xref: /csrg-svn/sys/hp/hpux/hpux_compat.c (revision 42352)
1 /*
2  * Copyright (c) 1988 University of Utah.
3  * Copyright (c) 1990 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the Systems Programming Group of the University of Utah Computer
8  * Science Department.
9  *
10  * %sccs.include.redist.c%
11  *
12  * from: Utah $Hdr: hpux_compat.c 1.33 89/08/23$
13  *
14  *	@(#)hpux_compat.c	7.5 (Berkeley) 05/25/90
15  */
16 
17 /*
18  * Various HPUX compatibility routines
19  */
20 
21 #ifdef HPUXCOMPAT
22 
23 #include "param.h"
24 #include "systm.h"
25 #include "syscontext.h"
26 #include "kernel.h"
27 #include "proc.h"
28 #include "buf.h"
29 #include "wait.h"
30 #include "file.h"
31 #include "vnode.h"
32 #include "ioctl.h"
33 #include "uio.h"
34 #include "ptrace.h"
35 #include "stat.h"
36 #include "syslog.h"
37 #include "malloc.h"
38 #include "mount.h"
39 #include "ipc.h"
40 
41 #include "machine/cpu.h"
42 #include "machine/reg.h"
43 #include "machine/psl.h"
44 #include "machine/vmparam.h"
45 #include "hpux.h"
46 #include "hpux_termio.h"
47 
48 #ifdef DEBUG
49 int unimpresponse = 0;
50 #endif
51 
52 /* "tick" value for HZ==50 */
53 int hpuxtick = 1000000 / 50;
54 
55 /* SYS5 style UTSNAME info */
56 struct hpuxutsname protoutsname = {
57 	"4.4bsd", "", "2.0", "B", "9000/3?0", ""
58 };
59 
60 /* 6.0 and later style context */
61 #ifdef FPCOPROC
62 char hpuxcontext[] =
63 	"standalone HP-MC68881 HP-MC68020 HP-MC68010 localroot default";
64 #else
65 char hpuxcontext[] =
66 	"standalone HP-MC68020 HP-MC68010 localroot default";
67 #endif
68 
69 /* YP domainname */
70 char	domainname[MAXHOSTNAMELEN] = "unknown";
71 int	domainnamelen = 7;
72 
73 #define NERR	79
74 #define BERR	1000
75 
76 /* indexed by BSD errno */
77 short bsdtohpuxerrnomap[NERR] = {
78 /*00*/	  0,   1,   2,   3,   4,   5,   6,   7,   8,   9,
79 /*10*/	 10,  45,  12,  13,  14,  15,  16,  17,  18,  19,
80 /*20*/	 20,  21,  22,  23,  24,  25,  26,  27,  28,  29,
81 /*30*/	 30,  31,  32,  33,  34, 246, 245, 244, 216, 217,
82 /*40*/	218, 219, 220, 221, 222, 223, 224, 225, 226, 227,
83 /*50*/	228, 229, 230, 231, 232, 233, 234, 235, 236, 237,
84 /*60*/	238, 239, 249, 248, 241, 242, 247,BERR,BERR,BERR,
85 /*70*/   70,  71,BERR,BERR,BERR,BERR,BERR,  46,BERR
86 };
87 
88 notimp(code, nargs)
89 {
90 #ifdef DEBUG
91 	int *argp = u.u_ap;
92 	extern char *hpuxsyscallnames[];
93 
94 	printf("HPUX %s(", hpuxsyscallnames[code]);
95 	if (nargs)
96 		while (nargs--)
97 			printf("%x%c", *argp++, nargs? ',' : ')');
98 	else
99 		printf(")");
100 	printf("\n");
101 	switch (unimpresponse) {
102 	case 0:
103 		nosys();
104 		break;
105 	case 1:
106 		u.u_error = EINVAL;
107 		break;
108 	}
109 #else
110 	nosys();
111 #endif
112 	uprintf("HPUX system call %d not implemented\n", code);
113 }
114 
115 /*
116  * HPUX versions of wait and wait3 actually pass the parameters
117  * (status pointer, options, rusage) into the kernel rather than
118  * handling it in the C library stub.  We also need to map any
119  * termination signal from BSD to HPUX.
120  */
121 hpuxwait3()
122 {
123 	struct a {
124 		int	*status;
125 		int	options;
126 		int	rusage;
127 	} *uap = (struct a *)u.u_ap;
128 
129 	/* rusage pointer must be zero */
130 	if (uap->rusage) {
131 		u.u_error = EINVAL;
132 		return;
133 	}
134 	u.u_ar0[PS] = PSL_ALLCC;
135 	u.u_ar0[R0] = uap->options;
136 	u.u_ar0[R1] = uap->rusage;
137 	hpuxwait();
138 }
139 
140 hpuxwait()
141 {
142 	int sig, *statp;
143 	struct a {
144 		int	*status;
145 	} *uap = (struct a *)u.u_ap;
146 
147 	statp = uap->status;	/* owait clobbers first arg */
148 	owait();
149 	/*
150 	 * HP-UX wait always returns EINTR when interrupted by a signal
151 	 * (well, unless its emulating a BSD process, but we don't bother...)
152 	 */
153 	if (u.u_error == ERESTART)
154 		u.u_error = EINTR;
155 	if (u.u_error)
156 		return;
157 	sig = u.u_r.r_val2 & 0xFF;
158 	if (sig == WSTOPPED) {
159 		sig = (u.u_r.r_val2 >> 8) & 0xFF;
160 		u.u_r.r_val2 = (bsdtohpuxsig(sig) << 8) | WSTOPPED;
161 	} else if (sig)
162 		u.u_r.r_val2 = (u.u_r.r_val2 & 0xFF00) |
163 			bsdtohpuxsig(sig & 0x7F) | (sig & 0x80);
164 	if (statp)
165 		if (suword((caddr_t)statp, u.u_r.r_val2))
166 			u.u_error = EFAULT;
167 }
168 
169 hpuxwaitpid()
170 {
171 	int sig, *statp;
172 	struct a {
173 		int	pid;
174 		int	*status;
175 		int	options;
176 		struct	rusage *rusage;	/* wait4 arg */
177 	} *uap = (struct a *)u.u_ap;
178 
179 	uap->rusage = 0;
180 	wait4();
181 	/*
182 	 * HP-UX wait always returns EINTR when interrupted by a signal
183 	 * (well, unless its emulating a BSD process, but we don't bother...)
