xref: /csrg-svn/old/dbx/process.c (revision 11172)
1 /* Copyright (c) 1982 Regents of the University of California */
2 
3 static char sccsid[] = "@(#)process.c 1.4 02/20/83";
4 
5 /*
6  * Process management.
7  *
8  * This module contains the routines to manage the execution and
9  * tracing of the debuggee process.
10  */
11 
12 #include "defs.h"
13 #include "process.h"
14 #include "machine.h"
15 #include "events.h"
16 #include "tree.h"
17 #include "operators.h"
18 #include "source.h"
19 #include "object.h"
20 #include "mappings.h"
21 #include "main.h"
22 #include "coredump.h"
23 #include <signal.h>
24 #include <errno.h>
25 #include <sys/param.h>
26 #include <machine/reg.h>
27 #include <sys/stat.h>
28 
29 #ifndef public
30 
31 typedef struct Process *Process;
32 
33 Process process;
34 
35 #include "machine.h"
36 
37 #endif
38 
39 #define NOTSTARTED 1
40 #define STOPPED 0177
41 #define FINISHED 0
42 
43 /*
44  * Cache-ing of instruction segment is done to reduce the number
45  * of system calls.
46  */
47 
48 #define CSIZE 1003       /* size of instruction cache */
49 
50 typedef struct {
51     Word addr;
52     Word val;
53 } CacheWord;
54 
55 /*
56  * This structure holds the information we need from the user structure.
57  */
58 
59 struct Process {
60     int pid;			/* process being traced */
61     int mask;			/* ps */
62     Word reg[NREG];		/* process's registers */
63     Word oreg[NREG];		/* registers when process last stopped */
64     short status;		/* either STOPPED or FINISHED */
65     short signo;		/* signal that stopped process */
66     int exitval;		/* return value from exit() */
67     long sigset;		/* bit array of traced signals */
68     CacheWord word[CSIZE];	/* text segment cache */
69 };
70 
71 /*
72  * These definitions are for the arguments to "pio".
73  */
74 
75 typedef enum { PREAD, PWRITE } PioOp;
76 typedef enum { TEXTSEG, DATASEG } PioSeg;
77 
78 private struct Process pbuf;
79 
80 #define MAXNCMDARGS 10         /* maximum number of arguments to RUN */
81 
82 private Boolean just_started;
83 private int argc;
84 private String argv[MAXNCMDARGS];
85 private String infile, outfile;
86 
87 /*
88  * Initialize process information.
89  */
90 
91 public process_init()
92 {
93     register Integer i;
94     Char buf[10];
95 
96     process = &pbuf;
97     process->status = (coredump) ? STOPPED : NOTSTARTED;
98     setsigtrace();
99     for (i = 0; i < NREG; i++) {
100 	sprintf(buf, "$r%d", i);
101 	defregname(identname(buf, false), i);
102     }
103     defregname(identname("$ap", true), ARGP);
104     defregname(identname("$fp", true), FRP);
105     defregname(identname("$sp", true), STKP);
106     defregname(identname("$pc", true), PROGCTR);
107     if (coredump) {
108 	coredump_readin(process->mask, process->reg, process->signo);
109     }
110 }
111 
112 /*
113  * Routines to get at process information from outside this module.
114  */
115 
116 public Word reg(n)
117 Integer n;
118 {
119     register Word w;
120 
121     if (n == NREG) {
122 	w = process->mask;
123     } else {
124 	w = process->reg[n];
125     }
126     return w;
127 }
128 
129 public setreg(n, w)
130 Integer n;
131 Word w;
132 {
133     process->reg[n] = w;
134 }
135 
136 /*
137  * Begin execution.
138  *
139  * We set a breakpoint at the end of the code so that the
140  * process data doesn't disappear after the program terminates.
