xref: /csrg-svn/sys/hp/hpux/hpux_compat.c (revision 44421)
1 /*
2  * Copyright (c) 1988 University of Utah.
3  * Copyright (c) 1990 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the Systems Programming Group of the University of Utah Computer
8  * Science Department.
9  *
10  * %sccs.include.redist.c%
11  *
12  * from: Utah $Hdr: hpux_compat.c 1.33 89/08/23$
13  *
14  *	@(#)hpux_compat.c	7.9 (Berkeley) 06/28/90
15  */
16 
17 /*
18  * Various HPUX compatibility routines
19  */
20 
21 #ifdef HPUXCOMPAT
22 
23 #include "param.h"
24 #include "systm.h"
25 #include "user.h"
26 #include "kernel.h"
27 #include "proc.h"
28 #include "buf.h"
29 #include "wait.h"
30 #include "file.h"
31 #include "vnode.h"
32 #include "ioctl.h"
33 #include "uio.h"
34 #include "ptrace.h"
35 #include "stat.h"
36 #include "syslog.h"
37 #include "malloc.h"
38 #include "mount.h"
39 #include "ipc.h"
40 
41 #include "machine/cpu.h"
42 #include "machine/reg.h"
43 #include "machine/psl.h"
44 #include "machine/vmparam.h"
45 #include "hpux.h"
46 #include "hpux_termio.h"
47 
48 #ifdef DEBUG
49 int unimpresponse = 0;
50 #endif
51 
52 /* "tick" value for HZ==50 */
53 int hpuxtick = 1000000 / 50;
54 
55 /* SYS5 style UTSNAME info */
56 struct hpuxutsname protoutsname = {
57 	"4.4bsd", "", "2.0", "B", "9000/3?0", ""
58 };
59 
60 /* 6.0 and later style context */
61 #ifdef FPCOPROC
62 char hpuxcontext[] =
63 	"standalone HP-MC68881 HP-MC68020 HP-MC68010 localroot default";
64 #else
65 char hpuxcontext[] =
66 	"standalone HP-MC68020 HP-MC68010 localroot default";
67 #endif
68 
69 /* YP domainname */
70 char	domainname[MAXHOSTNAMELEN] = "unknown";
71 int	domainnamelen = 7;
72 
73 #define NERR	79
74 #define BERR	1000
75 
76 /* indexed by BSD errno */
77 short bsdtohpuxerrnomap[NERR] = {
78 /*00*/	  0,   1,   2,   3,   4,   5,   6,   7,   8,   9,
79 /*10*/	 10,  45,  12,  13,  14,  15,  16,  17,  18,  19,
80 /*20*/	 20,  21,  22,  23,  24,  25,  26,  27,  28,  29,
81 /*30*/	 30,  31,  32,  33,  34, 246, 245, 244, 216, 217,
82 /*40*/	218, 219, 220, 221, 222, 223, 224, 225, 226, 227,
83 /*50*/	228, 229, 230, 231, 232, 233, 234, 235, 236, 237,
84 /*60*/	238, 239, 249, 248, 241, 242, 247,BERR,BERR,BERR,
85 /*70*/   70,  71,BERR,BERR,BERR,BERR,BERR,  46,BERR
86 };
87 
88 notimp(p, uap, retval, code, nargs)
89 	struct proc *p;
90 	int *uap, *retval;
91 	int code, nargs;
92 {
93 	int error = 0;
94 #ifdef DEBUG
95 	register int *argp = uap;
96 	extern char *hpuxsyscallnames[];
97 
98 	printf("HPUX %s(", hpuxsyscallnames[code]);
99 	if (nargs)
100 		while (nargs--)
101 			printf("%x%c", *argp++, nargs? ',' : ')');
102 	else
103 		printf(")");
104 	printf("\n");
105 	switch (unimpresponse) {
106 	case 0:
107 		error = nosys(p, uap, retval);
108 		break;
109 	case 1:
110 		error = EINVAL;
111 		break;
112 	}
113 #else
114 	error = nosys(p, uap, retval);
115 #endif
116 	uprintf("HP-UX system call %d not implemented\n", code);
117 	return (error);
118 }
119 
120 /*
121  * HPUX versions of wait and wait3 actually pass the parameters
122  * (status pointer, options, rusage) into the kernel rather than
123  * handling it in the C library stub.  We also need to map any
124  * termination signal from BSD to HPUX.
125  */
126 hpuxwait3(p, uap, retval)
127 	struct proc *p;
128 	struct args {
129 		int	*status;
130 		int	options;
131 		int	rusage;
132 	} *uap;
133 	int *retval;
134 {
135 	/* rusage pointer must be zero */
136 	if (uap->rusage)
137 		return (EINVAL);
138 	u.u_ar0[PS] = PSL_ALLCC;
139 	u.u_ar0[R0] = uap->options;
140 	u.u_ar0[R1] = uap->rusage;
141 	return (hpuxwait(p, uap, retval));
142 }
143 
144 hpuxwait(p, uap, retval)
145 	struct proc *p;
146 	struct args {
147 		int	*status;
148 	} *uap;
149 	int *retval;
150 {
151 	int sig, *statp, error;
152 
153 	statp = uap->status;	/* owait clobbers first arg */
154 	error = owait(p, uap, retval);
155 	/*
156 	 * HP-UX wait always returns EINTR when interrupted by a signal
157 	 * (well, unless its emulating a BSD process, but we don't bother...)
158 	 */
159 	if (error == ERESTART)
160 		error = EINTR;
161 	if (error)
162 		return (error);
163 	sig = retval[1] & 0xFF;
164 	if (sig == WSTOPPED) {
165 		sig = (retval[1] >> 8) & 0xFF;
166 		retval[1] = (bsdtohpuxsig(sig) << 8) | WSTOPPED;
167 	} else if (sig)
168 		retval[1] = (retval[1] & 0xFF00) |
169 			bsdtohpuxsig(sig & 0x7F) | (sig & 0x80);
170 	if (statp)
171 		if (suword((caddr_t)statp, retval[1]))
172 			error = EFAULT;
173 	return (error);
174 }
175 
176 hpuxwaitpid(p, uap, retval)
177 	struct proc *p;
178 	struct args {
179 		int	pid;
180 		int	*status;
181 		int	options;
182 		struct	rusage *rusage;	/* wait4 arg */
183 	} *uap;
184 	int *retval;
185 {
186 	int sig, *statp, error;
187 
188 	uap->rusage = 0;
189 	error = wait4(p, uap, retval);
190 	/*
191 	 * HP-UX wait always returns EINTR when interrupted by a signal
192 	 * (well, unless its emulating a BSD process, but we don't bother...)