184 	 */
185 	if (u.u_error == ERESTART)
186 		u.u_error = EINTR;
187 	if (u.u_error)
188 		return;
189 	sig = u.u_r.r_val2 & 0xFF;
190 	if (sig == WSTOPPED) {
191 		sig = (u.u_r.r_val2 >> 8) & 0xFF;
192 		u.u_r.r_val2 = (bsdtohpuxsig(sig) << 8) | WSTOPPED;
193 	} else if (sig)
194 		u.u_r.r_val2 = (u.u_r.r_val2 & 0xFF00) |
195 			bsdtohpuxsig(sig & 0x7F) | (sig & 0x80);
196 	if (statp)
197 		if (suword((caddr_t)statp, u.u_r.r_val2))
198 			u.u_error = EFAULT;
199 }
200 
201 /*
202  * Must remap some bits in the mode mask.
203  * O_CREAT, O_TRUNC, and O_EXCL must be remapped,
204  * O_SYNCIO (0100000) is removed entirely.
205  */
206 hpuxopen(scp)
207 	register struct syscontext *scp;
208 {
209 	struct a {
210 		char	*fname;
211 		int	mode;
212 		int	crtmode;
213 	} *uap = (struct a *) scp->sc_ap;
214 	struct nameidata *ndp = &scp->sc_nd;
215 	int mode;
216 
217 	mode = uap->mode;
218 	uap->mode &= ~(HPUXFSYNCIO|HPUXFEXCL|HPUXFTRUNC|HPUXFCREAT);
219 	if (mode & HPUXFCREAT) {
220 		/*
221 		 * simulate the pre-NFS behavior that opening a
222 		 * file for READ+CREATE ignores the CREATE (unless
223 		 * EXCL is set in which case we will return the
224 		 * proper error).
225 		 */
226 		if ((mode & HPUXFEXCL) || ((mode-FOPEN) & FWRITE))
227 			uap->mode |= FCREAT;
228 	}
229 	if (mode & HPUXFTRUNC)
230 		uap->mode |= FTRUNC;
231 	if (mode & HPUXFEXCL)
232 		uap->mode |= FEXCL;
233 	ndp->ni_segflg = UIO_USERSPACE;
234 	ndp->ni_dirp = uap->fname;
235 	RETURN (copen(scp, uap->mode-FOPEN, uap->crtmode &~ scp->sc_cmask, ndp,
236 		&scp->sc_retval1));
237 }
238 
239 hpuxfcntl()
240 {
241 	register struct a {
242 		int	fdes;
243 		int	cmd;
244 		int	arg;
245 	} *uap = (struct a *)u.u_ap;
246 	int mode;
247 
248 	switch (uap->cmd) {
249 	case F_SETFL:
250 		uap->arg &= ~(HPUXFSYNCIO|HPUXFREMOTE|FUSECACHE);
251 		break;
252 	case F_GETFL:
253 	case F_DUPFD:
254 	case F_GETFD:
255 	case F_SETFD:
256 		break;
257 	default:
258 		u.u_error = EINVAL;
259 		return;
260 	}
261 	fcntl();
262 	if (u.u_error == 0 && uap->arg == F_GETFL) {
263 		mode = u.u_r.r_val1;
264 		u.u_r.r_val1 &= ~(FCREAT|FTRUNC|FEXCL|FUSECACHE);
265 		if (mode & FCREAT)
266 			u.u_r.r_val1 |= HPUXFCREAT;
267 		if (mode & FTRUNC)
268 			u.u_r.r_val1 |= HPUXFTRUNC;
269 		if (mode & FEXCL)
270 			u.u_r.r_val1 |= HPUXFEXCL;
271 	}
272 }
273 
274 /*
275  * Read and write should return a 0 count when an operation
276  * on a VNODE would block, not an error.  Sockets appear to
277  * return EWOULDBLOCK (at least in 6.2).  This is probably
278  * not entirely correct, since the behavior is only defined
279  * for pipes and tty type devices.
280  */
281 hpuxread()
282 {
283 	struct a {
284 		int	fd;
285 	} *uap = (struct a *)u.u_ap;
286 
287 	read();
288 	if (u.u_error == EWOULDBLOCK &&
289 	    u.u_ofile[uap->fd]->f_type == DTYPE_VNODE) {
290 		u.u_error = 0;
291 		u.u_r.r_val1 = 0;
292 	}
293 }
294 
295 hpuxwrite()
296 {
297 	struct a {
298 		int	fd;
299 	} *uap = (struct a *)u.u_ap;
300 
301 	write();
302 	if (u.u_error == EWOULDBLOCK &&
303 	    u.u_ofile[uap->fd]->f_type == DTYPE_VNODE) {
304 		u.u_error = 0;
305 		u.u_r.r_val1 = 0;
306 	}
307 }
308 
309 hpuxreadv()
310 {
311 	struct a {
312 		int	fd;
313 	} *uap = (struct a *)u.u_ap;
314 
315 	readv();
316 	if (u.u_error == EWOULDBLOCK &&
317 	    u.u_ofile[uap->fd]->f_type == DTYPE_VNODE) {
318 		u.u_error = 0;
319 		u.u_r.r_val1 = 0;
320 	}
321 }
322 
323 hpuxwritev()
324 {
325 	struct a {
326 		int	fd;
327 	} *uap = (struct a *)u.u_ap;
328 
329 	writev();
330 	if (u.u_error == EWOULDBLOCK &&
331 	    u.u_ofile[uap->fd]->f_type == DTYPE_VNODE) {
332 		u.u_error = 0;
333 		u.u_r.r_val1 = 0;
334 	}
335 }
336 
337 /*
338  * 4.3bsd dup allows dup2 to come in on the same syscall entry
339  * and hence allows two arguments.  HPUX dup has only one arg.
