124565Szliu# Copyright (c) 1985 Regents of the University of California. 2*34125Sbostic# All rights reserved. 324565Szliu# 4*34125Sbostic# Redistribution and use in source and binary forms are permitted 5*34125Sbostic# provided that this notice is preserved and that due credit is given 6*34125Sbostic# to the University of California at Berkeley. The name of the University 7*34125Sbostic# may not be used to endorse or promote products derived from this 8*34125Sbostic# software without specific prior written permission. This software 9*34125Sbostic# is provided ``as is'' without express or implied warranty. 10*34125Sbostic# 11*34125Sbostic# All recipients should regard themselves as participants in an ongoing 12*34125Sbostic# research project and hence should feel obligated to report their 13*34125Sbostic# experiences (good or bad) with these elementary function codes, using 14*34125Sbostic# the sendbug(8) program, to the authors. 15*34125Sbostic# 16*34125Sbostic# @(#)argred.s 5.2 (Berkeley) 04/29/88 17*34125Sbostic# 1824728Selefunt .data 1924728Selefunt .align 2 2024728Selefunt_sccsid: 21*34125Sbostic.asciz "@(#)argred.s 1.1 (Berkeley) 8/21/85; 5.2 (ucb.elefunt) 04/29/88" 2224565Szliu 2324565Szliu# libm$argred implements Bob Corbett's argument reduction and 2424565Szliu# libm$sincos implements Peter Tang's double precision sin/cos. 2524565Szliu# 2624565Szliu# Note: The two entry points libm$argred and libm$sincos are meant 2724565Szliu# to be used only by _sin, _cos and _tan. 2824565Szliu# 2924565Szliu# method: true range reduction to [-pi/4,pi/4], P. Tang & B. Corbett 3024565Szliu# S. McDonald, April 4, 1985 3124565Szliu# 3224565Szliu .globl libm$argred 3324565Szliu .globl libm$sincos 3424565Szliu .text 3524565Szliu .align 1 3624565Szliu 3724565Szliulibm$argred: 3824565Szliu# 3924565Szliu# Compare the argument with the largest possible that can 4024565Szliu# be reduced by table lookup. r3 := |x| will be used in table_lookup . 4124565Szliu# 4224565Szliu movd r0,r3 4324565Szliu bgeq abs1 4424565Szliu mnegd r3,r3 4524565Szliuabs1: 4624565Szliu cmpd r3,$0d+4.55530934770520019583e+01 4724565Szliu blss small_arg 4824565Szliu jsb trigred 4924565Szliu rsb 5024565Szliusmall_arg: 5124565Szliu jsb table_lookup 5224565Szliu rsb 5324565Szliu# 5424565Szliu# At this point, 5524565Szliu# r0 contains the quadrant number, 0, 1, 2, or 3; 5624565Szliu# r2/r1 contains the reduced argument as a D-format number; 5724565Szliu# r3 contains a F-format extension to the reduced argument; 5824565Szliu# r4 contains a 0 or 1 corresponding to a sin or cos entry. 5924565Szliu# 6024565Szliulibm$sincos: 6124565Szliu# 6224565Szliu# Compensate for a cosine entry by adding one to the quadrant number. 6324565Szliu# 6424565Szliu addl2 r4,r0 6524565Szliu# 6624565Szliu# Polyd clobbers r5-r0 ; save X in r7/r6 . 6724565Szliu# This can be avoided by rewriting trigred . 