		if (suword((caddr_t)statp, retval[1]))
221 			error = EFAULT;
222 	return (error);
223 }
224 
225 /*
226  * Must remap some bits in the mode mask.
227  * O_CREAT, O_TRUNC, and O_EXCL must be remapped,
228  * O_SYNCIO (0100000) is removed entirely.
229  */
230 hpuxopen(p, uap, retval)
231 	struct proc *p;
232 	register struct args {
233 		char	*fname;
234 		int	mode;
235 		int	crtmode;
236 	} *uap;
237 	int *retval;
238 {
239 	int mode;
240 
241 	mode = uap->mode;
242 	uap->mode &= ~(HPUXFSYNCIO|HPUXFEXCL|HPUXFTRUNC|HPUXFCREAT);
243 	if (mode & HPUXFCREAT) {
244 		/*
245 		 * simulate the pre-NFS behavior that opening a
246 		 * file for READ+CREATE ignores the CREATE (unless
247 		 * EXCL is set in which case we will return the
248 		 * proper error).
249 		 */
250 		if ((mode & HPUXFEXCL) || (FFLAGS(mode) & FWRITE))
251 			uap->mode |= O_CREAT;
252 	}
253 	if (mode & HPUXFTRUNC)
254 		uap->mode |= O_TRUNC;
255 	if (mode & HPUXFEXCL)
256 		uap->mode |= O_EXCL;
257 	return (open(p, uap, retval));
258 }
259 
260 /* XXX */
261 #define	UF_FNDELAY_ON	0x20
262 #define	UF_FIONBIO_ON	0x40
263 /* XXX */
264 
265 hpuxfcntl(p, uap, retval)
266 	struct proc *p;
267 	register struct args {
268 		int	fdes;
269 		int	cmd;
270 		int	arg;
271 	} *uap;
272 	int *retval;
273 {
274 	int mode, error;
275 	char *fp;
276 
277 	if (uap->cmd == F_GETFL || uap->cmd == F_SETFL) {
278 		if ((unsigned)uap->fdes >= p->p_fd->fd_nfiles ||
279 		    p->p_fd->fd_ofiles[uap->fdes] == NULL)
280 			return (EBADF);
281 		fp = &p->p_fd->fd_ofileflags[uap->fdes];
282 	}
283 	switch (uap->cmd) {
284 	case F_SETFL:
285 		if (uap->arg & FNONBLOCK)
286 			*fp |= UF_FNDELAY_ON;
287 		else {
288 			*fp &= ~UF_FNDELAY_ON;
289 			if (*fp & UF_FIONBIO_ON)
290 				uap->arg |= FNONBLOCK;
291 		}
292 		uap->arg &= ~(HPUXFSYNCIO|HPUXFREMOTE|FUSECACHE);
293 		break;
294 	case F_GETFL:
295 	case F_DUPFD:
296 	case F_GETFD:
297 	case F_SETFD:
298 		break;
299 	default:
300 		return (EINVAL);
301 	}
302 	error = fcntl(p, uap, retval);
303 	if (error == 0 && uap->cmd == F_GETFL) {
304 		mode = *retval;
305 		*retval &= ~(O_CREAT|O_TRUNC|O_EXCL|FUSECACHE);
306 		if ((mode & FNONBLOCK) && (*fp & UF_FNDELAY_ON) == 0)
307 			*retval &= ~FNONBLOCK;
308 		if (mode & O_CREAT)
309 			*retval |= HPUXFCREAT;
310 		if (mode & O_TRUNC)
311 			*retval |= HPUXFTRUNC;
312 		if (mode & O_EXCL)
313 			*retval |= HPUXFEXCL;
314 	}
315 	return (error);
316 }
317 
318 /*
319  * Read and write should return a 0 count when an operation
320  * on a VNODE would block, not an error.
321  *
322  * In 6.2 and 6.5 sockets appear to return EWOULDBLOCK.
323  * In 7.0 the behavior for sockets depends on whether FNONBLOCK is in effect.
324  */
325 hpuxread(p, uap, retval)
326 	struct proc *p;
327 	struct args {
328 		int	fd;
329 	} *uap;
330 	int *retval;
331 {
332 	int error;
333 
334 	error = read(p, uap, retval);
335 	if (error == EWOULDBLOCK &&
336 	    (p->p_fd->fd_ofiles[uap->fd]->f_type == DTYPE_VNODE ||
337 	     p->p_fd->fd_ofileflags[uap->fd] & UF_FNDELAY_ON)) {
338 		error = 0;
339 		*retval = 0;
340 	}
341 	return (error);
342 }
343 
344 hpuxwrite(p, uap, retval)
345 	struct proc *p;
346 	struct args {
347 		int	fd;
348 	} *uap;
349 	int *retval;
350 {
351 	int error;
352 
353 	error = write(p, uap, retval);
354 	if (error == EWOULDBLOCK &&
355 	    (p->p_fd->fd_ofiles[uap->fd]->f_type == DTYPE_VNODE ||
356 	     p->p_fd->fd_ofileflags[uap->fd] & UF_FNDELAY_ON)) {
357 		error = 0;
358 		*retval = 0;
359 	}
360 	return (error);
361 }
362 
363 hpuxreadv(p, uap, retval)
364 	struct proc *p;
365 	struct args {
366 		int	fd;
367 	} *uap;
368 	int *retval;
369 {
370 	int error;
371 
372 	error = readv(p, uap, retval);
373 	if (error == EWOULDBLOCK &&
374 	    (p->p_fd->fd_ofiles[uap->fd]->f_type == DTYPE_VNODE ||
375 	     p->p_fd->fd_ofileflags[uap->fd] & UF_FNDELAY_ON)) {
376 		error = 0;
377 		*retval = 0;
378 	}
379 	return (error);
380 }
381 
382 hpuxwritev(p, uap, retval)
383 	struct proc *p;
384 	struct args {
385 		int	fd;
386 	} *uap;
387 	int *retval;
388 {
389 	int error;
390 
391 	error = writev(p, uap, retval);
392 	if (error == EWOULDBLOCK &&
393 	    (p->p_fd->fd_ofiles[uap->fd]->f_type == DTYPE_VNODE ||
394 	     p->p_fd->fd_ofileflags[uap->fd] & UF_FNDELAY_ON)) {
395 		error = 0;
396 		*retval = 0;
397 	}
398 	return (error);
399 }
400 
401 /*
402  * 4.3bsd dup allows dup2 to come in on the same syscall entry
403  * and hence allows two arguments.  HPUX dup has only one arg.