340  */
341 hpuxdup()
342 {
343 	register struct a {
344 		int	i;
345 	} *uap = (struct a *)u.u_ap;
346 	struct file *fp;
347 	int j;
348 
349 	if ((unsigned)uap->i >= NOFILE || (fp = u.u_ofile[uap->i]) == NULL) {
350 		u.u_error = EBADF;
351 		return;
352 	}
353 	u.u_error = ufalloc(0, &j);
354 	if (u.u_error)
355 		return;
356 	u.u_r.r_val1 = j;
357 	dupit(j, fp, u.u_pofile[uap->i] &~ UF_EXCLOSE);
358 }
359 
360 hpuxuname()
361 {
362 	register struct a {
363 		struct hpuxutsname *uts;
364 		int dev;
365 		int request;
366 	} *uap = (struct a *)u.u_ap;
367 	register int i;
368 
369 	switch (uap->request) {
370 	/* uname */
371 	case 0:
372 		/* fill in machine type */
373 		switch (machineid) {
374 		case HP_320:
375 			protoutsname.machine[6] = '2';
376 			break;
377 		/* includes 318 and 319 */
378 		case HP_330:
379 			protoutsname.machine[6] = '3';
380 			break;
381 		case HP_340:
382 			protoutsname.machine[6] = '4';
383 			break;
384 		case HP_350:
385 			protoutsname.machine[6] = '5';
386 			break;
387 		case HP_360:
388 			protoutsname.machine[6] = '6';
389 			break;
390 		case HP_370:
391 			protoutsname.machine[6] = '7';
392 			break;
393 		}
394 		/* copy hostname (sans domain) to nodename */
395 		for (i = 0; i < 9 && hostname[i] != '.'; i++)
396 			protoutsname.nodename[i] = hostname[i];
397 		u.u_error = copyout((caddr_t)&protoutsname, (caddr_t)uap->uts,
398 				    sizeof(struct hpuxutsname));
399 		break;
400 	/* ustat - who cares? */
401 	case 2:
402 	default:
403 		u.u_error = EINVAL;
404 		break;
405 	}
406 }
407 
408 hpuxstat()
409 {
410 	struct a {
411 		char	*fname;
412 		struct hpuxstat *hsb;
413 	} *uap = (struct a *)u.u_ap;
414 
415 	u.u_error = hpuxstat1(uap->fname, uap->hsb, FOLLOW);
416 }
417 
418 hpuxlstat()
419 {
420 	struct a {
421 		char	*fname;
422 		struct	hpuxstat *hsb;
423 	} *uap = (struct a *) u.u_ap;
424 
425 	u.u_error = hpuxstat1(uap->fname, uap->hsb, NOFOLLOW);
426 }
427 
428 hpuxfstat()
429 {
430 	register struct file *fp;
431 	register struct a {
432 		int	fdes;
433 		struct	hpuxstat *hsb;
434 	} *uap = (struct a *)u.u_ap;
435 	struct stat sb;
436 
437 	if ((unsigned)uap->fdes >= NOFILE ||
438 	    (fp = u.u_ofile[uap->fdes]) == NULL) {
439 		u.u_error = EBADF;
440 		return;
441 	}
442 	switch (fp->f_type) {
443 
444 	case DTYPE_VNODE:
445 		u.u_error = vn_stat((struct vnode *)fp->f_data, &sb);
446 		break;
447 
448 	case DTYPE_SOCKET:
449 		u.u_error = soo_stat((struct socket *)fp->f_data, &sb);
450 		break;
451 
452 	default:
453 		panic("fstat");
454 		/*NOTREACHED*/
455 	}
456 	/* is this right for sockets?? */
457 	if (u.u_error == 0)
458 		u.u_error = bsdtohpuxstat(&sb, uap->hsb);
459 }
460 
461 hpuxulimit()
462 {
463 	struct a {
464 		int	cmd;
465 		long	newlimit;
466 	} *uap = (struct a *)u.u_ap;
467 	struct rlimit *limp;
468 
469 	limp = &u.u_rlimit[RLIMIT_FSIZE];
470 	switch (uap->cmd) {
471 	case 2:
472 		uap->newlimit *= 512;
473 		if (uap->newlimit > limp->rlim_max &&
474 		    (u.u_error = suser(u.u_cred, &u.u_acflag)))
475 			break;
476 		limp->rlim_cur = limp->rlim_max = uap->newlimit;
477 		/* else fall into... */
478 
479 	case 1:
480 		u.u_r.r_off = limp->rlim_max / 512;
481 		break;
482 
483 	case 3:
484 		limp = &u.u_rlimit[RLIMIT_DATA];
485 		u.u_r.r_off = ctob(u.u_tsize) + limp->rlim_max;
486 		break;
487 
488 	default:
489 		u.u_error = EINVAL;
490 		break;
491 	}
492 }
493 
494 /*
495  * Map "real time" priorities 0 (high) thru 127 (low) into nice
496  * values -16 (high) thru -1 (low).
497  */
498 hpuxrtprio()
499 {
500 	register struct a {
501 		int pid;
502 		int prio;
503 	} *uap = (struct a *)u.u_ap;
504 	struct proc *p;
505 	int nice;
506 
507 	if (uap->prio < RTPRIO_MIN && uap->prio > RTPRIO_MAX &&
508 	    uap->prio != RTPRIO_NOCHG && uap->prio != RTPRIO_RTOFF) {
509 		u.u_error = EINVAL;
510 		return;
511 	}
512 	if (uap->pid == 0)
513 		p = u.u_procp;
514 	else if ((p = pfind(uap->pid)) == 0) {
515 		u.u_error = ESRCH;
516 		return;
517 	}
518 	nice = p->p_nice;
519 	if (nice < NZERO)
520 		u.u_r.r_val1 = (nice + 16) << 3;
521 	else
522 		u.u_r.r_val1 = RTPRIO_RTOFF;
523 	switch (uap->prio) {
524 
525 	case RTPRIO_NOCHG:
526 		return;
527 
528 	case RTPRIO_RTOFF:
529 		if (nice >= NZERO)
530 			return;
531 		nice = NZERO;
532 		break;
533 
534 	default:
535 		nice = (uap->prio >> 3) - 16;
536 		break;
537 	}
538 	donice(p, nice);
539 	if (u.u_error == EACCES)
540 		u.u_error = EPERM;
541 }
542 
543 /*
544  * Kudos to HP folks for using such mnemonic names so I could figure
545  * out what this guy does.