193 	 */
194 	if (error == ERESTART)
195 		error = EINTR;
196 	if (error)
197 		return (error);
198 	sig = retval[1] & 0xFF;
199 	if (sig == WSTOPPED) {
200 		sig = (retval[1] >> 8) & 0xFF;
201 		retval[1] = (bsdtohpuxsig(sig) << 8) | WSTOPPED;
202 	} else if (sig)
203 		retval[1] = (retval[1] & 0xFF00) |
204 			bsdtohpuxsig(sig & 0x7F) | (sig & 0x80);
205 	if (statp)
206 		if (suword((caddr_t)statp, retval[1]))
207 			error = EFAULT;
208 	return (error);
209 }
210 
211 /*
212  * Must remap some bits in the mode mask.
213  * O_CREAT, O_TRUNC, and O_EXCL must be remapped,
214  * O_SYNCIO (0100000) is removed entirely.
215  */
216 hpuxopen(p, uap, retval)
217 	struct proc *p;
218 	register struct args {
219 		char	*fname;
220 		int	mode;
221 		int	crtmode;
222 	} *uap;
223 	int *retval;
224 {
225 	int mode;
226 
227 	mode = uap->mode;
228 	uap->mode &= ~(HPUXFSYNCIO|HPUXFEXCL|HPUXFTRUNC|HPUXFCREAT);
229 	if (mode & HPUXFCREAT) {
230 		/*
231 		 * simulate the pre-NFS behavior that opening a
232 		 * file for READ+CREATE ignores the CREATE (unless
233 		 * EXCL is set in which case we will return the
234 		 * proper error).
235 		 */
236 		if ((mode & HPUXFEXCL) || ((mode-FOPEN) & FWRITE))
237 			uap->mode |= FCREAT;
238 	}
239 	if (mode & HPUXFTRUNC)
240 		uap->mode |= FTRUNC;
241 	if (mode & HPUXFEXCL)
242 		uap->mode |= FEXCL;
243 	return (open(p, uap, retval));
244 }
245 
246 hpuxfcntl(p, uap, retval)
247 	struct proc *p;
248 	register struct args {
249 		int	fdes;
250 		int	cmd;
251 		int	arg;
252 	} *uap;
253 	int *retval;
254 {
255 	int mode, error;
256 
257 	switch (uap->cmd) {
258 	case F_SETFL:
259 		uap->arg &= ~(HPUXFSYNCIO|HPUXFREMOTE|FUSECACHE);
260 		break;
261 	case F_GETFL:
262 	case F_DUPFD:
263 	case F_GETFD:
264 	case F_SETFD:
265 		break;
266 	default:
267 		return (EINVAL);
268 	}
269 	error = fcntl(p, uap, retval);
270 	if (error == 0 && uap->arg == F_GETFL) {
271 		mode = *retval;
272 		*retval &= ~(FCREAT|FTRUNC|FEXCL|FUSECACHE);
273 		if (mode & FCREAT)
274 			*retval |= HPUXFCREAT;
275 		if (mode & FTRUNC)
276 			*retval |= HPUXFTRUNC;
277 		if (mode & FEXCL)
278 			*retval |= HPUXFEXCL;
279 	}
280 	return (error);
281 }
282 
283 /*
284  * Read and write should return a 0 count when an operation
285  * on a VNODE would block, not an error.  Sockets appear to
286  * return EWOULDBLOCK (at least in 6.2).  This is probably
287  * not entirely correct, since the behavior is only defined
288  * for pipes and tty type devices.
289  */
290 hpuxread(p, uap, retval)
291 	struct proc *p;
292 	struct args {
293 		int	fd;
294 	} *uap;
295 	int *retval;
296 {
297 	int error;
298 
299 	error = read(p, uap, retval);
300 	if (error == EWOULDBLOCK &&
301 	    u.u_ofile[uap->fd]->f_type == DTYPE_VNODE) {
302 		error = 0;
303 		*retval = 0;
304 	}
305 	return (error);
306 }
307 
308 hpuxwrite(p, uap, retval)
309 	struct proc *p;
310 	struct args {
311 		int	fd;
312 	} *uap;
313 	int *retval;
314 {
315 	int error;
316 
317 	error = write(p, uap, retval);
318 	if (error == EWOULDBLOCK &&
319 	    u.u_ofile[uap->fd]->f_type == DTYPE_VNODE) {
320 		error = 0;
321 		*retval = 0;
322 	}
323 	return (error);
324 }
325 
326 hpuxreadv(p, uap, retval)
327 	struct proc *p;
328 	struct args {
329 		int	fd;
330 	} *uap;
331 	int *retval;
332 {
333 	int error;
334 
335 	error = readv(p, uap, retval);
336 	if (error == EWOULDBLOCK &&
337 	    u.u_ofile[uap->fd]->f_type == DTYPE_VNODE) {
338 		error = 0;
339 		*retval = 0;
340 	}
341 	return (error);
342 }
343 
344 hpuxwritev(p, uap, retval)
345 	struct proc *p;
346 	struct args {
347 		int	fd;
348 	} *uap;
349 	int *retval;
350 {
351 	int error;
352 
353 	error = writev(p, uap, retval);
354 	if (error == EWOULDBLOCK &&
355 	    u.u_ofile[uap->fd]->f_type == DTYPE_VNODE) {
356 		error = 0;
357 		*retval = 0;
358 	}
359 	return (error);
360 }
361 
362 /*
363  * 4.3bsd dup allows dup2 to come in on the same syscall entry
364  * and hence allows two arguments.  HPUX dup has only one arg.