404  */
405 hpuxdup(p, uap, retval)
406 	struct proc *p;
407 	register struct args {
408 		int	i;
409 	} *uap;
410 	int *retval;
411 {
412 	register struct filedesc *fdp = p->p_fd;
413 	struct file *fp;
414 	int fd, error;
415 
416 	if (((unsigned)uap->i) >= fdp->fd_nfiles ||
417 	    (fp = fdp->fd_ofiles[uap->i]) == NULL)
418 		return (EBADF);
419 	if (error = fdalloc(p, 0, &fd))
420 		return (error);
421 	fdp->fd_ofiles[fd] = fp;
422 	fdp->fd_ofileflags[fd] = fdp->fd_ofileflags[uap->i] &~ UF_EXCLOSE;
423 	fp->f_count++;
424 	if (fd > fdp->fd_lastfile)
425 		fdp->fd_lastfile = fd;
426 	*retval = fd;
427 	return (0);
428 }
429 
430 hpuxutssys(p, uap, retval)
431 	struct proc *p;
432 	register struct args {
433 		struct hpuxutsname *uts;
434 		int dev;
435 		int request;
436 	} *uap;
437 	int *retval;
438 {
439 	register int i;
440 	int error;
441 
442 	switch (uap->request) {
443 	/* uname */
444 	case 0:
445 		/* fill in machine type */
446 		switch (machineid) {
447 		case HP_320:
448 			protoutsname.machine[6] = '2';
449 			break;
450 		/* includes 318 and 319 */
451 		case HP_330:
452 			protoutsname.machine[6] = '3';
453 			break;
454 		case HP_340:
455 			protoutsname.machine[6] = '4';
456 			break;
457 		case HP_350:
458 			protoutsname.machine[6] = '5';
459 			break;
460 		case HP_360:
461 			protoutsname.machine[6] = '6';
462 			break;
463 		case HP_370:
464 			protoutsname.machine[6] = '7';
465 			break;
466 		/* includes 345 */
467 		case HP_375:
468 			protoutsname.machine[6] = '7';
469 			protoutsname.machine[7] = '5';
470 			break;
471 		}
472 		/* copy hostname (sans domain) to nodename */
473 		for (i = 0; i < 8 && hostname[i] != '.'; i++)
474 			protoutsname.nodename[i] = hostname[i];
475 		protoutsname.nodename[i] = '\0';
476 		error = copyout((caddr_t)&protoutsname, (caddr_t)uap->uts,
477 				sizeof(struct hpuxutsname));
478 		break;
479 
480 	/* gethostname */
481 	case 5:
482 		/* uap->dev is length */
483 		if (uap->dev > hostnamelen + 1)
484 			uap->dev = hostnamelen + 1;
485 		error = copyout((caddr_t)hostname, (caddr_t)uap->uts,
486 				uap->dev);
487 		break;
488 
489 	case 1:	/* ?? */
490 	case 2:	/* ustat */
491 	case 3:	/* ?? */
492 	case 4:	/* sethostname */
493 	default:
494 		error = EINVAL;
495 		break;
496 	}
497 	return (error);
498 }
499 
500 hpuxstat(p, uap, retval)
501 	struct proc *p;
502 	struct args {
503 		char	*fname;
504 		struct hpuxstat *hsb;
505 	} *uap;
506 	int *retval;
507 {
508 	return (hpuxstat1(uap->fname, uap->hsb, FOLLOW));
509 }
510 
511 hpuxlstat(p, uap, retval)
512 	struct proc *p;
513 	struct args {
514 		char	*fname;
515 		struct hpuxstat *hsb;
516 	} *uap;
517 	int *retval;
518 {
519 	return (hpuxstat1(uap->fname, uap->hsb, NOFOLLOW));
520 }
521 
522 hpuxfstat(p, uap, retval)
523 	struct proc *p;
524 	register struct args {
525 		int	fdes;
526 		struct	hpuxstat *hsb;
527 	} *uap;
528 	int *retval;
529 {
530 	register struct filedesc *fdp = p->p_fd;
531 	register struct file *fp;
532 	struct stat sb;
533 	int error;
534 
535 	if (((unsigned)uap->fdes) >= fdp->fd_nfiles ||
536 	    (fp = fdp->fd_ofiles[uap->fdes]) == NULL)
537 		return (EBADF);
538 
539 	switch (fp->f_type) {
540 
541 	case DTYPE_VNODE:
542 		error = vn_stat((struct vnode *)fp->f_data, &sb);
543 		break;
544 
545 	case DTYPE_SOCKET:
546 		error = soo_stat((struct socket *)fp->f_data, &sb);
547 		break;
548 
549 	default:
550 		panic("fstat");
551 		/*NOTREACHED*/
552 	}
553 	/* is this right for sockets?? */
554 	if (error == 0)
555 		error = bsdtohpuxstat(&sb, uap->hsb);
556 	return (error);
557 }
558 
559 hpuxulimit(p, uap, retval)
560 	struct proc *p;
561 	register struct args {
562 		int	cmd;
563 		long	newlimit;
564 	} *uap;
565 	long *retval;
566 {
567 	struct rlimit *limp;
568 	int error = 0;
569 
570 	limp = &p->p_rlimit[RLIMIT_FSIZE];
571 	switch (uap->cmd) {
572 	case 2:
573 		uap->newlimit *= 512;
574 		if (uap->newlimit > limp->rlim_max &&
575 		    (error = suser(p->p_ucred, &p->p_acflag)))
576 			break;
577 		limp->rlim_cur = limp->rlim_max = uap->newlimit;
578 		/* else fall into... */
579 
580 	case 1:
581 		*retval = limp->rlim_max / 512;
582 		break;
583 
584 	case 3:
585 		limp = &p->p_rlimit[RLIMIT_DATA];
586 		*retval = ctob(p->p_vmspace->vm_tsize) + limp->rlim_max;
587 		break;
588 
589 	default:
590 		error = EINVAL;
591 		break;
592 	}
593 	return (error);
594 }
595 
596 /*
597  * Map "real time" priorities 0 (high) thru 127 (low) into nice
598  * values -16 (high) thru -1 (low).