546  */
547 hpuxadvise()
548 {
549 	struct a {
550 		int	arg;
551 	} *uap = (struct a *) u.u_ap;
552 
553 	switch (uap->arg) {
554 	case 0:
555 		u.u_pcb.pcb_flags |= PCB_HPUXMMAP;
556 		break;
557 	case 1:
558 		ICIA();
559 		break;
560 	case 2:
561 		DCIA();
562 		break;
563 	default:
564 		u.u_error = EINVAL;
565 		break;
566 	}
567 }
568 
569 hpuxptrace()
570 {
571 	struct a {
572 		int	req;
573 		int	pid;
574 		int	*addr;
575 		int	data;
576 	} *uap = (struct a *)u.u_ap;
577 
578 	if (uap->req == PT_STEP || uap->req == PT_CONTINUE) {
579 		if (uap->data) {
580 			uap->data = hpuxtobsdsig(uap->data);
581 			if (uap->data == 0)
582 				uap->data = NSIG;
583 		}
584 	}
585 	ptrace();
586 }
587 
588 hpuxgetdomainname()
589 {
590 	register struct a {
591 		char	*domainname;
592 		u_int	len;
593 	} *uap = (struct a *)u.u_ap;
594 
595 	if (uap->len > domainnamelen + 1)
596 		uap->len = domainnamelen + 1;
597 	u.u_error = copyout(domainname, uap->domainname, uap->len);
598 }
599 
600 hpuxsetdomainname()
601 {
602 	register struct a {
603 		char	*domainname;
604 		u_int	len;
605 	} *uap = (struct a *)u.u_ap;
606 
607 	if (u.u_error = suser(u.u_cred, &u.u_acflag))
608 		return;
609 	if (uap->len > sizeof (domainname) - 1) {
610 		u.u_error = EINVAL;
611 		return;
612 	}
613 	domainnamelen = uap->len;
614 	u.u_error = copyin(uap->domainname, domainname, uap->len);
615 	domainname[domainnamelen] = 0;
616 }
617 
618 #ifdef SYSVSHM
619 hpuxshmat()
620 {
621 	shmat(u.u_ap);
622 }
623 
624 hpuxshmctl()
625 {
626 	shmctl(u.u_ap);
627 }
628 
629 hpuxshmdt()
630 {
631 	shmdt(u.u_ap);
632 }
633 
634 hpuxshmget()
635 {
636 	shmget(u.u_ap);
637 }
638 #endif
639 
640 /*
641  * Fake semaphore routines, just don't return an error.
642  * Should be adequate for starbase to run.
643  */
644 hpuxsemctl()
645 {
646 	struct a {
647 		int semid;
648 		u_int semnum;
649 		int cmd;
650 		int arg;
651 	} *uap = (struct a *)u.u_ap;
652 
653 	/* XXX: should do something here */
654 }
655 
656 hpuxsemget()
657 {
658 	struct a {
659 		key_t key;
660 		int nsems;
661 		int semflg;
662 	} *uap = (struct a *)u.u_ap;
663 
664 	/* XXX: should do something here */
665 }
666 
667 hpuxsemop()
668 {
669 	struct a {
670 		int semid;
671 		struct sembuf *sops;
672 		u_int nsops;
673 	} *uap = (struct a *)u.u_ap;
674 
675 	/* XXX: should do something here */
676 }
677 
678 /* convert from BSD to HPUX errno */
679 bsdtohpuxerrno(err)
680 	int err;
681 {
682 	if (err < 0 || err >= NERR)
683 		return(BERR);
684 	return((int)bsdtohpuxerrnomap[err]);
685 }
686 
687 hpuxstat1(fname, hsb, follow)
688 	char *fname;
689 	struct hpuxstat *hsb;
690 	int follow;
691 {
692 	register struct nameidata *ndp = &u.u_nd;
693 	struct stat sb;
694 	int error;
695 
696 	ndp->ni_nameiop = LOOKUP | LOCKLEAF | follow;
697 	ndp->ni_segflg = UIO_USERSPACE;
698 	ndp->ni_dirp = fname;
699 	if (error = namei(ndp))
700 		return (error);
701 	error = vn_stat(ndp->ni_vp, &sb);
702 	vput(ndp->ni_vp);
703 	if (error == 0)
704 		error = bsdtohpuxstat(&sb, hsb);
705 	return (error);
706 }
707 
708 #include "grf.h"
709 
710 bsdtohpuxstat(sb, hsb)
711 	struct stat *sb;
712 	struct hpuxstat *hsb;
713 {
714 	struct hpuxstat ds;
715 
716 	bzero((caddr_t)&ds, sizeof(ds));
717 	ds.hst_dev = sb->st_dev;
718 	ds.hst_ino = (u_long)sb->st_ino;
719 	ds.hst_mode = sb->st_mode;
720 	ds.hst_nlink = sb->st_nlink;
721 	ds.hst_uid = (u_short)sb->st_uid;
722 	ds.hst_gid = (u_short)sb->st_gid;
723 #if NGRF > 0
724 	/* XXX: I don't want to talk about it... */
725 	if ((sb->st_mode & S_IFMT) == S_IFCHR && major(sb->st_rdev) == 10)
726 		ds.hst_rdev = grfdevno(sb->st_rdev);
727 	else
728 #endif
729 		ds.hst_rdev = bsdtohpuxdev(sb->st_rdev);
730 	ds.hst_size = sb->st_size;
731 	ds.hst_atime = sb->st_atime;
732 	ds.hst_mtime = sb->st_mtime;
733 	ds.hst_ctime = sb->st_ctime;
734 	ds.hst_blksize = sb->st_blksize;
735 	ds.hst_blocks = sb->st_blocks;
736 	return(copyout((caddr_t)&ds, (caddr_t)hsb, sizeof(ds)));
737 }
738 
739 hpuxtobsdioctl(com)
740 	int com;
741 {
742 	switch (com) {
743 	case HPUXTIOCSLTC:
744 		com = TIOCSLTC; break;
745 	case HPUXTIOCGLTC:
746 		com = TIOCGLTC; break;
747 	case HPUXTIOCSPGRP:
748 		com = TIOCSPGRP; break;
749 	case HPUXTIOCGPGRP:
750 		com = TIOCGPGRP; break;
751 	case HPUXTIOCLBIS:
752 		com = TIOCLBIS; break;
753 	case HPUXTIOCLBIC:
754 		com = TIOCLBIC; break;
755 	case HPUXTIOCLSET:
756 		com = TIOCLSET; break;
757 	case HPUXTIOCLGET:
758 		com = TIOCLGET; break;
759 	}
760 	return(com);
761 }
762 
763 /*
764  * HPUX ioctl system call.  The differences here are:
765  *	IOC_IN also means IOC_VOID if the size portion is zero.