365  */
366 hpuxdup(p, uap, retval)
367 	struct proc *p;
368 	register struct args {
369 		int	i;
370 	} *uap;
371 	int *retval;
372 {
373 	struct file *fp;
374 	int fd, error;
375 
376 	if ((unsigned)uap->i >= NOFILE || (fp = u.u_ofile[uap->i]) == NULL)
377 		return (EBADF);
378 	if (error = ufalloc(0, &fd))
379 		return (error);
380 	*retval = fd;
381 	u.u_ofile[fd] = fp;
382 	u.u_pofile[fd] = u.u_pofile[uap->i] &~ UF_EXCLOSE;
383 	fp->f_count++;
384 	if (fd > u.u_lastfile)
385 		u.u_lastfile = fd;
386 	return (0);
387 }
388 
389 hpuxuname(p, uap, retval)
390 	struct proc *p;
391 	register struct args {
392 		struct hpuxutsname *uts;
393 		int dev;
394 		int request;
395 	} *uap;
396 	int *retval;
397 {
398 	register int i;
399 	int error;
400 
401 	switch (uap->request) {
402 	/* uname */
403 	case 0:
404 		/* fill in machine type */
405 		switch (machineid) {
406 		case HP_320:
407 			protoutsname.machine[6] = '2';
408 			break;
409 		/* includes 318 and 319 */
410 		case HP_330:
411 			protoutsname.machine[6] = '3';
412 			break;
413 		case HP_340:
414 			protoutsname.machine[6] = '4';
415 			break;
416 		case HP_350:
417 			protoutsname.machine[6] = '5';
418 			break;
419 		case HP_360:
420 			protoutsname.machine[6] = '6';
421 			break;
422 		case HP_370:
423 			protoutsname.machine[6] = '7';
424 			break;
425 		/* includes 345 */
426 		case HP_375:
427 			protoutsname.machine[6] = '7';
428 			protoutsname.machine[7] = '5';
429 			break;
430 		}
431 		/* copy hostname (sans domain) to nodename */
432 		for (i = 0; i < 9 && hostname[i] != '.'; i++)
433 			protoutsname.nodename[i] = hostname[i];
434 		error = copyout((caddr_t)&protoutsname, (caddr_t)uap->uts,
435 				sizeof(struct hpuxutsname));
436 		break;
437 	/* ustat - who cares? */
438 	case 2:
439 	default:
440 		error = EINVAL;
441 		break;
442 	}
443 	return (error);
444 }
445 
446 hpuxstat(p, uap, retval)
447 	struct proc *p;
448 	struct args {
449 		char	*fname;
450 		struct hpuxstat *hsb;
451 	} *uap;
452 	int *retval;
453 {
454 	return (hpuxstat1(uap->fname, uap->hsb, FOLLOW));
455 }
456 
457 hpuxlstat(p, uap, retval)
458 	struct proc *p;
459 	struct args {
460 		char	*fname;
461 		struct hpuxstat *hsb;
462 	} *uap;
463 	int *retval;
464 {
465 	return (hpuxstat1(uap->fname, uap->hsb, NOFOLLOW));
466 }
467 
468 hpuxfstat(p, uap, retval)
469 	struct proc *p;
470 	register struct args {
471 		int	fdes;
472 		struct	hpuxstat *hsb;
473 	} *uap;
474 	int *retval;
475 {
476 	register struct file *fp;
477 	struct stat sb;
478 	int error;
479 
480 	if ((unsigned)uap->fdes >= NOFILE ||
481 	    (fp = u.u_ofile[uap->fdes]) == NULL)
482 		return (EBADF);
483 
484 	switch (fp->f_type) {
485 
486 	case DTYPE_VNODE:
487 		error = vn_stat((struct vnode *)fp->f_data, &sb);
488 		break;
489 
490 	case DTYPE_SOCKET:
491 		error = soo_stat((struct socket *)fp->f_data, &sb);
492 		break;
493 
494 	default:
495 		panic("fstat");
496 		/*NOTREACHED*/
497 	}
498 	/* is this right for sockets?? */
499 	if (error == 0)
500 		error = bsdtohpuxstat(&sb, uap->hsb);
501 	return (error);
502 }
503 
504 hpuxulimit(p, uap, retval)
505 	struct proc *p;
506 	register struct args {
507 		int	cmd;
508 		long	newlimit;
509 	} *uap;
510 	off_t *retval;
511 {
512 	struct rlimit *limp;
513 	int error = 0;
514 
515 	limp = &u.u_rlimit[RLIMIT_FSIZE];
516 	switch (uap->cmd) {
517 	case 2:
518 		uap->newlimit *= 512;
519 		if (uap->newlimit > limp->rlim_max &&
520 		    (error = suser(u.u_cred, &u.u_acflag)))
521 			break;
522 		limp->rlim_cur = limp->rlim_max = uap->newlimit;
523 		/* else fall into... */
524 
525 	case 1:
526 		*retval = limp->rlim_max / 512;		/* XXX */
527 		break;
528 
529 	case 3:
530 		limp = &u.u_rlimit[RLIMIT_DATA];
531 		*retval = ctob(u.u_tsize) + limp->rlim_max;	/* XXX */
532 		break;
533 
534 	default:
535 		error = EINVAL;
536 		break;
537 	}
538 	return (error);
539 }
540 
541 /*
542  * Map "real time" priorities 0 (high) thru 127 (low) into nice
543  * values -16 (high) thru -1 (low).