141  */
142 
143 private Boolean remade();
144 
145 public start(argv, infile, outfile)
146 String argv[];
147 String infile, outfile;
148 {
149     String pargv[4];
150     Node cond;
151 
152     if (coredump) {
153 	coredump = false;
154 	fclose(corefile);
155 	coredump_close();
156     }
157     if (argv == nil) {
158 	argv = pargv;
159 	pargv[0] = objname;
160 	pargv[1] = nil;
161     } else {
162 	argv[argc] = nil;
163     }
164     if (remade(objname)) {
165 	reinit(argv, infile, outfile);
166     }
167     pstart(process, argv, infile, outfile);
168     if (process->status == STOPPED) {
169 	pc = 0;
170 	curfunc = program;
171 	if (objsize != 0) {
172 	    cond = build(O_EQ, build(O_SYM, pcsym), build(O_LCON, lastaddr()));
173 	    event_once(cond, buildcmdlist(build(O_ENDX)));
174 	}
175     }
176 }
177 
178 /*
179  * Check to see if the object file has changed since the symbolic
180  * information last was read.
181  */
182 
183 private time_t modtime;
184 
185 private Boolean remade(filename)
186 String filename;
187 {
188     struct stat s;
189     Boolean b;
190 
191     stat(filename, &s);
192     b = (Boolean) (modtime != 0 and modtime < s.st_mtime);
193     modtime = s.st_mtime;
194     return b;
195 }
196 
197 /*
198  * Set up what signals we want to trace.
199  */
200 
201 private setsigtrace()
202 {
203     register Integer i;
204     register Process p;
205 
206     p = process;
207     for (i = 1; i <= NSIG; i++) {
208 	psigtrace(p, i, true);
209     }
210     psigtrace(p, SIGHUP, false);
211     psigtrace(p, SIGKILL, false);
212     psigtrace(p, SIGALRM, false);
213     psigtrace(p, SIGTSTP, false);
214     psigtrace(p, SIGCONT, false);
215     psigtrace(p, SIGCHLD, false);
216 }
217 
218 /*
219  * Initialize the argument list.
220  */
221 
222 public arginit()
223 {
224     infile = nil;
225     outfile = nil;
226     argv[0] = objname;
227     argc = 1;
228 }
229 
230 /*
231  * Add an argument to the list for the debuggee.
232  */
233 
234 public newarg(arg)
235 String arg;
236 {
237     if (argc >= MAXNCMDARGS) {
238 	error("too many arguments");
239     }
240     argv[argc++] = arg;
241 }
242 
243 /*
244  * Set the standard input for the debuggee.
245  */
246 
247 public inarg(filename)
248 String filename;
249 {
250     if (infile != nil) {
251 	error("multiple input redirects");
252     }
253     infile = filename;
254 }
255 
256 /*
257  * Set the standard output for the debuggee.
258  * Probably should check to avoid overwriting an existing file.
259  */
260 
261 public outarg(filename)
262 String filename;
263 {
264     if (outfile != nil) {
265 	error("multiple output redirect");
266     }
267     outfile = filename;
268 }
269 
270 /*
271  * Start debuggee executing.
272  */
273 
274 public run()
275 {
276     process->status = STOPPED;
277     fixbps();
278     curline = 0;
279     start(argv, infile, outfile);
280     just_started = true;
281     isstopped = false;
282     cont();
283 }
284 
285 /*
286  * Continue execution wherever we left off.
287  *
288  * Note that this routine never returns.  Eventually bpact() will fail
289  * and we'll call printstatus or step will call it.
290  */
291 
292 typedef int Intfunc();
293 
294 private Intfunc *dbintr;
295 private intr();
296 
297 #define succeeds    == true
298 #define fails       == false
299 
300 public cont()
301 {
302     dbintr = signal(SIGINT, intr);
303     if (just_started) {
304 	just_started = false;
305     } else {
306 	if (not isstopped) {
307 	    error("can't continue execution");
308 	}
309 	isstopped = false;
310 	step();
311     }
312     for (;;) {
313 	if (single_stepping) {
314 	    printnews();
315 	} else {
316 	    setallbps();
317 	    resume();
318 	    unsetallbps();
319 	    if (bpact() fails) {
320 		printstatus();
321 	    }
322 	}
323 	step();
324     }
325     /* NOTREACHED */
326 }
327 
328 /*
329  * This routine is called if we get an interrupt while "running" px
330  * but actually in the debugger.  Could happen, for example, while
331  * processing breakpoints.