766  *	no FIOCLEX/FIONCLEX/FIONBIO/FIOASYNC/FIOGETOWN/FIOSETOWN
767  *	the sgttyb struct is 2 bytes longer
768  */
769 hpuxioctl()
770 {
771 	register struct file *fp;
772 	struct a {
773 		int	fdes;
774 		int	cmd;
775 		caddr_t	cmarg;
776 	} *uap = (struct a *)u.u_ap;
777 	register int com;
778 	register u_int size;
779 	caddr_t memp = 0;
780 #define STK_PARAMS	128
781 	char stkbuf[STK_PARAMS];
782 	caddr_t data = stkbuf;
783 
784 	com = uap->cmd;
785 
786 	/* XXX */
787 	if (com == HPUXTIOCGETP || com == HPUXTIOCSETP) {
788 		getsettty(uap->fdes, com, uap->cmarg);
789 		return;
790 	}
791 
792 	if ((unsigned)uap->fdes >= NOFILE ||
793 	    (fp = u.u_ofile[uap->fdes]) == NULL) {
794 		u.u_error = EBADF;
795 		return;
796 	}
797 	if ((fp->f_flag & (FREAD|FWRITE)) == 0) {
798 		u.u_error = EBADF;
799 		return;
800 	}
801 
802 	/*
803 	 * Interpret high order word to find
804 	 * amount of data to be copied to/from the
805 	 * user's address space.
806 	 */
807 	size = IOCPARM_LEN(com);
808 	if (size > IOCPARM_MAX) {
809 		u.u_error = EFAULT;
810 		return;
811 	}
812 	if (size > sizeof (stkbuf)) {
813 		memp = (caddr_t)malloc((u_long)IOCPARM_MAX, M_IOCTLOPS,
814 		    M_WAITOK);
815 		data = memp;
816 	}
817 	if (com&IOC_IN) {
818 		if (size) {
819 			u.u_error = copyin(uap->cmarg, data, (u_int)size);
820 			if (u.u_error) {
821 				if (memp)
822 					free(memp, M_IOCTLOPS);
823 				return;
824 			}
825 		} else
826 			*(caddr_t *)data = uap->cmarg;
827 	} else if ((com&IOC_OUT) && size)
828 		/*
829 		 * Zero the buffer on the stack so the user
830 		 * always gets back something deterministic.
831 		 */
832 		bzero(data, size);
833 	else if (com&IOC_VOID)
834 		*(caddr_t *)data = uap->cmarg;
835 
836 	switch (com) {
837 
838 	case HPUXTIOCCONS:
839 		*(int *)data = 1;
840 		u.u_error = (*fp->f_ops->fo_ioctl)(fp, TIOCCONS, data);
841 		break;
842 
843 	/* BSD-style job control ioctls */
844 	case HPUXTIOCLBIS:
845 	case HPUXTIOCLBIC:
846 	case HPUXTIOCLSET:
847 		*(int *)data &= HPUXLTOSTOP;
848 		if (*(int *)data & HPUXLTOSTOP)
849 			*(int *)data = LTOSTOP;
850 		/* fall into */
851 	case HPUXTIOCLGET:
852 	case HPUXTIOCSLTC:
853 	case HPUXTIOCGLTC:
854 	case HPUXTIOCSPGRP:
855 	case HPUXTIOCGPGRP:
856 		u.u_error = (*fp->f_ops->fo_ioctl)(fp, hpuxtobsdioctl(com), data);
857 		if (u.u_error == 0 && com == HPUXTIOCLGET) {
858 			*(int *)data &= LTOSTOP;
859 			if (*(int *)data & LTOSTOP)
860 				*(int *)data = HPUXLTOSTOP;
861 		}
862 		break;
863 
864 	/* SYS 5 termio */
865 	case HPUXTCGETA:
866 	case HPUXTCSETA:
867 	case HPUXTCSETAW:
868 	case HPUXTCSETAF:
869 		u.u_error = hpuxtermio(fp, com, data);
870 		break;
871 
872 	default:
873 		u.u_error = (*fp->f_ops->fo_ioctl)(fp, com, data);
874 		break;
875 	}
876 	/*
877 	 * Copy any data to user, size was
878 	 * already set and checked above.
879 	 */
880 	if (u.u_error == 0 && (com&IOC_OUT) && size)
881 		u.u_error = copyout(data, uap->cmarg, (u_int)size);
882 	if (memp)
883 		free(memp, M_IOCTLOPS);
884 }
885 
886 /*
887  * Man page lies, behaviour here is based on observed behaviour.
888  */
889 hpuxgetcontext()
890 {
891 	struct a {
892 		char *buf;
893 		int len;
894 	} *uap = (struct a *)u.u_ap;
895 	int error = 0;
896 	register int len;
897 
898 	len = MIN(uap->len, sizeof(hpuxcontext));
899 	if (len)
900 		error = copyout(hpuxcontext, uap->buf, (u_int)len);
901 	if (!error)
902 		u.u_r.r_val1 = sizeof(hpuxcontext);
903 	return(error);
904 }
905 
906 /*
907  * XXX: simple recognition hack to see if we can make grmd work.
908  */
909 hpuxlockf()
910 {
911 	struct a {
912 		int fd;
913 		int func;
914 		long size;
915 	} *uap = (struct a *)u.u_ap;
916 #ifdef DEBUG
917 	log(LOG_DEBUG, "%d: lockf(%d, %d, %d)\n",
918 	    u.u_procp->p_pid, uap->fd, uap->func, uap->size);
919 #endif
920 	return(0);
921 }
922 
923 /*
924  * This is the equivalent of BSD getpgrp but with more restrictions.
925  * Note we do not check the real uid or "saved" uid.
926  */
927 hpuxgetpgrp2()
928 {
929 	register struct proc *p;
930 	register struct a {
931 		int pid;
932 	} *uap = (struct a *)u.u_ap;
933 
934 	if (uap->pid == 0)
935 		uap->pid = u.u_procp->p_pid;
936 	p = pfind(uap->pid);
937 	if (p == 0) {
938 		u.u_error = ESRCH;
939 		return;
940 	}
941 	if (u.u_uid && p->p_uid != u.u_uid && !inferior(p)) {
942 		u.u_error = EPERM;
943 		return;
944 	}
945 	u.u_r.r_val1 = p->p_pgid;
946 }
947 
948 /*
949  * This is the equivalent of BSD setpgrp but with more restrictions.
950  * Note we do not check the real uid or "saved" uid or pgrp.
951  */
952 hpuxsetpgrp2()
953 {
954 	struct a {
955 		int	pid;
956 		int	pgrp;
957 	} *uap = (struct a *)u.u_ap;
958 
959 	/* empirically determined */
960 	if (uap->pgrp < 0 || uap->pgrp >= 30000) {
961 		u.u_error = EINVAL;
962 		return;
963 	}
964 	setpgrp();
965 }
966 
967 /*
968  * Brutal hack!  Map HPUX u-area offsets into BSD u offsets.