544  */
545 hpuxrtprio(cp, uap, retval)
546 	struct proc *cp;
547 	register struct args {
548 		int pid;
549 		int prio;
550 	} *uap;
551 	int *retval;
552 {
553 	struct proc *p;
554 	int nice, error;
555 
556 	if (uap->prio < RTPRIO_MIN && uap->prio > RTPRIO_MAX &&
557 	    uap->prio != RTPRIO_NOCHG && uap->prio != RTPRIO_RTOFF)
558 		return (EINVAL);
559 	if (uap->pid == 0)
560 		p = cp;
561 	else if ((p = pfind(uap->pid)) == 0)
562 		return (ESRCH);
563 	nice = p->p_nice;
564 	if (nice < NZERO)
565 		*retval = (nice + 16) << 3;
566 	else
567 		*retval = RTPRIO_RTOFF;
568 	switch (uap->prio) {
569 
570 	case RTPRIO_NOCHG:
571 		return (0);
572 
573 	case RTPRIO_RTOFF:
574 		if (nice >= NZERO)
575 			return (0);
576 		nice = NZERO;
577 		break;
578 
579 	default:
580 		nice = (uap->prio >> 3) - 16;
581 		break;
582 	}
583 	error = donice(cp, p, nice);
584 	if (error == EACCES)
585 		error = EPERM;
586 	return (error);
587 }
588 
589 hpuxadvise(p, uap, retval)
590 	struct proc *p;
591 	struct args {
592 		int	arg;
593 	} *uap;
594 	int *retval;
595 {
596 	int error = 0;
597 
598 	switch (uap->arg) {
599 	case 0:
600 		u.u_pcb.pcb_flags |= PCB_HPUXMMAP;
601 		break;
602 	case 1:
603 		ICIA();
604 		break;
605 	case 2:
606 		DCIA();
607 		break;
608 	default:
609 		error = EINVAL;
610 		break;
611 	}
612 	return (error);
613 }
614 
615 hpuxptrace(p, uap, retval)
616 	struct proc *p;
617 	struct args {
618 		int	req;
619 		int	pid;
620 		int	*addr;
621 		int	data;
622 	} *uap;
623 	int *retval;
624 {
625 	int error;
626 
627 	if (uap->req == PT_STEP || uap->req == PT_CONTINUE) {
628 		if (uap->data) {
629 			uap->data = hpuxtobsdsig(uap->data);
630 			if (uap->data == 0)
631 				uap->data = NSIG;
632 		}
633 	}
634 	error = ptrace(p, uap, retval);
635 	return (error);
636 }
637 
638 hpuxgetdomainname(p, uap, retval)
639 	struct proc *p;
640 	register struct args {
641 		char	*domainname;
642 		u_int	len;
643 	} *uap;
644 	int *retval;
645 {
646 	if (uap->len > domainnamelen + 1)
647 		uap->len = domainnamelen + 1;
648 	return (copyout(domainname, uap->domainname, uap->len));
649 }
650 
651 hpuxsetdomainname(p, uap, retval)
652 	struct proc *p;
653 	register struct args {
654 		char	*domainname;
655 		u_int	len;
656 	} *uap;
657 	int *retval;
658 {
659 	int error;
660 
661 	if (error = suser(u.u_cred, &u.u_acflag))
662 		return (error);
663 	if (uap->len > sizeof (domainname) - 1)
664 		return (EINVAL);
665 	domainnamelen = uap->len;
666 	error = copyin(uap->domainname, domainname, uap->len);
667 	domainname[domainnamelen] = 0;
668 	return (error);
669 }
670 
671 #ifdef SYSVSHM
672 hpuxshmat(p, uap, retval)
673 	struct proc *p;
674 	int *uap, *retval;
675 {
676 	return (shmat(p, uap, retval));
677 }
678 
679 hpuxshmctl(p, uap, retval)
680 	struct proc *p;
681 	int *uap, *retval;
682 {
683 	return (shmctl(p, uap, retval));
684 }
685 
686 hpuxshmdt(p, uap, retval)
687 	struct proc *p;
688 	int *uap, *retval;
689 {
690 	return (shmdt(p, uap, retval));
691 }
692 
693 hpuxshmget(p, uap, retval)
694 	struct proc *p;
695 	int *uap, *retval;
696 {
697 	return (shmget(p, uap, retval));
698 }
699 #endif
700 
701 /*
702  * Fake semaphore routines, just don't return an error.
703  * Should be adequate for starbase to run.
704  */
705 hpuxsemctl(p, uap, retval)
706 	struct proc *p;
707 	struct args {
708 		int semid;
709 		u_int semnum;
710 		int cmd;
711 		int arg;
712 	} *uap;
713 	int *retval;
714 {
715 	/* XXX: should do something here */
716 	return (0);
717 }
718 
719 hpuxsemget(p, uap, retval)
720 	struct proc *p;
721 	struct args {
722 		key_t key;
723 		int nsems;
724 		int semflg;
725 	} *uap;
726 	int *retval;
727 {
728 	/* XXX: should do something here */
729 	return (0);
730 }
731 
732 hpuxsemop(p, uap, retval)
733 	struct proc *p;
734 	struct args {
735 		int semid;
736 		struct sembuf *sops;
737 		u_int nsops;
738 	} *uap;
739 	int *retval;
740 {
741 	/* XXX: should do something here */
742 	return (0);
743 }
744 
745 /* convert from BSD to HPUX errno */
746 bsdtohpuxerrno(err)
747 	int err;
748 {
749 	if (err < 0 || err >= NERR)
750 		return(BERR);
751 	return((int)bsdtohpuxerrnomap[err]);
752 }
753 
754 hpuxstat1(fname, hsb, follow)
755 	char *fname;
756 	struct hpuxstat *hsb;
757 	int follow;
758 {
759 	register struct nameidata *ndp = &u.u_nd;
760 	struct stat sb;
761 	int error;
762 
763 	ndp->ni_nameiop = LOOKUP | LOCKLEAF | follow;
764 	ndp->ni_segflg = UIO_USERSPACE;
765 	ndp->ni_dirp = fname;
766 	if (error = namei(ndp))
767 		return (error);
768 	error = vn_stat(ndp->ni_vp, &sb);
769 	vput(ndp->ni_vp);
770 	if (error == 0)
771 		error = bsdtohpuxstat(&sb, hsb);
772 	return (error);
773 }
774 
775 #include "grf.h"
776 
777 bsdtohpuxstat(sb, hsb)
778 	struct stat *sb;
779 	struct hpuxstat *hsb;
780 {
781 	struct hpuxstat ds;
782 
783 	bzero((caddr_t)&ds, sizeof(ds));
784 	ds.hst_dev = sb->st_dev;
785 	ds.hst_ino = (u_long)sb->st_ino;
786 	ds.hst_mode = sb->st_mode;
787 	ds.hst_nlink = sb->st_nlink;
788 	ds.hst_uid = (u_short)sb->st_uid;
789 	ds.hst_gid = (u_short)sb->st_gid;
790 #if NGRF > 0
791 	/* XXX: I don't want to talk about it... */
792 	if ((sb->st_mode & S_IFMT) == S_IFCHR && major(sb->st_rdev) == 10)
793 		ds.hst_rdev = grfdevno(sb->st_rdev);
794 	else
795 #endif
796 		ds.hst_rdev = bsdtohpuxdev(sb->st_rdev);
797 	ds.hst_size = sb->st_size;
798 	ds.hst_atime = sb->st_atime;
799 	ds.hst_mtime = sb->st_mtime;
800 	ds.hst_ctime = sb->st_ctime;
801 	ds.hst_blksize = sb->st_blksize;
802 	ds.hst_blocks = sb->st_blocks;
803 	return(copyout((caddr_t)&ds, (caddr_t)hsb, sizeof(ds)));
804 }
805 
806 hpuxtobsdioctl(com)
807 	int com;
808 {
809 	switch (com) {
810 	case HPUXTIOCSLTC:
811 		com = TIOCSLTC; break;
812 	case HPUXTIOCGLTC:
813 		com = TIOCGLTC; break;
814 	case HPUXTIOCSPGRP:
815 		com = TIOCSPGRP; break;
816 	case HPUXTIOCGPGRP:
817 		com = TIOCGPGRP; break;
818 	case HPUXTIOCLBIS:
819 		com = TIOCLBIS; break;
820 	case HPUXTIOCLBIC:
821 		com = TIOCLBIC; break;
822 	case HPUXTIOCLSET:
823 		com = TIOCLSET; break;
824 	case HPUXTIOCLGET:
825 		com = TIOCLGET; break;
826 	}
827 	return(com);
828 }
829 
830 /*
831  * HPUX ioctl system call.  The differences here are:
832  *	IOC_IN also means IOC_VOID if the size portion is zero.
