xref: /csrg-svn/old/dbx/process.c (revision 9689)
1 /* Copyright (c) 1982 Regents of the University of California */
2 
3 static char sccsid[] = "@(#)process.c 1.2 12/15/82";
4 
5 /*
6  * Process management.
7  *
8  * This module contains the routines to manage the execution and
9  * tracing of the debuggee process.
10  */
11 
12 #include "defs.h"
13 #include "process.h"
14 #include "machine.h"
15 #include "events.h"
16 #include "tree.h"
17 #include "operators.h"
18 #include "source.h"
19 #include "object.h"
20 #include "mappings.h"
21 #include "main.h"
22 #include "coredump.h"
23 #include <signal.h>
24 #include <errno.h>
25 #include <sys/param.h>
26 #include <sys/reg.h>
27 #include <sys/stat.h>
28 
29 #ifndef public
30 
31 typedef struct Process *Process;
32 
33 Process process;
34 
35 #include "machine.h"
36 
37 #endif
38 
39 #define NOTSTARTED 1
40 #define STOPPED 0177
41 #define FINISHED 0
42 
43 /*
44  * Cache-ing of instruction segment is done to reduce the number
45  * of system calls.
46  */
47 
48 #define CSIZE 1003       /* size of instruction cache */
49 
50 typedef struct {
51     Word addr;
52     Word val;
53 } CacheWord;
54 
55 /*
56  * This structure holds the information we need from the user structure.
57  */
58 
59 struct Process {
60     int pid;			/* process being traced */
61     int mask;			/* ps */
62     Word reg[NREG];		/* process's registers */
63     Word oreg[NREG];		/* registers when process last stopped */
64     short status;		/* either STOPPED or FINISHED */
65     short signo;		/* signal that stopped process */
66     int exitval;		/* return value from exit() */
67     long sigset;		/* bit array of traced signals */
68     CacheWord word[CSIZE];	/* text segment cache */
69 };
70 
71 /*
72  * These definitions are for the arguments to "pio".
73  */
74 
75 typedef enum { PREAD, PWRITE } PioOp;
76 typedef enum { TEXTSEG, DATASEG } PioSeg;
77 
78 private struct Process pbuf;
79 
80 #define MAXNCMDARGS 10         /* maximum number of arguments to RUN */
81 
82 private Boolean just_started;
83 private int argc;
84 private String argv[MAXNCMDARGS];
85 private String infile, outfile;
86 
87 /*
88  * Initialize process information.
89  */
90 
91 public process_init()
92 {
93     register Integer i;
94     Char buf[10];
95 
96     process = &pbuf;
97     process->status = (coredump) ? STOPPED : NOTSTARTED;
98     setsigtrace();
99     for (i = 0; i < NREG; i++) {
100 	sprintf(buf, "$r%d", i);
101 	defregname(identname(buf, false), i);
102     }
103     defregname(identname("$ap", true), ARGP);
104     defregname(identname("$fp", true), FRP);
105     defregname(identname("$sp", true), STKP);
106     defregname(identname("$pc", true), PROGCTR);
107     if (coredump) {
108 	coredump_readin(process->mask, process->reg, process->signo);
109     }
110 }
111 
112 /*
113  * Routines to get at process information from outside this module.
114  */
115 
116 public Word reg(n)
117 Integer n;
118 {
119     register Word w;
120 
121     if (n == NREG) {
122 	w = process->mask;
123     } else {
124 	w = process->reg[n];
125     }
126     return w;
127 }
128 
129 public setreg(n, w)
130 Integer n;
131 Word w;
132 {
133     process->reg[n] = w;
134 }
135 
136 /*
137  * Begin execution.
138  *
139  * We set a breakpoint at the end of the code so that the
140  * process data doesn't disappear after the program terminates.
141  */
142 
143 private Boolean remade();
144 
145 public start(argv, infile, outfile)
146 String argv[];
147 String infile, outfile;
148 {
149     String pargv[4];
150     Node cond;
151 
152     if (coredump) {
153 	coredump = false;
154 	fclose(corefile);
155 	coredump_close();
156     }
157     if (argv == nil) {
158 	argv = pargv;
159 	pargv[0] = objname;
160 	pargv[1] = nil;
161     } else {
162 	argv[argc] = nil;
163     }
164     if (remade(objname)) {
165 	reinit(argv, infile, outfile);
166     }
167     pstart(process, argv, infile, outfile);
168     if (process->status == STOPPED) {
169 	pc = 0;
170 	curfunc = program;
171 	if (objsize != 0) {
172 	    cond = build(O_EQ, build(O_SYM, pcsym), build(O_LCON, lastaddr()));
173 	    event_once(cond, buildcmdlist(build(O_ENDX)));
174 	}
175     }
176 }
177 
178 /*
179  * Check to see if the object file has changed since the symbolic
180  * information last was read.