599  */
600 hpuxrtprio(cp, uap, retval)
601 	struct proc *cp;
602 	register struct args {
603 		int pid;
604 		int prio;
605 	} *uap;
606 	int *retval;
607 {
608 	struct proc *p;
609 	int nice, error;
610 
611 	if (uap->prio < RTPRIO_MIN && uap->prio > RTPRIO_MAX &&
612 	    uap->prio != RTPRIO_NOCHG && uap->prio != RTPRIO_RTOFF)
613 		return (EINVAL);
614 	if (uap->pid == 0)
615 		p = cp;
616 	else if ((p = pfind(uap->pid)) == 0)
617 		return (ESRCH);
618 	nice = p->p_nice;
619 	if (nice < NZERO)
620 		*retval = (nice + 16) << 3;
621 	else
622 		*retval = RTPRIO_RTOFF;
623 	switch (uap->prio) {
624 
625 	case RTPRIO_NOCHG:
626 		return (0);
627 
628 	case RTPRIO_RTOFF:
629 		if (nice >= NZERO)
630 			return (0);
631 		nice = NZERO;
632 		break;
633 
634 	default:
635 		nice = (uap->prio >> 3) - 16;
636 		break;
637 	}
638 	error = donice(cp, p, nice);
639 	if (error == EACCES)
640 		error = EPERM;
641 	return (error);
642 }
643 
644 hpuxadvise(p, uap, retval)
645 	struct proc *p;
646 	struct args {
647 		int	arg;
648 	} *uap;
649 	int *retval;
650 {
651 	int error = 0;
652 
653 	switch (uap->arg) {
654 	case 0:
655 		p->p_addr->u_pcb.pcb_flags |= PCB_HPUXMMAP;
656 		break;
657 	case 1:
658 		ICIA();
659 		break;
660 	case 2:
661 		DCIA();
662 		break;
663 	default:
664 		error = EINVAL;
665 		break;
666 	}
667 	return (error);
668 }
669 
670 hpuxptrace(p, uap, retval)
671 	struct proc *p;
672 	struct args {
673 		int	req;
674 		int	pid;
675 		int	*addr;
676 		int	data;
677 	} *uap;
678 	int *retval;
679 {
680 	int error;
681 
682 	if (uap->req == PT_STEP || uap->req == PT_CONTINUE) {
683 		if (uap->data) {
684 			uap->data = hpuxtobsdsig(uap->data);
685 			if (uap->data == 0)
686 				uap->data = NSIG;
687 		}
688 	}
689 	error = ptrace(p, uap, retval);
690 	return (error);
691 }
692 
693 hpuxgetdomainname(p, uap, retval)
694 	struct proc *p;
695 	register struct args {
696 		char	*domainname;
697 		u_int	len;
698 	} *uap;
699 	int *retval;
700 {
701 	if (uap->len > domainnamelen + 1)
702 		uap->len = domainnamelen + 1;
703 	return (copyout(domainname, uap->domainname, uap->len));
704 }
705 
706 hpuxsetdomainname(p, uap, retval)
707 	struct proc *p;
708 	register struct args {
709 		char	*domainname;
710 		u_int	len;
711 	} *uap;
712 	int *retval;
713 {
714 	int error;
715 
716 	if (error = suser(p->p_ucred, &p->p_acflag))
717 		return (error);
718 	if (uap->len > sizeof (domainname) - 1)
719 		return (EINVAL);
720 	domainnamelen = uap->len;
721 	error = copyin(uap->domainname, domainname, uap->len);
722 	domainname[domainnamelen] = 0;
723 	return (error);
724 }
725 
726 #ifdef SYSVSHM
727 hpuxshmat(p, uap, retval)
728 	struct proc *p;
729 	int *uap, *retval;
730 {
731 	return (shmat(p, uap, retval));
732 }
733 
734 hpuxshmctl(p, uap, retval)
735 	struct proc *p;
736 	int *uap, *retval;
737 {
738 	return (shmctl(p, uap, retval));
739 }
740 
741 hpuxshmdt(p, uap, retval)
742 	struct proc *p;
743 	int *uap, *retval;
744 {
745 	return (shmdt(p, uap, retval));
746 }
747 
748 hpuxshmget(p, uap, retval)
749 	struct proc *p;
750 	int *uap, *retval;
751 {
752 	return (shmget(p, uap, retval));
753 }
754 #endif
755 
756 /*
757  * Fake semaphore routines, just don't return an error.
758  * Should be adequate for starbase to run.
759  */
760 hpuxsemctl(p, uap, retval)
761 	struct proc *p;
762 	struct args {
763 		int semid;
764 		u_int semnum;
765 		int cmd;
766 		int arg;
767 	} *uap;
768 	int *retval;
769 {
770 	/* XXX: should do something here */
771 	return (0);
772 }
773 
774 hpuxsemget(p, uap, retval)
775 	struct proc *p;
776 	struct args {
777 		key_t key;
778 		int nsems;
779 		int semflg;
780 	} *uap;
781 	int *retval;
782 {
783 	/* XXX: should do something here */
784 	return (0);
785 }
786 
787 hpuxsemop(p, uap, retval)
788 	struct proc *p;
789 	struct args {
790 		int semid;
791 		struct sembuf *sops;
792 		u_int nsops;
793 	} *uap;
794 	int *retval;
795 {
796 	/* XXX: should do something here */
797 	return (0);
798 }
799 
800 /* convert from BSD to HPUX errno */
801 bsdtohpuxerrno(err)
802 	int err;
803 {
804 	if (err < 0 || err >= NERR)
805 		return(BERR);
806 	return((int)bsdtohpuxerrnomap[err]);
807 }
808 
809 hpuxstat1(fname, hsb, follow)
810 	char *fname;
811 	struct hpuxstat *hsb;
812 	int follow;
813 {
814 	int error;
815 	struct stat sb;
816 	struct nameidata nd;
817 
818 	NDINIT(&nd, LOOKUP, follow | LOCKLEAF, UIO_USERSPACE, fname, curproc);
819 	if (error = namei(&nd))
820 		return (error);
821 	error = vn_stat(nd.ni_vp, &sb);
822 	vput(nd.ni_vp);
823 	if (error == 0)
824 		error = bsdtohpuxstat(&sb, hsb);
825 	return (error);
826 }
827 
828 #include "grf.h"
829 
830 bsdtohpuxstat(sb, hsb)
831 	struct stat *sb;
832 	struct hpuxstat *hsb;
833 {
834 	struct hpuxstat ds;
835 
836 	bzero((caddr_t)&ds, sizeof(ds));