833  *	no FIOCLEX/FIONCLEX/FIONBIO/FIOASYNC/FIOGETOWN/FIOSETOWN
834  *	the sgttyb struct is 2 bytes longer
835  */
836 hpuxioctl(p, uap, retval)
837 	struct proc *p;
838 	register struct args {
839 		int	fdes;
840 		int	cmd;
841 		caddr_t	cmarg;
842 	} *uap;
843 	int *retval;
844 {
845 	register struct file *fp;
846 	register int com, error;
847 	register u_int size;
848 	caddr_t memp = 0;
849 #define STK_PARAMS	128
850 	char stkbuf[STK_PARAMS];
851 	caddr_t data = stkbuf;
852 
853 	com = uap->cmd;
854 
855 	/* XXX */
856 	if (com == HPUXTIOCGETP || com == HPUXTIOCSETP)
857 		return (getsettty(uap->fdes, com, uap->cmarg));
858 
859 	if ((unsigned)uap->fdes >= NOFILE ||
860 	    (fp = u.u_ofile[uap->fdes]) == NULL)
861 		return (EBADF);
862 	if ((fp->f_flag & (FREAD|FWRITE)) == 0)
863 		return (EBADF);
864 
865 	/*
866 	 * Interpret high order word to find
867 	 * amount of data to be copied to/from the
868 	 * user's address space.
869 	 */
870 	size = IOCPARM_LEN(com);
871 	if (size > IOCPARM_MAX)
872 		return (ENOTTY);
873 	if (size > sizeof (stkbuf)) {
874 		memp = (caddr_t)malloc((u_long)size, M_IOCTLOPS, M_WAITOK);
875 		data = memp;
876 	}
877 	if (com&IOC_IN) {
878 		if (size) {
879 			error = copyin(uap->cmarg, data, (u_int)size);
880 			if (error) {
881 				if (memp)
882 					free(memp, M_IOCTLOPS);
883 				return (error);
884 			}
885 		} else
886 			*(caddr_t *)data = uap->cmarg;
887 	} else if ((com&IOC_OUT) && size)
888 		/*
889 		 * Zero the buffer so the user always
890 		 * gets back something deterministic.
891 		 */
892 		bzero(data, size);
893 	else if (com&IOC_VOID)
894 		*(caddr_t *)data = uap->cmarg;
895 
896 	switch (com) {
897 
898 	case HPUXTIOCCONS:
899 		*(int *)data = 1;
900 		error = (*fp->f_ops->fo_ioctl)(fp, TIOCCONS, data);
901 		break;
902 
903 	/* BSD-style job control ioctls */
904 	case HPUXTIOCLBIS:
905 	case HPUXTIOCLBIC:
906 	case HPUXTIOCLSET:
907 		*(int *)data &= HPUXLTOSTOP;
908 		if (*(int *)data & HPUXLTOSTOP)
909 			*(int *)data = LTOSTOP;
910 		/* fall into */
911 	case HPUXTIOCLGET:
912 	case HPUXTIOCSLTC:
913 	case HPUXTIOCGLTC:
914 	case HPUXTIOCSPGRP:
915 	case HPUXTIOCGPGRP:
916 		error = (*fp->f_ops->fo_ioctl)(fp, hpuxtobsdioctl(com), data);
917 		if (error == 0 && com == HPUXTIOCLGET) {
918 			*(int *)data &= LTOSTOP;
919 			if (*(int *)data & LTOSTOP)
920 				*(int *)data = HPUXLTOSTOP;
921 		}
922 		break;
923 
924 	/* SYS 5 termio */
925 	case HPUXTCGETA:
926 	case HPUXTCSETA:
927 	case HPUXTCSETAW:
928 	case HPUXTCSETAF:
929 		error = hpuxtermio(fp, com, data);
930 		break;
931 
932 	default:
933 		error = (*fp->f_ops->fo_ioctl)(fp, com, data);
934 		break;
935 	}
936 	/*
937 	 * Copy any data to user, size was
938 	 * already set and checked above.
939 	 */
940 	if (error == 0 && (com&IOC_OUT) && size)
941 		error = copyout(data, uap->cmarg, (u_int)size);
942 	if (memp)
943 		free(memp, M_IOCTLOPS);
944 	return (error);
945 }
946 
947 /*
948  * Man page lies, behaviour here is based on observed behaviour.
949  */
950 hpuxgetcontext(p, uap, retval)
951 	struct proc *p;
952 	struct args {
953 		char *buf;
954 		int len;
955 	} *uap;
956 	int *retval;
957 {
958 	int error = 0;
959 	register int len;
960 
961 	len = MIN(uap->len, sizeof(hpuxcontext));
962 	if (len)
963 		error = copyout(hpuxcontext, uap->buf, (u_int)len);
964 	if (error == 0)
965 		*retval = sizeof(hpuxcontext);
966 	return (error);
967 }
968 
969 /*
970  * XXX: simple recognition hack to see if we can make grmd work.
971  */
972 hpuxlockf(p, uap, retval)
973 	struct proc *p;
974 	struct args {
975 		int fd;
976 		int func;
977 		long size;
978 	} *uap;
979 	int *retval;
980 {
981 #ifdef DEBUG
982 	log(LOG_DEBUG, "%d: lockf(%d, %d, %d)\n",
983 	    p->p_pid, uap->fd, uap->func, uap->size);
984 #endif
985 	return (0);
986 }
987 
988 /*
989  * This is the equivalent of BSD getpgrp but with more restrictions.
990  * Note we do not check the real uid or "saved" uid.