181  */
182 
183 private time_t modtime;
184 
185 private Boolean remade(filename)
186 String filename;
187 {
188     struct stat s;
189     Boolean b;
190 
191     stat(filename, &s);
192     b = (Boolean) (modtime != 0 and modtime < s.st_mtime);
193     modtime = s.st_mtime;
194     return b;
195 }
196 
197 /*
198  * Set up what signals we want to trace.
199  */
200 
201 private setsigtrace()
202 {
203     register Integer i;
204     register Process p;
205 
206     p = process;
207     for (i = 1; i <= NSIG; i++) {
208 	psigtrace(p, i, true);
209     }
210     psigtrace(p, SIGHUP, false);
211     psigtrace(p, SIGKILL, false);
212     psigtrace(p, SIGALRM, false);
213     psigtrace(p, SIGTSTP, false);
214     psigtrace(p, SIGCONT, false);
215     psigtrace(p, SIGCHLD, false);
216 }
217 
218 /*
219  * Initialize the argument list.
220  */
221 
222 public arginit()
223 {
224     infile = nil;
225     outfile = nil;
226     argv[0] = objname;
227     argc = 1;
228 }
229 
230 /*
231  * Add an argument to the list for the debuggee.
232  */
233 
234 public newarg(arg)
235 String arg;
236 {
237     if (argc >= MAXNCMDARGS) {
238 	error("too many arguments");
239     }
240     argv[argc++] = arg;
241 }
242 
243 /*
244  * Set the standard input for the debuggee.
245  */
246 
247 public inarg(filename)
248 String filename;
249 {
250     if (infile != nil) {
251 	error("multiple input redirects");
252     }
253     infile = filename;
254 }
255 
256 /*
257  * Set the standard output for the debuggee.
258  * Probably should check to avoid overwriting an existing file.
259  */
260 
261 public outarg(filename)
262 String filename;
263 {
264     if (outfile != nil) {
265 	error("multiple output redirect");
266     }
267     outfile = filename;
268 }
269 
270 /*
271  * Start debuggee executing.
272  */
273 
274 public run()
275 {
276     process->status = STOPPED;
277     fixbps();
278     curline = 0;
279     start(argv, infile, outfile);
280     just_started = true;
281     isstopped = false;
282     cont();
283 }
284 
285 /*
286  * Continue execution wherever we left off.
287  *
288  * Note that this routine never returns.  Eventually bpact() will fail
289  * and we'll call printstatus or step will call it.
290  */
291 
292 typedef int Intfunc();
293 
294 private Intfunc *dbintr;
295 private intr();
296 
297 #define succeeds    == true
298 #define fails       == false
299 
300 public cont()
301 {
302     dbintr = signal(SIGINT, intr);
303     if (just_started) {
304 	just_started = false;
305     } else {
306 	if (not isstopped) {
307 	    error("can't continue execution");
308 	}
309 	isstopped = false;
310 	step();
311     }
312     for (;;) {
313 	if (single_stepping) {
314 	    printnews();
315 	} else {
316 	    setallbps();
317 	    resume();
318 	    unsetallbps();
319 	    if (bpact() fails) {
320 		printstatus();
321 	    }
322 	}
323 	step();
324     }
325     /* NOTREACHED */
326 }
327 
328 /*
329  * This routine is called if we get an interrupt while "running" px
330  * but actually in the debugger.  Could happen, for example, while
331  * processing breakpoints.
332  *
333  * We basically just want to keep going; the assumption is
334  * that when the process resumes it will get the interrupt
335  * which will then be handled.
336  */
337 
338 private intr()
339 {
340     signal(SIGINT, intr);
341 }
342 
343 public fixintr()
344 {
345     signal(SIGINT, dbintr);
346 }
347 
348 /*
349  * Resume execution.
350  */
351 
352 public resume()
353 {
354     register Process p;
355 
356     p = process;
357     if (traceexec) {
358 	printf("execution resumes at pc 0x%x\n", process->reg[PROGCTR]);
359 	fflush(stdout);
360     }
361     pcont(p);
362     pc = process->reg[PROGCTR];
363     if (traceexec) {
364 	printf("execution stops at pc 0x%x on sig %d\n",
365 	    process->reg[PROGCTR], p->signo);
366 	fflush(stdout);
367     }
368 }
369 
370 /*
371  * Continue execution up to the next source line.