332  *
333  * We basically just want to keep going; the assumption is
334  * that when the process resumes it will get the interrupt
335  * which will then be handled.
336  */
337 
338 private intr()
339 {
340     signal(SIGINT, intr);
341 }
342 
343 public fixintr()
344 {
345     signal(SIGINT, dbintr);
346 }
347 
348 /*
349  * Resume execution.
350  */
351 
352 public resume()
353 {
354     register Process p;
355 
356     p = process;
357     if (traceexec) {
358 	printf("execution resumes at pc 0x%x\n", process->reg[PROGCTR]);
359 	fflush(stdout);
360     }
361     pcont(p);
362     pc = process->reg[PROGCTR];
363     if (traceexec) {
364 	printf("execution stops at pc 0x%x on sig %d\n",
365 	    process->reg[PROGCTR], p->signo);
366 	fflush(stdout);
367     }
368 }
369 
370 /*
371  * Continue execution up to the next source line.
372  *
373  * There are two ways to define the next source line depending on what
374  * is desired when a procedure or function call is encountered.  Step
375  * stops at the beginning of the procedure or call; next skips over it.
376  */
377 
378 /*
379  * Stepc is what is called when the step command is given.
380  * It has to play with the "isstopped" information.
381  */
382 
383 public stepc()
384 {
385     if (not isstopped) {
386 	error("can't continue execution");
387     }
388     isstopped = false;
389     dostep(false);
390     isstopped = true;
391 }
392 
393 public next()
394 {
395     if (not isstopped) {
396 	error("can't continue execution");
397     }
398     isstopped = false;
399     dostep(true);
400     isstopped = true;
401 }
402 
403 public step()
404 {
405     dostep(false);
406 }
407 
408 /*
409  * Resume execution up to the given address.  It is assumed that
410  * no breakpoints exist between the current address and the one
411  * we're stepping to.  This saves us from setting all the breakpoints.
412  */
413 
414 public stepto(addr)
415 Address addr;
416 {
417     setbp(addr);
418     resume();
419     unsetbp(addr);
420     if (not isbperr()) {
421 	printstatus();
422     }
423 }
424 
425 /*
426  * Print the status of the process.
427  * This routine does not return.
428  */
429 
430 public printstatus()
431 {
432     if (process->status == FINISHED) {
433 	exit(0);
434     } else {
435 	curfunc = whatblock(pc);
436 	getsrcpos();
437 	if (process->signo == SIGINT) {
438 	    isstopped = true;
439 	    printerror();
440 	} else if (isbperr() and isstopped) {
441 	    printf("stopped ");
442 	    printloc();
443 	    putchar('\n');
444 	    if (curline > 0) {
445 		printlines(curline, curline);
446 	    } else {
447 		printinst(pc, pc);
448 	    }
449 	    erecover();
450 	} else {
451 	    fixbps();
452 	    fixintr();
453 	    isstopped = true;
454 	    printerror();
455 	}
456     }
457 }
458 
459 /*
460  * Print out the current location in the debuggee.
461  */
462 
463 public printloc()
464 {
465     printf("in ");
466     printname(stdout, curfunc);
467     putchar(' ');
468     if (curline > 0) {
469 	printsrcpos();
470     } else {
471 	printf("at 0x%x", pc);
472     }
473 }
474 
475 /*
476  * Some functions for testing the state of the process.
477  */
478 
479 public Boolean notstarted(p)
480 Process p;
481 {
482     return (Boolean) (p->status == NOTSTARTED);
483 }
484 
485 public Boolean isfinished(p)
486 Process p;
487 {
488     return (Boolean) (p->status == FINISHED);
489 }
490 
491 /*
492  * Return the signal number which stopped the process.