837 	ds.hst_dev = (u_short)sb->st_dev;
838 	ds.hst_ino = (u_long)sb->st_ino;
839 	ds.hst_mode = sb->st_mode;
840 	ds.hst_nlink = sb->st_nlink;
841 	ds.hst_uid = (u_short)sb->st_uid;
842 	ds.hst_gid = (u_short)sb->st_gid;
843 #if NGRF > 0
844 	/* XXX: I don't want to talk about it... */
845 	if ((sb->st_mode & S_IFMT) == S_IFCHR && major(sb->st_rdev) == 10)
846 		ds.hst_rdev = grfdevno(sb->st_rdev);
847 	else
848 #endif
849 		ds.hst_rdev = bsdtohpuxdev(sb->st_rdev);
850 	if (sb->st_size < (quad_t)1 << 32)
851 		ds.hst_size = (long)sb->st_size;
852 	else
853 		ds.hst_size = -2;
854 	ds.hst_atime = sb->st_atime;
855 	ds.hst_mtime = sb->st_mtime;
856 	ds.hst_ctime = sb->st_ctime;
857 	ds.hst_blksize = sb->st_blksize;
858 	ds.hst_blocks = sb->st_blocks;
859 	return(copyout((caddr_t)&ds, (caddr_t)hsb, sizeof(ds)));
860 }
861 
862 hpuxtobsdioctl(com)
863 	int com;
864 {
865 	switch (com) {
866 	case HPUXTIOCSLTC:
867 		com = TIOCSLTC; break;
868 	case HPUXTIOCGLTC:
869 		com = TIOCGLTC; break;
870 	case HPUXTIOCSPGRP:
871 		com = TIOCSPGRP; break;
872 	case HPUXTIOCGPGRP:
873 		com = TIOCGPGRP; break;
874 	case HPUXTIOCLBIS:
875 		com = TIOCLBIS; break;
876 	case HPUXTIOCLBIC:
877 		com = TIOCLBIC; break;
878 	case HPUXTIOCLSET:
879 		com = TIOCLSET; break;
880 	case HPUXTIOCLGET:
881 		com = TIOCLGET; break;
882 	}
883 	return(com);
884 }
885 
886 /*
887  * HPUX ioctl system call.  The differences here are:
888  *	IOC_IN also means IOC_VOID if the size portion is zero.
889  *	no FIOCLEX/FIONCLEX/FIOASYNC/FIOGETOWN/FIOSETOWN
890  *	the sgttyb struct is 2 bytes longer
891  */
892 hpuxioctl(p, uap, retval)
893 	struct proc *p;
894 	register struct args {
895 		int	fdes;
896 		int	cmd;
897 		caddr_t	cmarg;
898 	} *uap;
899 	int *retval;
900 {
901 	register struct filedesc *fdp = p->p_fd;
902 	register struct file *fp;
903 	register int com, error;
904 	register u_int size;
905 	caddr_t memp = 0;
906 #define STK_PARAMS	128
907 	char stkbuf[STK_PARAMS];
908 	caddr_t data = stkbuf;
909 
910 	com = uap->cmd;
911 
912 	/* XXX */
913 	if (com == HPUXTIOCGETP || com == HPUXTIOCSETP)
914 		return (getsettty(p, uap->fdes, com, uap->cmarg));
915 
916 	if (((unsigned)uap->fdes) >= fdp->fd_nfiles ||
917 	    (fp = fdp->fd_ofiles[uap->fdes]) == NULL)
918 		return (EBADF);
919 	if ((fp->f_flag & (FREAD|FWRITE)) == 0)
920 		return (EBADF);
921 
922 	/*
923 	 * Interpret high order word to find
924 	 * amount of data to be copied to/from the
925 	 * user's address space.
926 	 */
927 	size = IOCPARM_LEN(com);
928 	if (size > IOCPARM_MAX)
929 		return (ENOTTY);
930 	if (size > sizeof (stkbuf)) {
931 		memp = (caddr_t)malloc((u_long)size, M_IOCTLOPS, M_WAITOK);
932 		data = memp;
933 	}
934 	if (com&IOC_IN) {
935 		if (size) {
936 			error = copyin(uap->cmarg, data, (u_int)size);
937 			if (error) {
938 				if (memp)
939 					free(memp, M_IOCTLOPS);
940 				return (error);
941 			}
942 		} else
943 			*(caddr_t *)data = uap->cmarg;
944 	} else if ((com&IOC_OUT) && size)
945 		/*
946 		 * Zero the buffer so the user always
947 		 * gets back something deterministic.
948 		 */
949 		bzero(data, size);
950 	else if (com&IOC_VOID)
951 		*(caddr_t *)data = uap->cmarg;
952 
953 	switch (com) {
954 
955 	case HPUXFIOSNBIO:
956 	{
957 		char *ofp = &fdp->fd_ofileflags[uap->fdes];
958 		int tmp;
959 
960 		if (*(int *)data)
961 			*ofp |= UF_FIONBIO_ON;
962 		else
963 			*ofp &= ~UF_FIONBIO_ON;
964 		/*
965 		 * Only set/clear if FNONBLOCK not in effect
966 		 */
967 		if ((*ofp & UF_FNDELAY_ON) == 0) {
968 			tmp = fp->f_flag & FNONBLOCK;
969 			error = (*fp->f_ops->fo_ioctl)(fp, FIONBIO,
970 						       (caddr_t)&tmp, p);
971 		}
972 		break;
973 	}
974 
975 	case HPUXTIOCCONS:
976 		*(int *)data = 1;
977 		error = (*fp->f_ops->fo_ioctl)(fp, TIOCCONS, data, p);
978 		break;
979 
980 	/* BSD-style job control ioctls */
981 	case HPUXTIOCLBIS:
982 	case HPUXTIOCLBIC:
983 	case HPUXTIOCLSET:
984 		*(int *)data &= HPUXLTOSTOP;
985 		if (*(int *)data & HPUXLTOSTOP)
986 			*(int *)data = LTOSTOP;
987 		/* fall into */
988 	case HPUXTIOCLGET:
989 	case HPUXTIOCSLTC:
990 	case HPUXTIOCGLTC:
991 	case HPUXTIOCSPGRP:
992 	case HPUXTIOCGPGRP:
993 		error = (*fp->f_ops->fo_ioctl)
994 			(fp, hpuxtobsdioctl(com), data, p);
995 		if (error == 0 && com == HPUXTIOCLGET) {
996 			*(int *)data &= LTOSTOP;
997 			if (*(int *)data & LTOSTOP)
998 				*(int *)data = HPUXLTOSTOP;
999 		}
1000 		break;
1001 
1002 	/* SYS 5 termio */
1003 	case HPUXTCGETA:
1004 	case HPUXTCSETA:
1005 	case HPUXTCSETAW:
1006 	case HPUXTCSETAF:
1007 		error = hpuxtermio(fp, com, data, p);
1008 		break;
1009 
1010 	default:
1011 		error = (*fp->f_ops->fo_ioctl)(fp, com, data, p);
1012 		break;
1013 	}
1014 	/*
1015 	 * Copy any data to user, size was
1016 	 * already set and checked above.