372  *
373  * There are two ways to define the next source line depending on what
374  * is desired when a procedure or function call is encountered.  Step
375  * stops at the beginning of the procedure or call; next skips over it.
376  */
377 
378 /*
379  * Stepc is what is called when the step command is given.
380  * It has to play with the "isstopped" information.
381  */
382 
383 public stepc()
384 {
385     if (not isstopped) {
386 	error("can't continue execution");
387     }
388     isstopped = false;
389     dostep(false);
390     isstopped = true;
391 }
392 
393 public next()
394 {
395     if (not isstopped) {
396 	error("can't continue execution");
397     }
398     isstopped = false;
399     dostep(true);
400     isstopped = true;
401 }
402 
403 public step()
404 {
405     dostep(false);
406 }
407 
408 /*
409  * Resume execution up to the given address.  It is assumed that
410  * no breakpoints exist between the current address and the one
411  * we're stepping to.  This saves us from setting all the breakpoints.
412  */
413 
414 public stepto(addr)
415 Address addr;
416 {
417     setbp(addr);
418     resume();
419     unsetbp(addr);
420     if (not isbperr()) {
421 	printstatus();
422     }
423 }
424 
425 /*
426  * Print the status of the process.
427  * This routine does not return.
428  */
429 
430 public printstatus()
431 {
432     curfunc = whatblock(pc);
433     if (process->signo == SIGINT) {
434 	isstopped = true;
435 	printerror();
436     }
437     if (isbperr() and isstopped) {
438 	printf("stopped ");
439 	getsrcpos();
440 	if (curline > 0) {
441 	    printsrcpos();
442 	    putchar('\n');
443 	    printlines(curline, curline);
444 	} else {
445 	    printf("in ");
446 	    printwhich(stdout, curfunc);
447 	    printf(" at 0x%x\n", pc);
448 	    printinst(pc, pc);
449 	}
450 	erecover();
451     } else {
452 	fixbps();
453 	fixintr();
454 	if (process->status == FINISHED) {
455 	    exit(0);
456 	} else {
457 	    isstopped = true;
458 	    printerror();
459 	}
460     }
461 }
462 
463 /*
464  * Some functions for testing the state of the process.
465  */
466 
467 public Boolean notstarted(p)
468 Process p;
469 {
470     return (Boolean) (p->status == NOTSTARTED);
471 }
472 
473 public Boolean isfinished(p)
474 Process p;
475 {
476     return (Boolean) (p->status == FINISHED);
477 }
478 
479 /*
480  * Return the signal number which stopped the process.
481  */
482 
483 public Integer errnum(p)
484 Process p;
485 {
486     return p->signo;
487 }
488 
489 /*
490  * Return the termination code of the process.
491  */
492 
493 public Integer exitcode(p)
494 Process p;
495 {
496     return p->exitval;
497 }
498 
499 /*
500  * These routines are used to access the debuggee process from
501  * outside this module.
502  *
503  * They invoke "pio" which eventually leads to a call to "ptrace".
504  * The system generates an I/O error when a ptrace fails, we catch
505  * that here and assume its due to a misguided address.
506  */
507 
508 extern Intfunc *onsyserr();
509 
510 private badaddr;
511 private rwerr();
512 
513 /*
514  * Read from the process' instruction area.
515  */
516 
517 public iread(buff, addr, nbytes)
518 char *buff;
519 Address addr;
520 int nbytes;
521 {
522     Intfunc *f;
523 
524     f = onsyserr(EIO, rwerr);
525     badaddr = addr;
526     if (coredump) {
527 	coredump_readtext(buff, addr, nbytes);
528     } else {
529 	pio(process, PREAD, TEXTSEG, buff, addr, nbytes);
530     }
531     onsyserr(EIO, f);
532 }
533 
534 /*
535  * Write to the process' instruction area, usually in order to set
536  * or unset a breakpoint.
537  */
538 
539 public iwrite(buff, addr, nbytes)
540 char *buff;
541 Address addr;
542 int nbytes;
543 {
544     Intfunc *f;
545 
546     if (coredump) {
547 	error("no process to write to");
548     }
549     f = onsyserr(EIO, rwerr);
550     badaddr = addr;
551     pio(process, PWRITE, TEXTSEG, buff, addr, nbytes);
552     onsyserr(EIO, f);
553 }
554 
555 /*
556  * Read for the process' data area.