969  * No apologies offered, if you don't like it, rewrite it!
970  */
971 
972 #define UOFF(f)		((int)&((struct user *)0)->f)
973 #define HPUOFF(f)	((int)&((struct hpuxuser *)0)->f)
974 
975 /* simplified FP structure */
976 struct bsdfp {
977 	int save[54];
978 	int reg[24];
979 	int ctrl[3];
980 };
981 
982 hpuxtobsduoff(off)
983 	int *off;
984 {
985 	struct hpuxfp *hp;
986 	struct bsdfp *bp;
987 	register u_int raddr;
988 
989 	/* u_ar0 field */
990 	if ((int)off == HPUOFF(hpuxu_ar0))
991 		return(UOFF(u_ar0));
992 
993 #ifdef FPCOPROC
994 	/* 68881 registers from PCB */
995 	hp = (struct hpuxfp *)HPUOFF(hpuxu_fp);
996 	bp = (struct bsdfp *)UOFF(u_pcb.pcb_fpregs);
997 	if (off >= hp->hpfp_ctrl && off < &hp->hpfp_ctrl[3])
998 		return((int)&bp->ctrl[off - hp->hpfp_ctrl]);
999 	if (off >= hp->hpfp_reg && off < &hp->hpfp_reg[24])
1000 		return((int)&bp->reg[off - hp->hpfp_reg]);
1001 #endif
1002 
1003 	/*
1004 	 * Everything else we recognize comes from the kernel stack,
1005 	 * so we convert off to an absolute address (if not already)
1006 	 * for simplicity.
1007 	 */
1008 	if (off < (int *)ctob(UPAGES))
1009 		off = (int *)((u_int)off + (u_int)&u);
1010 
1011 	/*
1012 	 * 68020 registers.
1013 	 * We know that the HPUX registers are in the same order as ours.
1014 	 * The only difference is that their PS is 2 bytes instead of a
1015 	 * padded 4 like ours throwing the alignment off.
1016 	 */
1017 	if (off >= u.u_ar0 && off < &u.u_ar0[18]) {
1018 		/*
1019 		 * PS: return low word and high word of PC as HP-UX would
1020 		 * (e.g. &u.u_ar0[16.5]).
1021 		 */
1022 		if (off == &u.u_ar0[PS])
1023 			raddr = (u_int) &((short *)u.u_ar0)[PS*2+1];
1024 		/*
1025 		 * PC: off will be &u.u_ar0[16.5]
1026 		 */
1027 		else if (off == (int *)&(((short *)u.u_ar0)[PS*2+1]))
1028 			raddr = (u_int) &u.u_ar0[PC];
1029 		/*
1030 		 * D0-D7, A0-A7: easy
1031 		 */
1032 		else
1033 			raddr = (u_int) &u.u_ar0[(int)(off - u.u_ar0)];
1034 		return((int)(raddr - (u_int)&u));
1035 	}
1036 
1037 	/* everything else */
1038 	return(-1);
1039 }
1040 
1041 /*
1042  * Kludge up a uarea dump so that HPUX debuggers can find out
1043  * what they need.  IMPORTANT NOTE: we do not EVEN attempt to
1044  * convert the entire user struct.
1045  */
1046 hpuxdumpu(vp, cred)
1047 	struct vnode *vp;
1048 	struct ucred *cred;
1049 {
1050 	int error;
1051 	struct hpuxuser *faku;
1052 	struct bsdfp *bp;
1053 	short *foop;
1054 
1055 	faku = (struct hpuxuser *)malloc((u_long)ctob(1), M_TEMP, M_WAITOK);
1056 	/*
1057 	 * Make sure there is no mistake about this
1058 	 * being a real user structure.
1059 	 */
1060 	bzero((caddr_t)faku, ctob(1));
1061 	/*
1062 	 * Fill in the process sizes.
1063 	 */
1064 	faku->hpuxu_tsize = u.u_tsize;
1065 	faku->hpuxu_dsize = u.u_dsize;
1066 	faku->hpuxu_ssize = u.u_ssize;
1067 	/*
1068 	 * Fill in the exec header for CDB.
1069 	 * This was saved back in exec().  As far as I can tell CDB
1070 	 * only uses this information to verify that a particular
1071 	 * core file goes with a particular binary.
1072 	 */
1073 	bcopy((caddr_t)u.u_pcb.pcb_exec,
1074 	      (caddr_t)&faku->hpuxu_exdata, sizeof (struct hpux_exec));
1075 	/*
1076 	 * Adjust user's saved registers (on kernel stack) to reflect
1077 	 * HPUX order.  Note that HPUX saves the SR as 2 bytes not 4
1078 	 * so we have to move it up.
1079 	 */
1080 	faku->hpuxu_ar0 = u.u_ar0;
1081 	foop = (short *) u.u_ar0;
1082 	foop[32] = foop[33];
1083 	foop[33] = foop[34];
1084 	foop[34] = foop[35];
1085 #ifdef FPCOPROC
1086 	/*
1087 	 * Copy 68881 registers from our PCB format to HPUX format
1088 	 */
1089 	bp = (struct bsdfp *) &u.u_pcb.pcb_fpregs;
1090 	bcopy((caddr_t)bp->save, (caddr_t)faku->hpuxu_fp.hpfp_save,
1091 	      sizeof(bp->save));
1092 	bcopy((caddr_t)bp->ctrl, (caddr_t)faku->hpuxu_fp.hpfp_ctrl,
1093 	      sizeof(bp->ctrl));
1094 	bcopy((caddr_t)bp->reg, (caddr_t)faku->hpuxu_fp.hpfp_reg,
1095 	      sizeof(bp->reg));
1096 #endif
1097 	/*
1098 	 * Slay the dragon
1099 	 */
1100 	faku->hpuxu_dragon = -1;
1101 	/*
1102 	 * Dump this artfully constructed page in place of the
1103 	 * user struct page.