1017 	 */
1018 	if (error == 0 && (com&IOC_OUT) && size)
1019 		error = copyout(data, uap->cmarg, (u_int)size);
1020 	if (memp)
1021 		free(memp, M_IOCTLOPS);
1022 	return (error);
1023 }
1024 
1025 /*
1026  * Man page lies, behaviour here is based on observed behaviour.
1027  */
1028 hpuxgetcontext(p, uap, retval)
1029 	struct proc *p;
1030 	struct args {
1031 		char *buf;
1032 		int len;
1033 	} *uap;
1034 	int *retval;
1035 {
1036 	int error = 0;
1037 	register int len;
1038 
1039 	len = MIN(uap->len, sizeof(hpuxcontext));
1040 	if (len)
1041 		error = copyout(hpuxcontext, uap->buf, (u_int)len);
1042 	if (error == 0)
1043 		*retval = sizeof(hpuxcontext);
1044 	return (error);
1045 }
1046 
1047 /*
1048  * This is the equivalent of BSD getpgrp but with more restrictions.
1049  * Note we do not check the real uid or "saved" uid.
1050  */
1051 hpuxgetpgrp2(cp, uap, retval)
1052 	struct proc *cp;
1053 	register struct args {
1054 		int pid;
1055 	} *uap;
1056 	int *retval;
1057 {
1058 	register struct proc *p;
1059 
1060 	if (uap->pid == 0)
1061 		uap->pid = cp->p_pid;
1062 	p = pfind(uap->pid);
1063 	if (p == 0)
1064 		return (ESRCH);
1065 	if (cp->p_ucred->cr_uid && p->p_ucred->cr_uid != cp->p_ucred->cr_uid &&
1066 	    !inferior(p))
1067 		return (EPERM);
1068 	*retval = p->p_pgid;
1069 	return (0);
1070 }
1071 
1072 /*
1073  * This is the equivalent of BSD setpgrp but with more restrictions.
1074  * Note we do not check the real uid or "saved" uid or pgrp.
1075  */
1076 hpuxsetpgrp2(p, uap, retval)
1077 	struct proc *p;
1078 	struct args {
1079 		int	pid;
1080 		int	pgrp;
1081 	} *uap;
1082 	int *retval;
1083 {
1084 	/* empirically determined */
1085 	if (uap->pgrp < 0 || uap->pgrp >= 30000)
1086 		return (EINVAL);
1087 	return (setpgid(p, uap, retval));
1088 }
1089 
1090 /*
1091  * XXX Same as BSD setre[ug]id right now.  Need to consider saved ids.
1092  */
1093 hpuxsetresuid(p, uap, retval)
1094 	struct proc *p;
1095 	struct args {
1096 		int	ruid;
1097 		int	euid;
1098 		int	suid;
1099 	} *uap;
1100 	int *retval;
1101 {
1102 	return (osetreuid(p, uap, retval));
1103 }
1104 
1105 hpuxsetresgid(p, uap, retval)
1106 	struct proc *p;
1107 	struct args {
1108 		int	rgid;
1109 		int	egid;
1110 		int	sgid;
1111 	} *uap;
1112 	int *retval;
1113 {
1114 	return (osetregid(p, uap, retval));
1115 }
1116 
1117 /*
1118  * XXX: simple recognition hack to see if we can make grmd work.
1119  */
1120 hpuxlockf(p, uap, retval)
1121 	struct proc *p;
1122 	struct args {
1123 		int fd;
1124 		int func;
1125 		long size;
1126 	} *uap;
1127 	int *retval;
1128 {
1129 #ifdef DEBUG
1130 	log(LOG_DEBUG, "%d: lockf(%d, %d, %d)\n",
1131 	    p->p_pid, uap->fd, uap->func, uap->size);
1132 #endif
1133 	return (0);
1134 }
1135 
1136 hpuxgetaccess(p, uap, retval)
1137 	register struct proc *p;
1138 	register struct args {
1139 		char	*path;
1140 		int	uid;
1141 		int	ngroups;
1142 		int	*gidset;
1143 		void	*label;
1144 		void	*privs;
1145 	} *uap;
1146 	int *retval;
1147 {
1148 	int lgroups[NGROUPS];
1149 	int error = 0;
1150 	register struct ucred *cred;
1151 	register struct vnode *vp;
1152 	struct nameidata nd;
1153 
1154 	/*
1155 	 * Build an appropriate credential structure
1156 	 */
1157 	cred = crdup(p->p_ucred);
1158 	switch (uap->uid) {
1159 	case 65502:	/* UID_EUID */
1160 		break;
1161 	case 65503:	/* UID_RUID */
1162 		cred->cr_uid = p->p_cred->p_ruid;
1163 		break;
1164 	case 65504:	/* UID_SUID */
1165 		error = EINVAL;
1166 		break;
1167 	default:
1168 		if (uap->uid > 65504)
1169 			error = EINVAL;
1170 		cred->cr_uid = uap->uid;
1171 		break;
1172 	}
1173 	switch (uap->ngroups) {
1174 	case -1:	/* NGROUPS_EGID */
1175 		cred->cr_ngroups = 1;
1176 		break;
1177 	case -5:	/* NGROUPS_EGID_SUPP */
1178 		break;
1179 	case -2:	/* NGROUPS_RGID */
1180 		cred->cr_ngroups = 1;
1181 		cred->cr_gid = p->p_cred->p_rgid;
1182 		break;
1183 	case -6:	/* NGROUPS_RGID_SUPP */
1184 		cred->cr_gid = p->p_cred->p_rgid;
1185 		break;
1186 	case -3:	/* NGROUPS_SGID */
1187 	case -7:	/* NGROUPS_SGID_SUPP */
1188 		error = EINVAL;
1189 		break;
1190 	case -4:	/* NGROUPS_SUPP */
1191 		if (cred->cr_ngroups > 1)
1192 			cred->cr_gid = cred->cr_groups[1];
1193 		else
1194 			error = EINVAL;
1195 		break;
1196 	default:
1197 		if (uap->ngroups > 0 && uap->ngroups <= NGROUPS)
1198 			error = copyin((caddr_t)uap->gidset,
1199 				       (caddr_t)&lgroups[0],
1200 				       uap->ngroups * sizeof(lgroups[0]));
1201 		else
1202 			error = EINVAL;
1203 		if (error == 0) {
1204 			int gid;
1205 
1206 			for (gid = 0; gid < uap->ngroups; gid++)
1207 				cred->cr_groups[gid] = lgroups[gid];
1208 			cred->cr_ngroups = uap->ngroups;
1209 		}
1210 		break;
1211 	}
1212 	/*
1213 	 * Lookup file using caller's effective IDs.