557  */
558 
559 public dread(buff, addr, nbytes)
560 char *buff;
561 Address addr;
562 int nbytes;
563 {
564     Intfunc *f;
565 
566     f = onsyserr(EIO, rwerr);
567     badaddr = addr;
568     if (coredump) {
569 	coredump_readdata(buff, addr, nbytes);
570     } else {
571 	pio(process, PREAD, DATASEG, buff, addr, nbytes);
572     }
573     onsyserr(EIO, f);
574 }
575 
576 /*
577  * Write to the process' data area.
578  */
579 
580 public dwrite(buff, addr, nbytes)
581 char *buff;
582 Address addr;
583 int nbytes;
584 {
585     Intfunc *f;
586 
587     if (coredump) {
588 	error("no process to write to");
589     }
590     f = onsyserr(EIO, rwerr);
591     badaddr = addr;
592     pio(process, PWRITE, DATASEG, buff, addr, nbytes);
593     onsyserr(EIO, f);
594 }
595 
596 /*
597  * Error handler.
598  */
599 
600 private rwerr()
601 {
602     error("bad read/write process address 0x%x", badaddr);
603 }
604 
605 /*
606  * Ptrace interface.
607  */
608 
609 /*
610  * This magic macro enables us to look at the process' registers
611  * in its user structure.  Very gross.
612  */
613 
614 #define regloc(reg)     (ctob(UPAGES) + ( sizeof(int) * (reg) ))
615 
616 #define WMASK           (~(sizeof(Word) - 1))
617 #define cachehash(addr) ((unsigned) ((addr >> 2) % CSIZE))
618 
619 #define FIRSTSIG        SIGINT
620 #define LASTSIG         SIGQUIT
621 #define ischild(pid)    ((pid) == 0)
622 #define traceme()       ptrace(0, 0, 0, 0)
623 #define setrep(n)       (1 << ((n)-1))
624 #define istraced(p)     (p->sigset&setrep(p->signo))
625 
626 /*
627  * Ptrace options (specified in first argument).
628  */
629 
630 #define UREAD   3       /* read from process's user structure */
631 #define UWRITE  6       /* write to process's user structure */
632 #define IREAD   1       /* read from process's instruction space */
633 #define IWRITE  4       /* write to process's instruction space */
634 #define DREAD   2       /* read from process's data space */
635 #define DWRITE  5       /* write to process's data space */
636 #define CONT    7       /* continue stopped process */
637 #define SSTEP   9       /* continue for approximately one instruction */
638 #define PKILL   8       /* terminate the process */
639 
640 /*
641  * Start up a new process by forking and exec-ing the
642  * given argument list, returning when the process is loaded
643  * and ready to execute.  The PROCESS information (pointed to
644  * by the first argument) is appropriately filled.
645  *
646  * If the given PROCESS structure is associated with an already running
647  * process, we terminate it.
648  */
649 
650 /* VARARGS2 */
651 private pstart(p, argv, infile, outfile)
652 Process p;
653 String argv[];
654 String infile;
655 String outfile;
656 {
657     int status;
658     File in, out;
659 
660     if (p->pid != 0) {          	/* child already running? */
661 	ptrace(PKILL, p->pid, 0, 0);    /* ... kill it! */
662     }
663     psigtrace(p, SIGTRAP, true);
664     if ((p->pid = fork()) == -1) {
665 	panic("can't fork");
666     }
667     if (ischild(p->pid)) {
668 	traceme();
669 	if (infile != nil) {
670 	    in = fopen(infile, "r");
671 	    if (in == nil) {
672 		printf("can't read %s\n", infile);
673 		exit(1);
674 	    }
675 	    fswap(0, fileno(in));
676 	}
677 	if (outfile != nil) {
678 	    out = fopen(outfile, "w");
679 	    if (out == nil) {
680 		printf("can't write %s\n", outfile);
681 		exit(1);
682 	    }
683 	    fswap(1, fileno(out));
684 	}
685 	execvp(argv[0], argv);
686 	panic("can't exec %s", argv[0]);
687     }
688     pwait(p->pid, &status);
689     getinfo(p, status);
690     if (p->status != STOPPED) {
691 	error("program could not begin execution");
692     }
693 }
694 
695 /*
696  * Continue a stopped process.  The argument points to a PROCESS structure.
697  * Before the process is restarted it's user area is modified according to
698  * the values in the structure.  When this routine finishes,
699  * the structure has the new values from the process's user area.