493  */
494 
495 public Integer errnum(p)
496 Process p;
497 {
498     return p->signo;
499 }
500 
501 /*
502  * Return the termination code of the process.
503  */
504 
505 public Integer exitcode(p)
506 Process p;
507 {
508     return p->exitval;
509 }
510 
511 /*
512  * These routines are used to access the debuggee process from
513  * outside this module.
514  *
515  * They invoke "pio" which eventually leads to a call to "ptrace".
516  * The system generates an I/O error when a ptrace fails, we catch
517  * that here and assume its due to a misguided address.
518  */
519 
520 extern Intfunc *onsyserr();
521 
522 private badaddr;
523 private rwerr();
524 
525 /*
526  * Read from the process' instruction area.
527  */
528 
529 public iread(buff, addr, nbytes)
530 char *buff;
531 Address addr;
532 int nbytes;
533 {
534     Intfunc *f;
535 
536     f = onsyserr(EIO, rwerr);
537     badaddr = addr;
538     if (coredump) {
539 	coredump_readtext(buff, addr, nbytes);
540     } else {
541 	pio(process, PREAD, TEXTSEG, buff, addr, nbytes);
542     }
543     onsyserr(EIO, f);
544 }
545 
546 /*
547  * Write to the process' instruction area, usually in order to set
548  * or unset a breakpoint.
549  */
550 
551 public iwrite(buff, addr, nbytes)
552 char *buff;
553 Address addr;
554 int nbytes;
555 {
556     Intfunc *f;
557 
558     if (coredump) {
559 	error("no process to write to");
560     }
561     f = onsyserr(EIO, rwerr);
562     badaddr = addr;
563     pio(process, PWRITE, TEXTSEG, buff, addr, nbytes);
564     onsyserr(EIO, f);
565 }
566 
567 /*
568  * Read for the process' data area.
569  */
570 
571 public dread(buff, addr, nbytes)
572 char *buff;
573 Address addr;
574 int nbytes;
575 {
576     Intfunc *f;
577 
578     f = onsyserr(EIO, rwerr);
579     badaddr = addr;
580     if (coredump) {
581 	coredump_readdata(buff, addr, nbytes);
582     } else {
583 	pio(process, PREAD, DATASEG, buff, addr, nbytes);
584     }
585     onsyserr(EIO, f);
586 }
587 
588 /*
589  * Write to the process' data area.
590  */
591 
592 public dwrite(buff, addr, nbytes)
593 char *buff;
594 Address addr;
595 int nbytes;
596 {
597     Intfunc *f;
598 
599     if (coredump) {
600 	error("no process to write to");
601     }
602     f = onsyserr(EIO, rwerr);
603     badaddr = addr;
604     pio(process, PWRITE, DATASEG, buff, addr, nbytes);
605     onsyserr(EIO, f);
606 }
607 
608 /*
609  * Error handler.
610  */
611 
612 private rwerr()
613 {
614     error("bad read/write process address 0x%x", badaddr);
615 }
616 
617 /*
618  * Ptrace interface.
619  */
620 
621 /*
622  * This magic macro enables us to look at the process' registers
623  * in its user structure.  Very gross.
624  */
625 
626 #define regloc(reg)     (ctob(UPAGES) + ( sizeof(int) * (reg) ))
627 
628 #define WMASK           (~(sizeof(Word) - 1))
629 #define cachehash(addr) ((unsigned) ((addr >> 2) % CSIZE))
630 
631 #define FIRSTSIG        SIGINT
632 #define LASTSIG         SIGQUIT
633 #define ischild(pid)    ((pid) == 0)
634 #define traceme()       ptrace(0, 0, 0, 0)
635 #define setrep(n)       (1 << ((n)-1))
636 #define istraced(p)     (p->sigset&setrep(p->signo))
637 
638 /*
639  * Ptrace options (specified in first argument).