991  */
992 hpuxgetpgrp2(cp, uap, retval)
993 	struct proc *cp;
994 	register struct args {
995 		int pid;
996 	} *uap;
997 	int *retval;
998 {
999 	register struct proc *p;
1000 
1001 	if (uap->pid == 0)
1002 		uap->pid = cp->p_pid;
1003 	p = pfind(uap->pid);
1004 	if (p == 0)
1005 		return (ESRCH);
1006 	if (u.u_uid && p->p_uid != u.u_uid && !inferior(p))
1007 		return (EPERM);
1008 	*retval = p->p_pgid;
1009 	return (0);
1010 }
1011 
1012 /*
1013  * This is the equivalent of BSD setpgrp but with more restrictions.
1014  * Note we do not check the real uid or "saved" uid or pgrp.
1015  */
1016 hpuxsetpgrp2(p, uap, retval)
1017 	struct proc *p;
1018 	struct args {
1019 		int	pid;
1020 		int	pgrp;
1021 	} *uap;
1022 	int *retval;
1023 {
1024 	/* empirically determined */
1025 	if (uap->pgrp < 0 || uap->pgrp >= 30000)
1026 		return (EINVAL);
1027 	return (setpgrp(p, uap, retval));
1028 }
1029 
1030 /*
1031  * Brutal hack!  Map HPUX u-area offsets into BSD u offsets.
1032  * No apologies offered, if you don't like it, rewrite it!
1033  */
1034 
1035 #define UOFF(f)		((int)&((struct user *)0)->f)
1036 #define HPUOFF(f)	((int)&((struct hpuxuser *)0)->f)
1037 
1038 /* simplified FP structure */
1039 struct bsdfp {
1040 	int save[54];
1041 	int reg[24];
1042 	int ctrl[3];
1043 };
1044 
1045 hpuxtobsduoff(off)
1046 	int *off;
1047 {
1048 	struct hpuxfp *hp;
1049 	struct bsdfp *bp;
1050 	register u_int raddr;
1051 
1052 	/* u_ar0 field */
1053 	if ((int)off == HPUOFF(hpuxu_ar0))
1054 		return(UOFF(u_ar0));
1055 
1056 #ifdef FPCOPROC
1057 	/* 68881 registers from PCB */
1058 	hp = (struct hpuxfp *)HPUOFF(hpuxu_fp);
1059 	bp = (struct bsdfp *)UOFF(u_pcb.pcb_fpregs);
1060 	if (off >= hp->hpfp_ctrl && off < &hp->hpfp_ctrl[3])
1061 		return((int)&bp->ctrl[off - hp->hpfp_ctrl]);
1062 	if (off >= hp->hpfp_reg && off < &hp->hpfp_reg[24])
1063 		return((int)&bp->reg[off - hp->hpfp_reg]);
1064 #endif
1065 
1066 	/*
1067 	 * Everything else we recognize comes from the kernel stack,
1068 	 * so we convert off to an absolute address (if not already)
1069 	 * for simplicity.
1070 	 */
1071 	if (off < (int *)ctob(UPAGES))
1072 		off = (int *)((u_int)off + (u_int)&u);
1073 
1074 	/*
1075 	 * 68020 registers.
1076 	 * We know that the HPUX registers are in the same order as ours.
1077 	 * The only difference is that their PS is 2 bytes instead of a
1078 	 * padded 4 like ours throwing the alignment off.
1079 	 */
1080 	if (off >= u.u_ar0 && off < &u.u_ar0[18]) {
1081 		/*
1082 		 * PS: return low word and high word of PC as HP-UX would
1083 		 * (e.g. &u.u_ar0[16.5]).
1084 		 */
1085 		if (off == &u.u_ar0[PS])
1086 			raddr = (u_int) &((short *)u.u_ar0)[PS*2+1];
1087 		/*
1088 		 * PC: off will be &u.u_ar0[16.5]
1089 		 */
1090 		else if (off == (int *)&(((short *)u.u_ar0)[PS*2+1]))
1091 			raddr = (u_int) &u.u_ar0[PC];
1092 		/*
1093 		 * D0-D7, A0-A7: easy
1094 		 */
1095 		else
1096 			raddr = (u_int) &u.u_ar0[(int)(off - u.u_ar0)];
1097 		return((int)(raddr - (u_int)&u));
1098 	}
1099 
1100 	/* everything else */
1101 	return(-1);
1102 }
1103 
1104 /*
1105  * Kludge up a uarea dump so that HPUX debuggers can find out
1106  * what they need.  IMPORTANT NOTE: we do not EVEN attempt to
1107  * convert the entire user struct.
1108  */
1109 hpuxdumpu(vp, cred)
1110 	struct vnode *vp;
1111 	struct ucred *cred;
1112 {
1113 	int error;
1114 	struct hpuxuser *faku;
1115 	struct bsdfp *bp;
1116 	short *foop;
1117 
1118 	faku = (struct hpuxuser *)malloc((u_long)ctob(1), M_TEMP, M_WAITOK);
1119 	/*
1120 	 * Make sure there is no mistake about this
1121 	 * being a real user structure.
1122 	 */
1123 	bzero((caddr_t)faku, ctob(1));
1124 	/*
1125 	 * Fill in the process sizes.
1126 	 */
1127 	faku->hpuxu_tsize = u.u_tsize;
1128 	faku->hpuxu_dsize = u.u_dsize;
1129 	faku->hpuxu_ssize = u.u_ssize;
1130 	/*
1131 	 * Fill in the exec header for CDB.
1132 	 * This was saved back in exec().  As far as I can tell CDB
1133 	 * only uses this information to verify that a particular
1134 	 * core file goes with a particular binary.
1135 	 */
1136 	bcopy((caddr_t)u.u_pcb.pcb_exec,
1137 	      (caddr_t)&faku->hpuxu_exdata, sizeof (struct hpux_exec));
1138 	/*
1139 	 * Adjust user's saved registers (on kernel stack) to reflect
1140 	 * HPUX order.  Note that HPUX saves the SR as 2 bytes not 4
1141 	 * so we have to move it up.