1214 	 */
1215 	if (error == 0) {
1216 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF, UIO_USERSPACE,
1217 			uap->path, p);
1218 		error = namei(&nd);
1219 	}
1220 	if (error) {
1221 		crfree(cred);
1222 		return (error);
1223 	}
1224 	/*
1225 	 * Use the constructed credentials for access checks.
1226 	 */
1227 	vp = nd.ni_vp;
1228 	*retval = 0;
1229 	if (VOP_ACCESS(vp, VREAD, cred, p) == 0)
1230 		*retval |= R_OK;
1231 	if (vn_writechk(vp) == 0 && VOP_ACCESS(vp, VWRITE, cred, p) == 0)
1232 		*retval |= W_OK;
1233 	/* XXX we return X_OK for root on VREG even if not */
1234 	if (VOP_ACCESS(vp, VEXEC, cred, p) == 0)
1235 		*retval |= X_OK;
1236 	vput(vp);
1237 	crfree(cred);
1238 	return (error);
1239 }
1240 
1241 /*
1242  * Brutal hack!  Map HPUX u-area offsets into BSD u offsets.
1243  * No apologies offered, if you don't like it, rewrite it!
1244  */
1245 
1246 extern char kstack[];
1247 #define UOFF(f)		((int)&((struct user *)0)->f)
1248 #define HPUOFF(f)	((int)&((struct hpuxuser *)0)->f)
1249 
1250 /* simplified FP structure */
1251 struct bsdfp {
1252 	int save[54];
1253 	int reg[24];
1254 	int ctrl[3];
1255 };
1256 
1257 hpuxtobsduoff(off)
1258 	int *off;
1259 {
1260 	register int *ar0 = curproc->p_md.md_regs;
1261 	struct hpuxfp *hp;
1262 	struct bsdfp *bp;
1263 	register u_int raddr;
1264 
1265 	/* u_ar0 field; procxmt puts in U_ar0 */
1266 	if ((int)off == HPUOFF(hpuxu_ar0))
1267 		return(UOFF(U_ar0));
1268 
1269 #ifdef FPCOPROC
1270 	/* 68881 registers from PCB */
1271 	hp = (struct hpuxfp *)HPUOFF(hpuxu_fp);
1272 	bp = (struct bsdfp *)UOFF(u_pcb.pcb_fpregs);
1273 	if (off >= hp->hpfp_ctrl && off < &hp->hpfp_ctrl[3])
1274 		return((int)&bp->ctrl[off - hp->hpfp_ctrl]);
1275 	if (off >= hp->hpfp_reg && off < &hp->hpfp_reg[24])
1276 		return((int)&bp->reg[off - hp->hpfp_reg]);
1277 #endif
1278 
1279 	/*
1280 	 * Everything else we recognize comes from the kernel stack,
1281 	 * so we convert off to an absolute address (if not already)
1282 	 * for simplicity.
1283 	 */
1284 	if (off < (int *)ctob(UPAGES))
1285 		off = (int *)((u_int)off + (u_int)kstack);
1286 
1287 	/*
1288 	 * 68020 registers.
1289 	 * We know that the HPUX registers are in the same order as ours.
1290 	 * The only difference is that their PS is 2 bytes instead of a
1291 	 * padded 4 like ours throwing the alignment off.
1292 	 */
1293 	if (off >= ar0 && off < &ar0[18]) {
1294 		/*
1295 		 * PS: return low word and high word of PC as HP-UX would
1296 		 * (e.g. &u.u_ar0[16.5]).
1297 		 */
1298 		if (off == &ar0[PS])
1299 			raddr = (u_int) &((short *)ar0)[PS*2+1];
1300 		/*
1301 		 * PC: off will be &u.u_ar0[16.5]
1302 		 */
1303 		else if (off == (int *)&(((short *)ar0)[PS*2+1]))
1304 			raddr = (u_int) &ar0[PC];
1305 		/*
1306 		 * D0-D7, A0-A7: easy
1307 		 */
1308 		else
1309 			raddr = (u_int) &ar0[(int)(off - ar0)];
1310 		return((int)(raddr - (u_int)kstack));
1311 	}
1312 
1313 	/* everything else */
1314 	return(-1);
1315 }
1316 
1317 /*
1318  * Kludge up a uarea dump so that HPUX debuggers can find out
1319  * what they need.  IMPORTANT NOTE: we do not EVEN attempt to
1320  * convert the entire user struct.
1321  */
1322 hpuxdumpu(vp, cred)
1323 	struct vnode *vp;
1324 	struct ucred *cred;
1325 {
1326 	struct proc *p = curproc;
1327 	int error;
1328 	struct hpuxuser *faku;
1329 	struct bsdfp *bp;
1330 	short *foop;
1331 
1332 	faku = (struct hpuxuser *)malloc((u_long)ctob(1), M_TEMP, M_WAITOK);
1333 	/*
1334 	 * Make sure there is no mistake about this
1335 	 * being a real user structure.
1336 	 */
1337 	bzero((caddr_t)faku, ctob(1));
1338 	/*
1339 	 * Fill in the process sizes.
1340 	 */
1341 	faku->hpuxu_tsize = p->p_vmspace->vm_tsize;
1342 	faku->hpuxu_dsize = p->p_vmspace->vm_dsize;
1343 	faku->hpuxu_ssize = p->p_vmspace->vm_ssize;
1344 	/*
1345 	 * Fill in the exec header for CDB.
1346 	 * This was saved back in exec().  As far as I can tell CDB
1347 	 * only uses this information to verify that a particular
1348 	 * core file goes with a particular binary.
1349 	 */
1350 	bcopy((caddr_t)p->p_addr->u_pcb.pcb_exec,
1351 	      (caddr_t)&faku->hpuxu_exdata, sizeof (struct hpux_exec));
1352 	/*
1353 	 * Adjust user's saved registers (on kernel stack) to reflect
1354 	 * HPUX order.  Note that HPUX saves the SR as 2 bytes not 4
1355 	 * so we have to move it up.