640  */
641 
642 #define UREAD   3       /* read from process's user structure */
643 #define UWRITE  6       /* write to process's user structure */
644 #define IREAD   1       /* read from process's instruction space */
645 #define IWRITE  4       /* write to process's instruction space */
646 #define DREAD   2       /* read from process's data space */
647 #define DWRITE  5       /* write to process's data space */
648 #define CONT    7       /* continue stopped process */
649 #define SSTEP   9       /* continue for approximately one instruction */
650 #define PKILL   8       /* terminate the process */
651 
652 /*
653  * Start up a new process by forking and exec-ing the
654  * given argument list, returning when the process is loaded
655  * and ready to execute.  The PROCESS information (pointed to
656  * by the first argument) is appropriately filled.
657  *
658  * If the given PROCESS structure is associated with an already running
659  * process, we terminate it.
660  */
661 
662 /* VARARGS2 */
663 private pstart(p, argv, infile, outfile)
664 Process p;
665 String argv[];
666 String infile;
667 String outfile;
668 {
669     int status;
670 
671     if (p->pid != 0) {          	/* child already running? */
672 	ptrace(PKILL, p->pid, 0, 0);    /* ... kill it! */
673     }
674     psigtrace(p, SIGTRAP, true);
675     if ((p->pid = vfork()) == -1) {
676 	panic("can't fork");
677     }
678     if (ischild(p->pid)) {
679 	Fileid in, out;
680 
681 	traceme();
682 	if (infile != nil) {
683 	    in = open(infile, 0);
684 	    if (in == -1) {
685 		write(2, "can't read ", 11);
686 		write(2, infile, strlen(infile));
687 		write(2, "\n", 1);
688 		_exit(1);
689 	    }
690 	    fswap(0, in);
691 	}
692 	if (outfile != nil) {
693 	    out = creat(outfile, 0666);
694 	    if (out == -1) {
695 		write(2, "can't write ", 12);
696 		write(2, outfile, strlen(outfile));
697 		write(2, "\n", 1);
698 		_exit(1);
699 	    }
700 	    fswap(1, out);
701 	}
702 	execvp(argv[0], argv);
703 	write(2, "can't exec ", 11);
704 	write(2, argv[0], strlen(argv[0]));
705 	write(2, "\n", 1);
706 	_exit(1);
707     }
708     pwait(p->pid, &status);
709     getinfo(p, status);
710     if (p->status != STOPPED) {
711 	error("program could not begin execution");
712     }
713 }
714 
715 /*
716  * Continue a stopped process.  The argument points to a PROCESS structure.
717  * Before the process is restarted it's user area is modified according to
718  * the values in the structure.  When this routine finishes,
719  * the structure has the new values from the process's user area.
720  *
721  * Pcont terminates when the process stops with a signal pending that
722  * is being traced (via psigtrace), or when the process terminates.
723  */
724 
725 private pcont(p)
726 Process p;
727 {
728     int status;
729 
730     if (p->pid == 0) {
731 	error("program not active");
732     }
733     do {
734 	setinfo(p);
735 	sigs_off();
736 	if (ptrace(CONT, p->pid, p->reg[PROGCTR], p->signo) < 0) {
737 	    panic("can't continue process");
738 	}
739 	pwait(p->pid, &status);
740 	sigs_on();
741 	getinfo(p, status);
742     } while (p->status == STOPPED and not istraced(p));
743 }
744 
745 /*
746  * Single step as best ptrace can.
747  */
748 
749 public pstep(p)
750 Process p;
751 {
752     int status;
753 
754     setinfo(p);
755     sigs_off();
756     ptrace(SSTEP, p->pid, p->reg[PROGCTR], p->signo);
757     pwait(p->pid, &status);
758     sigs_on();
759     getinfo(p, status);
760 }
761 
762 /*
763  * Return from execution when the given signal is pending.