700  *
701  * Pcont terminates when the process stops with a signal pending that
702  * is being traced (via psigtrace), or when the process terminates.
703  */
704 
705 private pcont(p)
706 Process p;
707 {
708     int status;
709 
710     if (p->pid == 0) {
711 	error("program not active");
712     }
713     do {
714 	setinfo(p);
715 	sigs_off();
716 	if (ptrace(CONT, p->pid, p->reg[PROGCTR], p->signo) < 0) {
717 	    panic("can't continue process");
718 	}
719 	pwait(p->pid, &status);
720 	sigs_on();
721 	getinfo(p, status);
722     } while (p->status == STOPPED and not istraced(p));
723 }
724 
725 /*
726  * Single step as best ptrace can.
727  */
728 
729 public pstep(p)
730 Process p;
731 {
732     int status;
733 
734     setinfo(p);
735     sigs_off();
736     ptrace(SSTEP, p->pid, p->reg[PROGCTR], p->signo);
737     pwait(p->pid, &status);
738     sigs_on();
739     getinfo(p, status);
740 }
741 
742 /*
743  * Return from execution when the given signal is pending.
744  */
745 
746 public psigtrace(p, sig, sw)
747 Process p;
748 int sig;
749 Boolean sw;
750 {
751     if (sw) {
752 	p->sigset |= setrep(sig);
753     } else {
754 	p->sigset &= ~setrep(sig);
755     }
756 }
757 
758 /*
759  * Don't catch any signals.
760  * Particularly useful when letting a process finish uninhibited.
761  */
762 
763 public unsetsigtraces(p)
764 Process p;
765 {
766     p->sigset = 0;
767 }
768 
769 /*
770  * Turn off attention to signals not being caught.
771  */
772 
773 private Intfunc *sigfunc[NSIG];
774 
775 private sigs_off()
776 {
777     register int i;
778 
779     for (i = FIRSTSIG; i < LASTSIG; i++) {
780 	if (i != SIGKILL) {
781 	    sigfunc[i] = signal(i, SIG_IGN);
782 	}
783     }
784 }
785 
786 /*
787  * Turn back on attention to signals.
788  */
789 
790 private sigs_on()
791 {
792     register int i;
793 
794     for (i = FIRSTSIG; i < LASTSIG; i++) {
795 	if (i != SIGKILL) {
796 	    signal(i, sigfunc[i]);
797 	}
798     }
799 }
800 
801 /*
802  * Get process information from user area.
803  */
804 
805 private int rloc[] ={
806     R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, AP, FP, SP, PC
807 };
808 
809 private getinfo(p, status)
810 register Process p;
811 register int status;
812 {
813     register int i;
814 
815     p->signo = (status&0177);
816     p->exitval = ((status >> 8)&0377);
817     if (p->signo != STOPPED) {
818 	p->status = FINISHED;
819     } else {
820 	p->status = p->signo;
821 	p->signo = p->exitval;
822 	p->exitval = 0;
823 	p->mask = ptrace(UREAD, p->pid, regloc(PS), 0);
824 	for (i = 0; i < NREG; i++) {
825 	    p->reg[i] = ptrace(UREAD, p->pid, regloc(rloc[i]), 0);
826 	    p->oreg[i] = p->reg[i];
827 	}
828     }
829 }
830 
831 /*
832  * Set process's user area information from given process structure.
833  */
834 
835 private setinfo(p)
836 register Process p;
837 {
838     register int i;
839     register int r;
840 
841     if (istraced(p)) {
842 	p->signo = 0;
843     }
844     for (i = 0; i < NREG; i++) {
845 	if ((r = p->reg[i]) != p->oreg[i]) {
846 	    ptrace(UWRITE, p->pid, regloc(rloc[i]), r);
847 	}
848     }
849 }
850 
851 /*
852  * Structure for reading and writing by words, but dealing with bytes.
853  */
854 
855 typedef union {
856     Word pword;
857     Byte pbyte[sizeof(Word)];
858 } Pword;
859 
860 /*
861  * Read (write) from (to) the process' address space.
862  * We must deal with ptrace's inability to look anywhere other
863  * than at a word boundary.