1356 	 */
1357 	faku->hpuxu_ar0 = p->p_md.md_regs;
1358 	foop = (short *) p->p_md.md_regs;
1359 	foop[32] = foop[33];
1360 	foop[33] = foop[34];
1361 	foop[34] = foop[35];
1362 #ifdef FPCOPROC
1363 	/*
1364 	 * Copy 68881 registers from our PCB format to HPUX format
1365 	 */
1366 	bp = (struct bsdfp *) &p->p_addr->u_pcb.pcb_fpregs;
1367 	bcopy((caddr_t)bp->save, (caddr_t)faku->hpuxu_fp.hpfp_save,
1368 	      sizeof(bp->save));
1369 	bcopy((caddr_t)bp->ctrl, (caddr_t)faku->hpuxu_fp.hpfp_ctrl,
1370 	      sizeof(bp->ctrl));
1371 	bcopy((caddr_t)bp->reg, (caddr_t)faku->hpuxu_fp.hpfp_reg,
1372 	      sizeof(bp->reg));
1373 #endif
1374 	/*
1375 	 * Slay the dragon
1376 	 */
1377 	faku->hpuxu_dragon = -1;
1378 	/*
1379 	 * Dump this artfully constructed page in place of the
1380 	 * user struct page.
1381 	 */
1382 	error = vn_rdwr(UIO_WRITE, vp, (caddr_t)faku, ctob(1), (off_t)0,
1383 			UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT, cred,
1384 			(int *)NULL, p);
1385 	/*
1386 	 * Dump the remaining UPAGES-1 pages normally
1387 	 */
1388 	if (!error)
1389 		error = vn_rdwr(UIO_WRITE, vp, kstack + ctob(1),
1390 				ctob(UPAGES-1), (off_t)ctob(1), UIO_SYSSPACE,
1391 				IO_NODELOCKED|IO_UNIT, cred, (int *)NULL, p);
1392 	free((caddr_t)faku, M_TEMP);
1393 	return(error);
1394 }
1395 
1396 /*
1397  * The remaining routines are essentially the same as those in kern_xxx.c
1398  * and vfs_xxx.c as defined under "#ifdef COMPAT".  We replicate them here
1399  * to avoid HPUXCOMPAT dependencies in those files and to make sure that
1400  * HP-UX compatibility still works even when COMPAT is not defined.
1401  */
1402 /* #ifdef COMPAT */
1403 
1404 #define HPUX_HZ	50
1405 
1406 #include "sys/times.h"
1407 
1408 /* from old timeb.h */
1409 struct hpuxtimeb {
1410 	time_t	time;
1411 	u_short	millitm;
1412 	short	timezone;
1413 	short	dstflag;
1414 };
1415 
1416 /* ye ole stat structure */
1417 struct	ohpuxstat {
1418 	u_short	ohst_dev;
1419 	u_short	ohst_ino;
1420 	u_short ohst_mode;
1421 	short  	ohst_nlink;
1422 	short  	ohst_uid;
1423 	short  	ohst_gid;
1424 	u_short	ohst_rdev;
1425 	int	ohst_size;
1426 	int	ohst_atime;
1427 	int	ohst_mtime;
1428 	int	ohst_ctime;
1429 };
1430 
1431 /*
1432  * SYS V style setpgrp()
1433  */
1434 ohpuxsetpgrp(p, uap, retval)
1435 	register struct proc *p;
1436 	int *uap, *retval;
1437 {
1438 	if (p->p_pid != p->p_pgid)
1439 		enterpgrp(p, p->p_pid, 0);
1440 	*retval = p->p_pgid;
1441 	return (0);
1442 }
1443 
1444 ohpuxtime(p, uap, retval)
1445 	struct proc *p;
1446 	register struct args {
1447 		long	*tp;
1448 	} *uap;
1449 	time_t *retval;
1450 {
1451 	int error = 0;
1452 
1453 	if (uap->tp)
1454 		error = copyout((caddr_t)&time.tv_sec, (caddr_t)uap->tp,
1455 				sizeof (long));
1456 	*retval = time.tv_sec;
1457 	return (error);
1458 }
1459 
1460 ohpuxstime(p, uap, retval)
1461 	struct proc *p;
1462 	register struct args {
1463 		int	time;
1464 	} *uap;
1465 	int *retval;
1466 {
1467 	struct timeval tv;
1468 	int s, error;
1469 
1470 	tv.tv_sec = uap->time;
1471 	tv.tv_usec = 0;
1472 	if (error = suser(p->p_ucred, &p->p_acflag))
1473 		return (error);
1474 
1475 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
1476 	boottime.tv_sec += tv.tv_sec - time.tv_sec;
1477 	s = splhigh(); time = tv; splx(s);
1478 	resettodr();
1479 	return (0);
1480 }
1481 
1482 ohpuxftime(p, uap, retval)
1483 	struct proc *p;
1484 	register struct args {
1485 		struct	hpuxtimeb *tp;
1486 	} *uap;
1487 	int *retval;
1488 {
1489 	struct hpuxtimeb tb;
1490 	int s;
1491 
1492 	s = splhigh();
1493 	tb.time = time.tv_sec;
1494 	tb.millitm = time.tv_usec / 1000;
1495 	splx(s);
1496 	tb.timezone = tz.tz_minuteswest;
1497 	tb.dstflag = tz.tz_dsttime;
1498 	return (copyout((caddr_t)&tb, (caddr_t)uap->tp, sizeof (tb)));
1499 }
1500 
1501 ohpuxalarm(p, uap, retval)
1502 	register struct proc *p;
1503 	register struct args {
1504 		int	deltat;
1505 	} *uap;
1506 	int *retval;
1507 {
1508 	int s = splhigh();
1509 
1510 	untimeout(realitexpire, (caddr_t)p);
1511 	timerclear(&p->p_realtimer.it_interval);
1512 	*retval = 0;
1513 	if (timerisset(&p->p_realtimer.it_value) &&
1514 	    timercmp(&p->p_realtimer.it_value, &time, >))
1515 		*retval = p->p_realtimer.it_value.tv_sec - time.tv_sec;
1516 	if (uap->deltat == 0) {
1517 		timerclear(&p->p_realtimer.it_value);
1518 		splx(s);
1519 		return (0);
1520 	}
1521 	p->p_realtimer.it_value = time;
1522 	p->p_realtimer.it_value.tv_sec += uap->deltat;
1523 	timeout(realitexpire, (caddr_t)p, hzto(&p->p_realtimer.it_value));
1524 	splx(s);
1525 	return (0);
1526 }
1527 
1528 ohpuxnice(p, uap, retval)
1529 	register struct proc *p;
1530 	register struct args {
1531 		int	niceness;
1532 	} *uap;
1533 	int *retval;
1534 {
1535 	int error;
1536 
1537 	error = donice(p, p, (p->p_nice-NZERO)+uap->niceness);
1538 	if (error == 0)
1539 		*retval = p->p_nice - NZERO;
1540 	return (error);
1541 }
1542 
1543 ohpuxtimes(p, uap, retval)
1544 	struct proc *p;
1545 	register struct args {
1546 		struct	tms *tmsb;
1547 	} *uap;
1548 	time_t *retval;
1549 {
1550 	struct tms atms;
1551 	int error;
1552 
1553 	atms.tms_utime = hpuxscale(&p->p_utime);
1554 	atms.tms_stime = hpuxscale(&p->p_stime);
1555 	atms.tms_cutime = hpuxscale(&p->p_stats->p_cru.ru_utime);
1556 	atms.tms_cstime = hpuxscale(&p->p_stats->p_cru.ru_stime);
1557 	error = copyout((caddr_t)&atms, (caddr_t)uap->tmsb, sizeof (atms));
1558 	if (error == 0)
1559 		*retval = hpuxscale(&time) - hpuxscale(&boottime);
1560 	return (error);
1561 }
1562 
1563 /*
1564  * Doesn't exactly do what the documentation says.