764  */
765 
766 public psigtrace(p, sig, sw)
767 Process p;
768 int sig;
769 Boolean sw;
770 {
771     if (sw) {
772 	p->sigset |= setrep(sig);
773     } else {
774 	p->sigset &= ~setrep(sig);
775     }
776 }
777 
778 /*
779  * Don't catch any signals.
780  * Particularly useful when letting a process finish uninhibited.
781  */
782 
783 public unsetsigtraces(p)
784 Process p;
785 {
786     p->sigset = 0;
787 }
788 
789 /*
790  * Turn off attention to signals not being caught.
791  */
792 
793 private Intfunc *sigfunc[NSIG];
794 
795 private sigs_off()
796 {
797     register int i;
798 
799     for (i = FIRSTSIG; i < LASTSIG; i++) {
800 	if (i != SIGKILL) {
801 	    sigfunc[i] = signal(i, SIG_IGN);
802 	}
803     }
804 }
805 
806 /*
807  * Turn back on attention to signals.
808  */
809 
810 private sigs_on()
811 {
812     register int i;
813 
814     for (i = FIRSTSIG; i < LASTSIG; i++) {
815 	if (i != SIGKILL) {
816 	    signal(i, sigfunc[i]);
817 	}
818     }
819 }
820 
821 /*
822  * Get process information from user area.
823  */
824 
825 private int rloc[] ={
826     R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, AP, FP, SP, PC
827 };
828 
829 private getinfo(p, status)
830 register Process p;
831 register int status;
832 {
833     register int i;
834 
835     p->signo = (status&0177);
836     p->exitval = ((status >> 8)&0377);
837     if (p->signo != STOPPED) {
838 	p->status = FINISHED;
839     } else {
840 	p->status = p->signo;
841 	p->signo = p->exitval;
842 	p->exitval = 0;
843 	p->mask = ptrace(UREAD, p->pid, regloc(PS), 0);
844 	for (i = 0; i < NREG; i++) {
845 	    p->reg[i] = ptrace(UREAD, p->pid, regloc(rloc[i]), 0);
846 	    p->oreg[i] = p->reg[i];
847 	}
848     }
849 }
850 
851 /*
852  * Set process's user area information from given process structure.
853  */
854 
855 private setinfo(p)
856 register Process p;
857 {
858     register int i;
859     register int r;
860 
861     if (istraced(p)) {
862 	p->signo = 0;
863     }
864     for (i = 0; i < NREG; i++) {
865 	if ((r = p->reg[i]) != p->oreg[i]) {
866 	    ptrace(UWRITE, p->pid, regloc(rloc[i]), r);
867 	}
868     }
869 }
870 
871 /*
872  * Structure for reading and writing by words, but dealing with bytes.
873  */
874 
875 typedef union {
876     Word pword;
877     Byte pbyte[sizeof(Word)];
878 } Pword;
879 
880 /*
881  * Read (write) from (to) the process' address space.
882  * We must deal with ptrace's inability to look anywhere other
883  * than at a word boundary.