864  */
865 
866 private Word fetch();
867 private store();
868 
869 private pio(p, op, seg, buff, addr, nbytes)
870 Process p;
871 PioOp op;
872 PioSeg seg;
873 char *buff;
874 Address addr;
875 int nbytes;
876 {
877     register int i;
878     register Address newaddr;
879     register char *cp;
880     char *bufend;
881     Pword w;
882     Address wordaddr;
883     int byteoff;
884 
885     if (p->status != STOPPED) {
886 	error("program is not active");
887     }
888     cp = buff;
889     newaddr = addr;
890     wordaddr = (newaddr&WMASK);
891     if (wordaddr != newaddr) {
892 	w.pword = fetch(p, seg, wordaddr);
893 	for (i = newaddr - wordaddr; i < sizeof(Word) and nbytes > 0; i++) {
894 	    if (op == PREAD) {
895 		*cp++ = w.pbyte[i];
896 	    } else {
897 		w.pbyte[i] = *cp++;
898 	    }
899 	    nbytes--;
900 	}
901 	if (op == PWRITE) {
902 	    store(p, seg, wordaddr, w.pword);
903 	}
904 	newaddr = wordaddr + sizeof(Word);
905     }
906     byteoff = (nbytes&(~WMASK));
907     nbytes -= byteoff;
908     bufend = cp + nbytes;
909     while (cp < bufend) {
910 	if (op == PREAD) {
911 	    *((Word *) cp) = fetch(p, seg, newaddr);
912 	} else {
913 	    store(p, seg, newaddr, *((Word *) cp));
914 	}
915 	cp += sizeof(Word);
916 	newaddr += sizeof(Word);
917     }
918     if (byteoff > 0) {
919 	w.pword = fetch(p, seg, newaddr);
920 	for (i = 0; i < byteoff; i++) {
921 	    if (op == PREAD) {
922 		*cp++ = w.pbyte[i];
923 	    } else {
924 		w.pbyte[i] = *cp++;
925 	    }
926 	}
927 	if (op == PWRITE) {
928 	    store(p, seg, newaddr, w.pword);
929 	}
930     }
931 }
932 
933 /*
934  * Get a word from a process at the given address.
935  * The address is assumed to be on a word boundary.
936  *
937  * A simple cache scheme is used to avoid redundant ptrace calls
938  * to the instruction space since it is assumed to be pure.
939  *
940  * It is necessary to use a write-through scheme so that
941  * breakpoints right next to each other don't interfere.
942  */
943 
944 private Integer nfetchs, nreads, nwrites;
945 
946 private Word fetch(p, seg, addr)
947 Process p;
948 PioSeg seg;
949 register int addr;
950 {
951     register CacheWord *wp;
952     register Word w;
953 
954     switch (seg) {
955 	case TEXTSEG:
956 	    ++nfetchs;
957 	    wp = &p->word[cachehash(addr)];
958 	    if (addr == 0 or wp->addr != addr) {
959 		++nreads;
960 		w = ptrace(IREAD, p->pid, addr, 0);
961 		wp->addr = addr;
962 		wp->val = w;
963 	    } else {
964 		w = wp->val;
965 	    }
966 	    break;
967 
968 	case DATASEG:
969 	    w = ptrace(DREAD, p->pid, addr, 0);
970 	    break;
971 
972 	default:
973 	    panic("fetch: bad seg %d", seg);
974 	    /* NOTREACHED */
975     }
976     return w;
977 }
978 
979 /*
980  * Put a word into the process' address space at the given address.
981  * The address is assumed to be on a word boundary.
982  */
983 
984 private store(p, seg, addr, data)
985 Process p;
986 PioSeg seg;
987 int addr;
988 Word data;
989 {
990     register CacheWord *wp;
991 
992     switch (seg) {
993 	case TEXTSEG:
994 	    ++nwrites;
995 	    wp = &p->word[cachehash(addr)];
996 	    wp->addr = addr;
997 	    wp->val = data;
998 	    ptrace(IWRITE, p->pid, addr, data);
999 	    break;
1000 
1001 	case DATASEG:
1002 	    ptrace(DWRITE, p->pid, addr, data);
1003 	    break;
1004 
1005 	default:
1006 	    panic("store: bad seg %d", seg);
1007 	    /* NOTREACHED */
1008     }
1009 }
1010 
1011 public printptraceinfo()
1012 {
1013     printf("%d fetchs, %d reads, %d writes\n", nfetchs, nreads, nwrites);
1014 }
1015 
1016 /*
1017  * Swap file numbers so as to redirect standard input and output.
1018  */
1019 
1020 private fswap(oldfd, newfd)
1021 int oldfd;
1022 int newfd;
1023 {
1024     if (oldfd != newfd) {
1025 	close(oldfd);
1026 	dup(newfd);
1027 	close(newfd);
1028     }
1029 }
1030