1142 	 */
1143 	faku->hpuxu_ar0 = u.u_ar0;
1144 	foop = (short *) u.u_ar0;
1145 	foop[32] = foop[33];
1146 	foop[33] = foop[34];
1147 	foop[34] = foop[35];
1148 #ifdef FPCOPROC
1149 	/*
1150 	 * Copy 68881 registers from our PCB format to HPUX format
1151 	 */
1152 	bp = (struct bsdfp *) &u.u_pcb.pcb_fpregs;
1153 	bcopy((caddr_t)bp->save, (caddr_t)faku->hpuxu_fp.hpfp_save,
1154 	      sizeof(bp->save));
1155 	bcopy((caddr_t)bp->ctrl, (caddr_t)faku->hpuxu_fp.hpfp_ctrl,
1156 	      sizeof(bp->ctrl));
1157 	bcopy((caddr_t)bp->reg, (caddr_t)faku->hpuxu_fp.hpfp_reg,
1158 	      sizeof(bp->reg));
1159 #endif
1160 	/*
1161 	 * Slay the dragon
1162 	 */
1163 	faku->hpuxu_dragon = -1;
1164 	/*
1165 	 * Dump this artfully constructed page in place of the
1166 	 * user struct page.
1167 	 */
1168 	error = vn_rdwr(UIO_WRITE, vp,
1169 			(caddr_t)faku, ctob(1), (off_t)0,
1170 			UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT, cred, (int *)0);
1171 	/*
1172 	 * Dump the remaining UPAGES-1 pages normally
1173 	 */
1174 	if (!error)
1175 		error = vn_rdwr(UIO_WRITE, vp, ((caddr_t)&u)+ctob(1),
1176 				ctob(UPAGES-1), (off_t)ctob(1), UIO_SYSSPACE,
1177 				IO_NODELOCKED|IO_UNIT, cred, (int *)0);
1178 	free((caddr_t)faku, M_TEMP);
1179 	return(error);
1180 }
1181 
1182 /*
1183  * The remaining routines are essentially the same as those in kern_xxx.c
1184  * and vfs_xxx.c as defined under "#ifdef COMPAT".  We replicate them here
1185  * to avoid HPUXCOMPAT dependencies in those files and to make sure that
1186  * HP-UX compatibility still works even when COMPAT is not defined.
1187  */
1188 /* #ifdef COMPAT */
1189 
1190 #include "../sys/times.h"
1191 
1192 /* from old timeb.h */
1193 struct hpuxtimeb {
1194 	time_t	time;
1195 	u_short	millitm;
1196 	short	timezone;
1197 	short	dstflag;
1198 };
1199 
1200 /* ye ole stat structure */
1201 struct	ohpuxstat {
1202 	dev_t	ohst_dev;
1203 	u_short	ohst_ino;
1204 	u_short ohst_mode;
1205 	short  	ohst_nlink;
1206 	short  	ohst_uid;
1207 	short  	ohst_gid;
1208 	dev_t	ohst_rdev;
1209 	int	ohst_size;
1210 	int	ohst_atime;
1211 	int	ohst_mtime;
1212 	int	ohst_ctime;
1213 };
1214 
1215 /*
1216  * SYS V style setpgrp()
1217  */
1218 ohpuxsetpgrp(p, uap, retval)
1219 	register struct proc *p;
1220 	int *uap, *retval;
1221 {
1222 	if (p->p_pid != p->p_pgid)
1223 		pgmv(p, p->p_pid, 0);
1224 	*retval = p->p_pgid;
1225 }
1226 
1227 ohpuxtime(p, uap, retval)
1228 	struct proc *p;
1229 	register struct args {
1230 		long	*tp;
1231 	} *uap;
1232 	time_t *retval;
1233 {
1234 	int error;
1235 
1236 	if (uap->tp)
1237 		error = copyout((caddr_t)&time.tv_sec, (caddr_t)uap->tp,
1238 				sizeof (long));
1239 	*retval = time.tv_sec;		/* XXX */
1240 	return (error);
1241 }
1242 
1243 ohpuxstime(p, uap, retval)
1244 	struct proc *p;
1245 	register struct args {
1246 		int	time;
1247 	} *uap;
1248 	int *retval;
1249 {
1250 	struct timeval tv;
1251 	int s, error;
1252 
1253 	tv.tv_sec = uap->time;
1254 	tv.tv_usec = 0;
1255 	if (error = suser(u.u_cred, &u.u_acflag))
1256 		return (error);
1257 
1258 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
1259 	boottime.tv_sec += tv.tv_sec - time.tv_sec;
1260 	s = splhigh(); time = tv; splx(s);
1261 	resettodr();
1262 	return (0);
1263 }
1264 
1265 ohpuxftime(p, uap, retval)
1266 	struct proc *p;
1267 	register struct args {
1268 		struct	hpuxtimeb *tp;
1269 	} *uap;
1270 	int *retval;
1271 {
1272 	struct hpuxtimeb tb;
1273 	int s;
1274 
1275 	s = splhigh();
1276 	tb.time = time.tv_sec;
1277 	tb.millitm = time.tv_usec / 1000;
1278 	splx(s);
1279 	tb.timezone = tz.tz_minuteswest;
1280 	tb.dstflag = tz.tz_dsttime;
1281 	return (copyout((caddr_t)&tb, (caddr_t)uap->tp, sizeof (tb)));
1282 }
1283 
1284 ohpuxalarm(p, uap, retval)
1285 	register struct proc *p;
1286 	register struct args {
1287 		int	deltat;
1288 	} *uap;
1289 	int *retval;
1290 {
1291 	int s = splhigh();
1292 
1293 	untimeout(realitexpire, (caddr_t)p);
1294 	timerclear(&p->p_realtimer.it_interval);
1295 	*retval = 0;
1296 	if (timerisset(&p->p_realtimer.it_value) &&
1297 	    timercmp(&p->p_realtimer.it_value, &time, >))
1298 		*retval = p->p_realtimer.it_value.tv_sec - time.tv_sec;
1299 	if (uap->deltat == 0) {
1300 		timerclear(&p->p_realtimer.it_value);
1301 		splx(s);
1302 		return (0);
1303 	}
1304 	p->p_realtimer.it_value = time;
1305 	p->p_realtimer.it_value.tv_sec += uap->deltat;
1306 	timeout(realitexpire, (caddr_t)p, hzto(&p->p_realtimer.it_value));
1307 	splx(s);
1308 	return (0);
1309 }
1310 
1311 ohpuxnice(p, uap, retval)
1312 	register struct proc *p;
1313 	register struct args {
1314 		int	niceness;
1315 	} *uap;
1316 	int *retval;
1317 {
1318 	int error;
1319 
1320 	error = donice(p, p, (p->p_nice-NZERO)+uap->niceness);
1321 	if (error == 0)
1322 		*retval = p->p_nice - NZERO;
1323 	return (error);
1324 }
1325 
1326 ohpuxtimes(p, uap, retval)
1327 	struct proc *p;
1328 	register struct args {
1329 		struct	tms *tmsb;
1330 	} *uap;
1331 	time_t *retval;
1332 {
1333 	struct tms atms;
1334 	int error;
1335 
1336 	atms.tms_utime = scale50(&u.u_ru.ru_utime);
1337 	atms.tms_stime = scale50(&u.u_ru.ru_stime);
1338 	atms.tms_cutime = scale50(&u.u_cru.ru_utime);
1339 	atms.tms_cstime = scale50(&u.u_cru.ru_stime);
1340 	error = copyout((caddr_t)&atms, (caddr_t)uap->tmsb, sizeof (atms));
1341 	if (error == 0)
1342 		*retval = scale50(&time) - scale50(&boottime); /* XXX */
1343 	return (error);
1344 }
1345 
1346 scale50(tvp)
1347 	register struct timeval *tvp;
1348 {
1349 	extern int hpuxtick;
1350 
1351 	/*
1352 	 * Doesn't exactly do what the documentation says.