884  */
885 
886 private Word fetch();
887 private store();
888 
889 private pio(p, op, seg, buff, addr, nbytes)
890 Process p;
891 PioOp op;
892 PioSeg seg;
893 char *buff;
894 Address addr;
895 int nbytes;
896 {
897     register int i;
898     register Address newaddr;
899     register char *cp;
900     char *bufend;
901     Pword w;
902     Address wordaddr;
903     int byteoff;
904 
905     if (p->status != STOPPED) {
906 	error("program is not active");
907     }
908     cp = buff;
909     newaddr = addr;
910     wordaddr = (newaddr&WMASK);
911     if (wordaddr != newaddr) {
912 	w.pword = fetch(p, seg, wordaddr);
913 	for (i = newaddr - wordaddr; i < sizeof(Word) and nbytes > 0; i++) {
914 	    if (op == PREAD) {
915 		*cp++ = w.pbyte[i];
916 	    } else {
917 		w.pbyte[i] = *cp++;
918 	    }
919 	    nbytes--;
920 	}
921 	if (op == PWRITE) {
922 	    store(p, seg, wordaddr, w.pword);
923 	}
924 	newaddr = wordaddr + sizeof(Word);
925     }
926     byteoff = (nbytes&(~WMASK));
927     nbytes -= byteoff;
928     bufend = cp + nbytes;
929     while (cp < bufend) {
930 	if (op == PREAD) {
931 	    *((Word *) cp) = fetch(p, seg, newaddr);
932 	} else {
933 	    store(p, seg, newaddr, *((Word *) cp));
934 	}
935 	cp += sizeof(Word);
936 	newaddr += sizeof(Word);
937     }
938     if (byteoff > 0) {
939 	w.pword = fetch(p, seg, newaddr);
940 	for (i = 0; i < byteoff; i++) {
941 	    if (op == PREAD) {
942 		*cp++ = w.pbyte[i];
943 	    } else {
944 		w.pbyte[i] = *cp++;
945 	    }
946 	}
947 	if (op == PWRITE) {
948 	    store(p, seg, newaddr, w.pword);
949 	}
950     }
951 }
952 
953 /*
954  * Get a word from a process at the given address.
955  * The address is assumed to be on a word boundary.
956  *
957  * A simple cache scheme is used to avoid redundant ptrace calls
958  * to the instruction space since it is assumed to be pure.
959  *
960  * It is necessary to use a write-through scheme so that
961  * breakpoints right next to each other don't interfere.
962  */
963 
964 private Integer nfetchs, nreads, nwrites;
965 
966 private Word fetch(p, seg, addr)
967 Process p;
968 PioSeg seg;
969 register int addr;
970 {
971     register CacheWord *wp;
972     register Word w;
973 
974     switch (seg) {
975 	case TEXTSEG:
976 	    ++nfetchs;
977 	    wp = &p->word[cachehash(addr)];
978 	    if (addr == 0 or wp->addr != addr) {
979 		++nreads;
980 		w = ptrace(IREAD, p->pid, addr, 0);
981 		wp->addr = addr;
982 		wp->val = w;
983 	    } else {
984 		w = wp->val;
985 	    }
986 	    break;
987 
988 	case DATASEG:
989 	    w = ptrace(DREAD, p->pid, addr, 0);
990 	    break;
991 
992 	default:
993 	    panic("fetch: bad seg %d", seg);
994 	    /* NOTREACHED */
995     }
996     return w;
997 }
998 
999 /*
1000  * Put a word into the process' address space at the given address.
1001  * The address is assumed to be on a word boundary.
1002  */
1003 
1004 private store(p, seg, addr, data)
1005 Process p;
1006 PioSeg seg;
1007 int addr;
1008 Word data;
1009 {
1010     register CacheWord *wp;
1011 
1012     switch (seg) {
1013 	case TEXTSEG:
1014 	    ++nwrites;
1015 	    wp = &p->word[cachehash(addr)];
1016 	    wp->addr = addr;
1017 	    wp->val = data;
1018 	    ptrace(IWRITE, p->pid, addr, data);
1019 	    break;
1020 
1021 	case DATASEG:
1022 	    ptrace(DWRITE, p->pid, addr, data);
1023 	    break;
1024 
1025 	default:
1026 	    panic("store: bad seg %d", seg);
1027 	    /* NOTREACHED */
1028     }
1029 }
1030 
1031 public printptraceinfo()
1032 {
1033     printf("%d fetchs, %d reads, %d writes\n", nfetchs, nreads, nwrites);
1034 }
1035 
1036 /*
1037  * Swap file numbers so as to redirect standard input and output.
1038  */
1039 
1040 private fswap(oldfd, newfd)
1041 int oldfd;
1042 int newfd;
1043 {
1044     if (oldfd != newfd) {
1045 	close(oldfd);
1046 	dup(newfd);
1047 	close(newfd);
1048     }
1049 }
1050