1565  * What we really do is return 1/HPUX_HZ-th of a second since that
1566  * is what HP-UX returns.
1567  */
1568 hpuxscale(tvp)
1569 	register struct timeval *tvp;
1570 {
1571 	return (tvp->tv_sec * HPUX_HZ + tvp->tv_usec * HPUX_HZ / 1000000);
1572 }
1573 
1574 /*
1575  * Set IUPD and IACC times on file.
1576  * Can't set ICHG.
1577  */
1578 ohpuxutime(p, uap, retval)
1579 	struct proc *p;
1580 	register struct a {
1581 		char	*fname;
1582 		time_t	*tptr;
1583 	} *uap;
1584 	int *retval;
1585 {
1586 	register struct vnode *vp;
1587 	struct vattr vattr;
1588 	time_t tv[2];
1589 	int error;
1590 	struct nameidata nd;
1591 
1592 	if (uap->tptr) {
1593 		error = copyin((caddr_t)uap->tptr, (caddr_t)tv, sizeof (tv));
1594 		if (error)
1595 			return (error);
1596 	} else
1597 		tv[0] = tv[1] = time.tv_sec;
1598 	vattr_null(&vattr);
1599 	vattr.va_atime.tv_sec = tv[0];
1600 	vattr.va_atime.tv_usec = 0;
1601 	vattr.va_mtime.tv_sec = tv[1];
1602 	vattr.va_mtime.tv_usec = 0;
1603 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF, UIO_USERSPACE, uap->fname, p);
1604 	if (error = namei(&nd))
1605 		return (error);
1606 	vp = nd.ni_vp;
1607 	if (vp->v_mount->mnt_flag & MNT_RDONLY)
1608 		error = EROFS;
1609 	else
1610 		error = VOP_SETATTR(vp, &vattr, nd.ni_cnd.cn_cred, p);
1611 	vput(vp);
1612 	return (error);
1613 }
1614 
1615 ohpuxpause(p, uap, retval)
1616 	struct proc *p;
1617 	int *uap, *retval;
1618 {
1619 	(void) tsleep(kstack, PPAUSE | PCATCH, "pause", 0);
1620 	/* always return EINTR rather than ERESTART... */
1621 	return (EINTR);
1622 }
1623 
1624 /*
1625  * The old fstat system call.
1626  */
1627 ohpuxfstat(p, uap, retval)
1628 	struct proc *p;
1629 	register struct args {
1630 		int	fd;
1631 		struct ohpuxstat *sb;
1632 	} *uap;
1633 	int *retval;
1634 {
1635 	register struct filedesc *fdp = p->p_fd;
1636 	struct file *fp;
1637 
1638 	if (((unsigned)uap->fd) >= fdp->fd_nfiles ||
1639 	    (fp = fdp->fd_ofiles[uap->fd]) == NULL)
1640 		return (EBADF);
1641 	if (fp->f_type != DTYPE_VNODE)
1642 		return (EINVAL);
1643 	return (ohpuxstat1((struct vnode *)fp->f_data, uap->sb));
1644 }
1645 
1646 /*
1647  * Old stat system call.  This version follows links.
1648  */
1649 ohpuxstat(p, uap, retval)
1650 	struct proc *p;
1651 	register struct args {
1652 		char	*fname;
1653 		struct ohpuxstat *sb;
1654 	} *uap;
1655 	int *retval;
1656 {
1657 	int error;
1658 	struct nameidata nd;
1659 
1660 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF, UIO_USERSPACE, uap->fname, p);
1661 	if (error = namei(&nd))
1662 		return (error);
1663 	error = ohpuxstat1(nd.ni_vp, uap->sb);
1664 	vput(nd.ni_vp);
1665 	return (error);
1666 }
1667 
1668 int
1669 ohpuxstat1(vp, ub)
1670 	register struct vnode *vp;
1671 	struct ohpuxstat *ub;
1672 {
1673 	struct ohpuxstat ds;
1674 	struct vattr vattr;
1675 	register int error;
1676 
1677 	error = VOP_GETATTR(vp, &vattr, curproc->p_ucred, curproc);
1678 	if (error)
1679 		return(error);
1680 	/*
1681 	 * Copy from inode table
1682 	 */
1683 	ds.ohst_dev = vattr.va_fsid;
1684 	ds.ohst_ino = (short)vattr.va_fileid;
1685 	ds.ohst_mode = (u_short)vattr.va_mode;
1686 	ds.ohst_nlink = vattr.va_nlink;
1687 	ds.ohst_uid = (short)vattr.va_uid;
1688 	ds.ohst_gid = (short)vattr.va_gid;
1689 	ds.ohst_rdev = (u_short)vattr.va_rdev;
1690 	ds.ohst_size = (int)vattr.va_size;
1691 	ds.ohst_atime = (int)vattr.va_atime.tv_sec;
1692 	ds.ohst_mtime = (int)vattr.va_mtime.tv_sec;
1693 	ds.ohst_ctime = (int)vattr.va_ctime.tv_sec;
1694 	return (copyout((caddr_t)&ds, (caddr_t)ub, sizeof(ds)));
1695 }
1696 /* #endif */
1697 
1698 #endif
1699