1104 	 */
1105 	error = vn_rdwr(UIO_WRITE, vp,
1106 			(caddr_t)faku, ctob(1), (off_t)0,
1107 			UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT, cred, (int *)0);
1108 	/*
1109 	 * Dump the remaining UPAGES-1 pages normally
1110 	 */
1111 	if (!error)
1112 		error = vn_rdwr(UIO_WRITE, vp, ((caddr_t)&u)+ctob(1),
1113 				ctob(UPAGES-1), (off_t)ctob(1), UIO_SYSSPACE,
1114 				IO_NODELOCKED|IO_UNIT, cred, (int *)0);
1115 	free((caddr_t)faku, M_TEMP);
1116 	return(error);
1117 }
1118 
1119 /*
1120  * The remaining routines are essentially the same as those in kern_xxx.c
1121  * and vfs_xxx.c as defined under "#ifdef COMPAT".  We replicate them here
1122  * to avoid HPUXCOMPAT dependencies in those files and to make sure that
1123  * HP-UX compatibility still works even when COMPAT is not defined.
1124  */
1125 /* #ifdef COMPAT */
1126 
1127 #include "../sys/times.h"
1128 
1129 /* from old timeb.h */
1130 struct hpuxtimeb {
1131 	time_t	time;
1132 	u_short	millitm;
1133 	short	timezone;
1134 	short	dstflag;
1135 };
1136 
1137 /* ye ole stat structure */
1138 struct	ohpuxstat {
1139 	dev_t	ohst_dev;
1140 	u_short	ohst_ino;
1141 	u_short ohst_mode;
1142 	short  	ohst_nlink;
1143 	short  	ohst_uid;
1144 	short  	ohst_gid;
1145 	dev_t	ohst_rdev;
1146 	int	ohst_size;
1147 	int	ohst_atime;
1148 	int	ohst_mtime;
1149 	int	ohst_ctime;
1150 };
1151 
1152 /*
1153  * Right now the following two routines are the same as the 4.3
1154  * osetuid/osetgid calls.  Eventually they need to be changed to
1155  * implement the notion of "saved" ids (whatever that means).
1156  */
1157 ohpuxsetuid()
1158 {
1159 	register uid;
1160 	register struct a {
1161 		int	uid;
1162 	} *uap = (struct a *)u.u_ap;
1163 
1164 	uid = uap->uid;
1165 	if (uid != u.u_procp->p_ruid && uid != u.u_cred->cr_uid &&
1166 	    (u.u_error = suser(u.u_cred, &u.u_acflag)))
1167 		return;
1168 	if (u.u_cred->cr_ref > 1)
1169 		u.u_cred = crcopy(u.u_cred);
1170 	u.u_cred->cr_uid = uid;
1171 	u.u_procp->p_uid = uid;
1172 	u.u_procp->p_ruid = uid;
1173 }
1174 
1175 ohpuxsetgid()
1176 {
1177 	register gid;
1178 	register struct a {
1179 		int	gid;
1180 	} *uap = (struct a *)u.u_ap;
1181 
1182 	gid = uap->gid;
1183 	if (u.u_procp->p_rgid != gid && u.u_cred->cr_groups[0] != gid &&
1184 	    (u.u_error = suser(u.u_cred, &u.u_acflag)))
1185 		return;
1186 	if (u.u_cred->cr_ref > 1)
1187 		u.u_cred = crcopy(u.u_cred);
1188 	u.u_procp->p_rgid = gid;
1189 	u.u_cred->cr_groups[0] = gid;
1190 }
1191 
1192 /*
1193  * SYS V style setpgrp()
1194  */
1195 ohpuxsetpgrp()
1196 {
1197 	register struct proc *p = u.u_procp;
1198 
1199 	if (p->p_pid != p->p_pgid)
1200 		pgmv(p, p->p_pid, 0);
1201 	u.u_r.r_val1 = p->p_pgid;
1202 }
1203 
1204 ohpuxtime()
1205 {
1206 	register struct a {
1207 		long	*tp;
1208 	} *uap = (struct a *)u.u_ap;
1209 
1210 	if (uap->tp)
1211 		u.u_error = copyout((caddr_t)&time.tv_sec, (caddr_t)uap->tp,
1212 				    sizeof (long));
1213 	u.u_r.r_time = time.tv_sec;
1214 }
1215 
1216 ohpuxstime()
1217 {
1218 	register struct a {
1219 		int	time;
1220 	} *uap = (struct a *)u.u_ap;
1221 	struct timeval tv;
1222 	int s;
1223 
1224 	tv.tv_sec = uap->time;
1225 	tv.tv_usec = 0;
1226 	u.u_error = suser(u.u_cred, &u.u_acflag);
1227 	if (u.u_error)
1228 		return;
1229 
1230 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
1231 	boottime.tv_sec += tv.tv_sec - time.tv_sec;
1232 	s = splhigh(); time = tv; splx(s);
1233 	resettodr();
1234 }
1235 
1236 ohpuxftime()
1237 {
1238 	register struct a {
1239 		struct	hpuxtimeb *tp;
1240 	} *uap;
1241 	struct hpuxtimeb tb;
1242 	int s;
1243 
1244 	uap = (struct a *)u.u_ap;
1245 	s = splhigh();
1246 	tb.time = time.tv_sec;
1247 	tb.millitm = time.tv_usec / 1000;
1248 	splx(s);
1249 	tb.timezone = tz.tz_minuteswest;
1250 	tb.dstflag = tz.tz_dsttime;
1251 	u.u_error = copyout((caddr_t)&tb, (caddr_t)uap->tp, sizeof (tb));
1252 }
1253 
1254 ohpuxalarm()
1255 {
1256 	register struct a {
1257 		int	deltat;
1258 	} *uap = (struct a *)u.u_ap;
1259 	register struct proc *p = u.u_procp;
1260 	int s = splhigh();
1261 
1262 	untimeout(realitexpire, (caddr_t)p);
1263 	timerclear(&p->p_realtimer.it_interval);
1264 	u.u_r.r_val1 = 0;
1265 	if (timerisset(&p->p_realtimer.it_value) &&
1266 	    timercmp(&p->p_realtimer.it_value, &time, >))
1267 		u.u_r.r_val1 = p->p_realtimer.it_value.tv_sec - time.tv_sec;
1268 	if (uap->deltat == 0) {
1269 		timerclear(&p->p_realtimer.it_value);
1270 		splx(s);
1271 		return;
1272 	}
1273 	p->p_realtimer.it_value = time;
1274 	p->p_realtimer.it_value.tv_sec += uap->deltat;
1275 	timeout(realitexpire, (caddr_t)p, hzto(&p->p_realtimer.it_value));
1276 	splx(s);
1277 }
1278 
1279 ohpuxnice()
1280 {
1281 	register struct a {
1282 		int	niceness;
1283 	} *uap = (struct a *)u.u_ap;
1284 	register struct proc *p = u.u_procp;
1285 
1286 	donice(p, (p->p_nice-NZERO)+uap->niceness);
1287 	u.u_r.r_val1 = p->p_nice - NZERO;
1288 }
1289 
1290 ohpuxtimes()
1291 {
1292 	register struct a {
1293 		struct	tms *tmsb;
1294 	} *uap = (struct a *)u.u_ap;
1295 	struct tms atms;
1296 
1297 	atms.tms_utime = scale50(&u.u_ru.ru_utime);
1298 	atms.tms_stime = scale50(&u.u_ru.ru_stime);
1299 	atms.tms_cutime = scale50(&u.u_cru.ru_utime);
1300 	atms.tms_cstime = scale50(&u.u_cru.ru_stime);
1301 	u.u_error = copyout((caddr_t)&atms, (caddr_t)uap->tmsb, sizeof (atms));
1302 	if (u.u_error == 0)
1303 		u.u_r.r_time = scale50(&time) - scale50(&boottime);
1304 }
1305 
1306 scale50(tvp)
1307 	register struct timeval *tvp;
1308 {
1309 	extern int hpuxtick;
1310 
1311 	/*
1312 	 * Doesn't exactly do what the documentation says.
