xref: /csrg-svn/lib/libm/vax/sqrt.s (revision 34125)
1*34125Sbostic# Copyright (c) 1985 Regents of the University of California.
2*34125Sbostic# All rights reserved.
3*34125Sbostic#
4*34125Sbostic# Redistribution and use in source and binary forms are permitted
5*34125Sbostic# provided that this notice is preserved and that due credit is given
6*34125Sbostic# to the University of California at Berkeley. The name of the University
7*34125Sbostic# may not be used to endorse or promote products derived from this
8*34125Sbostic# software without specific prior written permission. This software
9*34125Sbostic# is provided ``as is'' without express or implied warranty.
10*34125Sbostic#
11*34125Sbostic# All recipients should regard themselves as participants in an ongoing
12*34125Sbostic# research project and hence should feel obligated to report their
13*34125Sbostic# experiences (good or bad) with these elementary function codes, using
14*34125Sbostic# the sendbug(8) program, to the authors.
15*34125Sbostic#
16*34125Sbostic#	@(#)sqrt.s	5.2 (Berkeley) 04/29/88
17*34125Sbostic#
1824729Selefunt	.data
1924729Selefunt	.align	2
2024729Selefunt_sccsid:
21*34125Sbostic.asciz	"@(#)sqrt.s	1.1 (Berkeley) 8/21/85; 5.2 (ucb.elefunt) 04/29/88"
2224729Selefunt
2324729Selefunt/*
2424571Szliu * double sqrt(arg)   revised August 15,1982
2524571Szliu * double arg;
2624571Szliu * if(arg<0.0) { _errno = EDOM; return(<a reserved operand>); }
2724571Szliu * if arg is a reserved operand it is returned as it is
2824571Szliu * W. Kahan's magic square root
2924571Szliu * coded by Heidi Stettner and revised by Emile LeBlanc 8/18/82
3024571Szliu *
3124571Szliu * entry points:_d_sqrt		address of double arg is on the stack
3224571Szliu *		_sqrt		double arg is on the stack
3324571Szliu */
3424571Szliu	.text
3524571Szliu	.align	1
3624571Szliu	.globl	_sqrt
3724571Szliu	.globl	_d_sqrt
3824571Szliu	.globl	libm$dsqrt_r5
3924571Szliu	.set	EDOM,33
4024571Szliu
4124571Szliu_d_sqrt:
4224571Szliu	.word	0x003c          # save r5,r4,r3,r2
4324571Szliu	movq	*4(ap),r0
4424571Szliu	jmp  	dsqrt2
4524571Szliu_sqrt:
4624571Szliu	.word	0x003c          # save r5,r4,r3,r2
4724571Szliu	movq    4(ap),r0
4824571Szliudsqrt2:	bicw3	$0x807f,r0,r2	# check exponent of input
4924571Szliu	jeql	noexp		# biased exponent is zero -> 0.0 or reserved
5024571Szliu	bsbb	libm$dsqrt_r5
5124571Szliunoexp:	ret
5224571Szliu
5324571Szliu/* **************************** internal procedure */
5424571Szliu
5524571Szliulibm$dsqrt_r5:			# ENTRY POINT FOR cdabs and cdsqrt
5624571Szliu				# returns double square root scaled by
5724571Szliu				# 2^r6
5824571Szliu
5924571Szliu	movd	r0,r4
6024571Szliu	jleq	nonpos		# argument is not positive
6124571Szliu	movzwl	r4,r2
6224571Szliu	ashl	$-1,r2,r0
6324571Szliu	addw2	$0x203c,r0	# r0 has magic initial approximation
6424571Szliu/*
6524571Szliu * Do two steps of Heron's rule
6624571Szliu * ((arg/guess) + guess) / 2 = better guess
6724571Szliu */
6824571Szliu	divf3	r0,r4,r2
6924571Szliu	addf2	r2,r0
7024571Szliu	subw2	$0x80,r0	# divide by two
7124571Szliu
7224571Szliu	divf3	r0,r4,r2
7324571Szliu	addf2	r2,r0
7424571Szliu	subw2	$0x80,r0	# divide by two
7524571Szliu
7624571Szliu/* Scale argument and approximation to prevent over/underflow */
7724571Szliu
7824571Szliu	bicw3	$0x807f,r4,r1
7924571Szliu	subw2	$0x4080,r1		# r1 contains scaling factor
8024571Szliu	subw2	r1,r4
8124571Szliu	movl	r0,r2
8224571Szliu	subw2	r1,r2
8324571Szliu
8424571Szliu/* Cubic step
8524571Szliu *
8624571Szliu * b = a + 2*a*(n-a*a)/(n+3*a*a) where b is better approximation,
8724571Szliu * a is approximation, and n is the original argument.
8824571Szliu * (let s be scale factor in the following comments)
8924571Szliu */
9024571Szliu	clrl	r1
9124571Szliu	clrl	r3
9224571Szliu	muld2	r0,r2			# r2:r3 = a*a/s
9324571Szliu	subd2	r2,r4			# r4:r5 = n/s - a*a/s
9424571Szliu	addw2	$0x100,r2		# r2:r3 = 4*a*a/s
9524571Szliu	addd2	r4,r2			# r2:r3 = n/s + 3*a*a/s
9624571Szliu	muld2	r0,r4			# r4:r5 = a*n/s - a*a*a/s
9724571Szliu	divd2	r2,r4			# r4:r5 = a*(n-a*a)/(n+3*a*a)
9824571Szliu	addw2	$0x80,r4		# r4:r5 = 2*a*(n-a*a)/(n+3*a*a)
9924571Szliu	addd2	r4,r0			# r0:r1 = a + 2*a*(n-a*a)/(n+3*a*a)
10024571Szliu	rsb				# DONE!
10124571Szliunonpos:
10224571Szliu	jneq	negarg
10324571Szliu	ret			# argument and root are zero
10424571Szliunegarg:
10524571Szliu	pushl	$EDOM
10624571Szliu	calls	$1,_infnan	# generate the reserved op fault
10724571Szliu	ret
108