xref: /csrg-svn/lib/libm/vax/sqrt.s (revision 24729)
1/*
2 * Copyright (c) 1985 Regents of the University of California.
3 *
4 * Use and reproduction of this software are granted  in  accordance  with
5 * the terms and conditions specified in  the  Berkeley  Software  License
6 * Agreement (in particular, this entails acknowledgement of the programs'
7 * source, and inclusion of this notice) with the additional understanding
8 * that  all  recipients  should regard themselves as participants  in  an
9 * ongoing  research  project and hence should  feel  obligated  to report
10 * their  experiences (good or bad) with these elementary function  codes,
11 * using "sendbug 4bsd-bugs@BERKELEY", to the authors.
12 */
13	.data
14	.align	2
15_sccsid:
16.asciz	"@(#)sqrt.s	1.1 (Berkeley) 8/21/85; 1.3 (ucb.elefunt) 09/12/85"
17
18/*
19 * double sqrt(arg)   revised August 15,1982
20 * double arg;
21 * if(arg<0.0) { _errno = EDOM; return(<a reserved operand>); }
22 * if arg is a reserved operand it is returned as it is
23 * W. Kahan's magic square root
24 * coded by Heidi Stettner and revised by Emile LeBlanc 8/18/82
25 *
26 * entry points:_d_sqrt		address of double arg is on the stack
27 *		_sqrt		double arg is on the stack
28 */
29	.text
30	.align	1
31	.globl	_sqrt
32	.globl	_d_sqrt
33	.globl	libm$dsqrt_r5
34	.set	EDOM,33
35
36_d_sqrt:
37	.word	0x003c          # save r5,r4,r3,r2
38	movq	*4(ap),r0
39	jmp  	dsqrt2
40_sqrt:
41	.word	0x003c          # save r5,r4,r3,r2
42	movq    4(ap),r0
43dsqrt2:	bicw3	$0x807f,r0,r2	# check exponent of input
44	jeql	noexp		# biased exponent is zero -> 0.0 or reserved
45	bsbb	libm$dsqrt_r5
46noexp:	ret
47
48/* **************************** internal procedure */
49
50libm$dsqrt_r5:			# ENTRY POINT FOR cdabs and cdsqrt
51				# returns double square root scaled by
52				# 2^r6
53
54	movd	r0,r4
55	jleq	nonpos		# argument is not positive
56	movzwl	r4,r2
57	ashl	$-1,r2,r0
58	addw2	$0x203c,r0	# r0 has magic initial approximation
59/*
60 * Do two steps of Heron's rule
61 * ((arg/guess) + guess) / 2 = better guess
62 */
63	divf3	r0,r4,r2
64	addf2	r2,r0
65	subw2	$0x80,r0	# divide by two
66
67	divf3	r0,r4,r2
68	addf2	r2,r0
69	subw2	$0x80,r0	# divide by two
70
71/* Scale argument and approximation to prevent over/underflow */
72
73	bicw3	$0x807f,r4,r1
74	subw2	$0x4080,r1		# r1 contains scaling factor
75	subw2	r1,r4
76	movl	r0,r2
77	subw2	r1,r2
78
79/* Cubic step
80 *
81 * b = a + 2*a*(n-a*a)/(n+3*a*a) where b is better approximation,
82 * a is approximation, and n is the original argument.
83 * (let s be scale factor in the following comments)
84 */
85	clrl	r1
86	clrl	r3
87	muld2	r0,r2			# r2:r3 = a*a/s
88	subd2	r2,r4			# r4:r5 = n/s - a*a/s
89	addw2	$0x100,r2		# r2:r3 = 4*a*a/s
90	addd2	r4,r2			# r2:r3 = n/s + 3*a*a/s
91	muld2	r0,r4			# r4:r5 = a*n/s - a*a*a/s
92	divd2	r2,r4			# r4:r5 = a*(n-a*a)/(n+3*a*a)
93	addw2	$0x80,r4		# r4:r5 = 2*a*(n-a*a)/(n+3*a*a)
94	addd2	r4,r0			# r0:r1 = a + 2*a*(n-a*a)/(n+3*a*a)
95	rsb				# DONE!
96nonpos:
97	jneq	negarg
98	ret			# argument and root are zero
99negarg:
100	pushl	$EDOM
101	calls	$1,_infnan	# generate the reserved op fault
102	ret
103