1353 	 * What we really do is return 50th of a second since that
1354 	 * is what HZ is on all bobcats I know of.
1355 	 */
1356 	return ((tvp->tv_sec * 50 + tvp->tv_usec / hpuxtick));
1357 }
1358 
1359 /*
1360  * Set IUPD and IACC times on file.
1361  * Can't set ICHG.
1362  */
1363 ohpuxutime(p, uap, retval)
1364 	struct proc *p;
1365 	register struct a {
1366 		char	*fname;
1367 		time_t	*tptr;
1368 	} *uap;
1369 	int *retval;
1370 {
1371 	struct vattr vattr;
1372 	time_t tv[2];
1373 	register struct vnode *vp;
1374 	register struct nameidata *ndp = &u.u_nd;
1375 	int error;
1376 
1377 	if (uap->tptr) {
1378 		error = copyin((caddr_t)uap->tptr, (caddr_t)tv, sizeof (tv));
1379 		if (error)
1380 			return (error);
1381 	} else
1382 		tv[0] = tv[1] = time.tv_sec;
1383 	ndp->ni_nameiop = LOOKUP | FOLLOW | LOCKLEAF;
1384 	ndp->ni_segflg = UIO_USERSPACE;
1385 	ndp->ni_dirp = uap->fname;
1386 	vattr_null(&vattr);
1387 	vattr.va_atime.tv_sec = tv[0];
1388 	vattr.va_atime.tv_usec = 0;
1389 	vattr.va_mtime.tv_sec = tv[1];
1390 	vattr.va_mtime.tv_usec = 0;
1391 	if (error = namei(ndp))
1392 		return (error);
1393 	vp = ndp->ni_vp;
1394 	if (vp->v_mount->mnt_flag & MNT_RDONLY)
1395 		error = EROFS;
1396 	else
1397 		error = VOP_SETATTR(vp, &vattr, ndp->ni_cred);
1398 	vput(vp);
1399 	return (error);
1400 }
1401 
1402 ohpuxpause(p, uap, retval)
1403 	struct proc *p;
1404 	int *uap, *retval;
1405 {
1406 	(void) tsleep((caddr_t)&u, PPAUSE | PCATCH, "pause", 0);
1407 	/* always return EINTR rather than ERESTART... */
1408 	return (EINTR);
1409 }
1410 
1411 /*
1412  * The old fstat system call.
1413  */
1414 ohpuxfstat(p, uap, retval)
1415 	struct proc *p;
1416 	register struct args {
1417 		int	fd;
1418 		struct ohpuxstat *sb;
1419 	} *uap;
1420 	int *retval;
1421 {
1422 	struct file *fp;
1423 
1424 	if ((unsigned)uap->fd >= NOFILE || (fp = u.u_ofile[uap->fd]) == NULL)
1425 		return (EBADF);
1426 	if (fp->f_type != DTYPE_VNODE)
1427 		return (EINVAL);
1428 	return (ohpuxstat1((struct vnode *)fp->f_data, uap->sb));
1429 }
1430 
1431 /*
1432  * Old stat system call.  This version follows links.
1433  */
1434 ohpuxstat(p, uap, retval)
1435 	struct proc *p;
1436 	register struct args {
1437 		char	*fname;
1438 		struct ohpuxstat *sb;
1439 	} *uap;
1440 	int *retval;
1441 {
1442 	register struct nameidata *ndp = &u.u_nd;
1443 	int error;
1444 
1445 	ndp->ni_nameiop = LOOKUP | LOCKLEAF | FOLLOW;
1446 	ndp->ni_segflg = UIO_USERSPACE;
1447 	ndp->ni_dirp = uap->fname;
1448 	if (error = namei(ndp))
1449 		return (error);
1450 	error = ohpuxstat1(ndp->ni_vp, uap->sb);
1451 	vput(ndp->ni_vp);
1452 	return (error);
1453 }
1454 
1455 int
1456 ohpuxstat1(vp, ub)
1457 	register struct vnode *vp;
1458 	struct ohpuxstat *ub;
1459 {
1460 	struct ohpuxstat ds;
1461 	struct vattr vattr;
1462 	register int error;
1463 
1464 	error = VOP_GETATTR(vp, &vattr, u.u_cred);
1465 	if (error)
1466 		return(error);
1467 	/*
1468 	 * Copy from inode table
1469 	 */
1470 	ds.ohst_dev = vattr.va_fsid;
1471 	ds.ohst_ino = (short)vattr.va_fileid;
1472 	ds.ohst_mode = (u_short)vattr.va_mode;
1473 	ds.ohst_nlink = vattr.va_nlink;
1474 	ds.ohst_uid = (short)vattr.va_uid;
1475 	ds.ohst_gid = (short)vattr.va_gid;
1476 	ds.ohst_rdev = (dev_t)vattr.va_rdev;
1477 	ds.ohst_size = (int)vattr.va_size;
1478 	ds.ohst_atime = (int)vattr.va_atime.tv_sec;
1479 	ds.ohst_mtime = (int)vattr.va_mtime.tv_sec;
1480 	ds.ohst_ctime = (int)vattr.va_ctime.tv_sec;
1481 	return (copyout((caddr_t)&ds, (caddr_t)ub, sizeof(ds)));
1482 }
1483 /* #endif */
1484 
1485 #endif
1486