1313 	 * What we really do is return 50th of a second since that
1314 	 * is what HZ is on all bobcats I know of.
1315 	 */
1316 	return ((tvp->tv_sec * 50 + tvp->tv_usec / hpuxtick));
1317 }
1318 
1319 /*
1320  * Set IUPD and IACC times on file.
1321  * Can't set ICHG.
1322  */
1323 ohpuxutime()
1324 {
1325 	register struct a {
1326 		char	*fname;
1327 		time_t	*tptr;
1328 	} *uap = (struct a *)u.u_ap;
1329 	struct vattr vattr;
1330 	time_t tv[2];
1331 	register struct vnode *vp;
1332 	register struct nameidata *ndp = &u.u_nd;
1333 
1334 	if (uap->tptr) {
1335 		u.u_error =
1336 			copyin((caddr_t)uap->tptr, (caddr_t)tv, sizeof (tv));
1337 		if (u.u_error)
1338 			return;
1339 	} else
1340 		tv[0] = tv[1] = time.tv_sec;
1341 	ndp->ni_nameiop = LOOKUP | FOLLOW | LOCKLEAF;
1342 	ndp->ni_segflg = UIO_USERSPACE;
1343 	ndp->ni_dirp = uap->fname;
1344 	vattr_null(&vattr);
1345 	vattr.va_atime.tv_sec = tv[0];
1346 	vattr.va_atime.tv_usec = 0;
1347 	vattr.va_mtime.tv_sec = tv[1];
1348 	vattr.va_mtime.tv_usec = 0;
1349 	if (u.u_error = namei(ndp))
1350 		return;
1351 	vp = ndp->ni_vp;
1352 	if (vp->v_mount->mnt_flag & MNT_RDONLY)
1353 		u.u_error = EROFS;
1354 	else
1355 		u.u_error = VOP_SETATTR(vp, &vattr, ndp->ni_cred);
1356 	vput(vp);
1357 }
1358 
1359 ohpuxpause()
1360 {
1361 
1362 	(void) tsleep((caddr_t)&u, PPAUSE | PCATCH, "pause", 0);
1363 	/* always return EINTR rather than ERESTART... */
1364 	RETURN (EINTR);
1365 }
1366 
1367 /*
1368  * The old fstat system call.
1369  */
1370 ohpuxfstat()
1371 {
1372 	register struct a {
1373 		int	fd;
1374 		struct ohpuxstat *sb;
1375 	} *uap = (struct a *)u.u_ap;
1376 	struct file *fp;
1377 	extern struct file *getinode();
1378 
1379 	if ((unsigned)uap->fd >= NOFILE || (fp = u.u_ofile[uap->fd]) == NULL) {
1380 		u.u_error = EBADF;
1381 		return;
1382 	}
1383 	if (fp->f_type != DTYPE_VNODE) {
1384 		u.u_error = EINVAL;
1385 		return;
1386 	}
1387 	u.u_error = ohpuxstat1((struct vnode *)fp->f_data, uap->sb);
1388 }
1389 
1390 /*
1391  * Old stat system call.  This version follows links.
1392  */
1393 ohpuxstat()
1394 {
1395 	register struct a {
1396 		char	*fname;
1397 		struct ohpuxstat *sb;
1398 	} *uap = (struct a *)u.u_ap;
1399 	register struct nameidata *ndp = &u.u_nd;
1400 
1401 	ndp->ni_nameiop = LOOKUP | LOCKLEAF | FOLLOW;
1402 	ndp->ni_segflg = UIO_USERSPACE;
1403 	ndp->ni_dirp = uap->fname;
1404 	if (u.u_error = namei(ndp))
1405 		return;
1406 	u.u_error = ohpuxstat1(ndp->ni_vp, uap->sb);
1407 	vput(ndp->ni_vp);
1408 }
1409 
1410 int
1411 ohpuxstat1(vp, ub)
1412 	register struct vnode *vp;
1413 	struct ohpuxstat *ub;
1414 {
1415 	struct ohpuxstat ds;
1416 	struct vattr vattr;
1417 	register int error;
1418 
1419 	error = VOP_GETATTR(vp, &vattr, u.u_cred);
1420 	if (error)
1421 		return(error);
1422 	/*
1423 	 * Copy from inode table
1424 	 */
1425 	ds.ohst_dev = vattr.va_fsid;
1426 	ds.ohst_ino = (short)vattr.va_fileid;
1427 	ds.ohst_mode = (u_short)vattr.va_mode;
1428 	ds.ohst_nlink = vattr.va_nlink;
1429 	ds.ohst_uid = (short)vattr.va_uid;
1430 	ds.ohst_gid = (short)vattr.va_gid;
1431 	ds.ohst_rdev = (dev_t)vattr.va_rdev;
1432 	ds.ohst_size = (int)vattr.va_size;
1433 	ds.ohst_atime = (int)vattr.va_atime.tv_sec;
1434 	ds.ohst_mtime = (int)vattr.va_mtime.tv_sec;
1435 	ds.ohst_ctime = (int)vattr.va_ctime.tv_sec;
1436 	return (copyout((caddr_t)&ds, (caddr_t)ub, sizeof(ds)));
1437 }
1438 /* #endif */
1439 
1440 #endif
1441