6824565Szliu# 6924565Szliu movd r1,r6 7024565Szliu# 7124565Szliu# Likewise, save alpha in r8 . 7224565Szliu# This can be avoided by rewriting trigred . 7324565Szliu# 7424565Szliu movf r3,r8 7524565Szliu# 7624565Szliu# Odd or even quadrant? cosine if odd, sine otherwise. 7724565Szliu# Save floor(quadrant/2) in r9 ; it determines the final sign. 7824565Szliu# 7924565Szliu rotl $-1,r0,r9 8024565Szliu blss cosine 8124565Szliusine: 8224565Szliu muld2 r1,r1 # Xsq = X * X 8326924Szliu cmpw $0x2480,r1 # [zl] Xsq > 2^-56? 8426924Szliu blss 1f # [zl] yes, go ahead and do polyd 8526924Szliu clrq r1 # [zl] work around 11/780 FPA polyd bug 8626924Szliu1: 8724565Szliu polyd r1,$7,sin_coef # Q = P(Xsq) , of deg 7 8824565Szliu mulf3 $0f3.0,r8,r4 # beta = 3 * alpha 8924565Szliu mulf2 r0,r4 # beta = Q * beta 9024565Szliu addf2 r8,r4 # beta = alpha + beta 9124565Szliu muld2 r6,r0 # S(X) = X * Q 9224565Szliu# cvtfd r4,r4 ... r5 = 0 after a polyd. 9324565Szliu addd2 r4,r0 # S(X) = beta + S(X) 9424565Szliu addd2 r6,r0 # S(X) = X + S(X) 9524565Szliu brb done 9624565Szliucosine: 9724565Szliu muld2 r6,r6 # Xsq = X * X 9824565Szliu beql zero_arg 9924565Szliu mulf2 r1,r8 # beta = X * alpha 10024565Szliu polyd r6,$7,cos_coef # Q = P'(Xsq) , of deg 7 10124565Szliu subd3 r0,r8,r0 # beta = beta - Q 10224565Szliu subw2 $0x80,r6 # Xsq = Xsq / 2 10324565Szliu addd2 r0,r6 # Xsq = Xsq + beta 10424565Szliuzero_arg: 10524565Szliu subd3 r6,$0d1.0,r0 # C(X) = 1 - Xsq 10624565Szliudone: 10724565Szliu blbc r9,even 10824565Szliu mnegd r0,r0 10924565Szliueven: 11024565Szliu rsb 11124565Szliu 11224565Szliu.data 11324565Szliu.align 2 11424565Szliu 11524565Szliusin_coef: 11624565Szliu .double 0d-7.53080332264191085773e-13 # s7 = 2^-29 -1.a7f2504ffc49f8.. 11724565Szliu .double 0d+1.60573519267703489121e-10 # s6 = 2^-21 1.611adaede473c8.. 11824565Szliu .double 0d-2.50520965150706067211e-08 # s5 = 2^-1a -1.ae644921ed8382.. 11924565Szliu .double 0d+2.75573191800593885716e-06 # s4 = 2^-13 1.71de3a4b884278.. 12024565Szliu .double 0d-1.98412698411850507950e-04 # s3 = 2^-0d -1.a01a01a0125e7d.. 12124565Szliu .double 0d+8.33333333333325688985e-03 # s2 = 2^-07 1.11111111110e50 12224565Szliu .double 0d-1.66666666666666664354e-01 # s1 = 2^-03 -1.55555555555554 12324565Szliu .double 0d+0.00000000000000000000e+00 # s0 = 0 12424565Szliu 12524565Szliucos_coef: 12624565Szliu .double 0d-1.13006966202629430300e-11 # s7 = 2^-25 -1.8D9BA04D1374BE.. 12724565Szliu .double 0d+2.08746646574796004700e-09 # s6 = 2^-1D 1.1EE632650350BA.. 12824565Szliu .double 0d-2.75573073031284417300e-07 # s5 = 2^-16 -1.27E4F31411719E.. 12924565Szliu .double 0d+2.48015872682668025200e-05 # s4 = 2^-10 1.A01A0196B902E8.. 13024565Szliu .double 0d-1.38888888888464709200e-03 # s3 = 2^-0A -1.6C16C16C11FACE.. 13124565Szliu .double 0d+4.16666666666664761400e-02 # s2 = 2^-05 1.5555555555539E 13224565Szliu .double 0d+0.00000000000000000000e+00 # s1 = 0 13324565Szliu .double 0d+0.00000000000000000000e+00 # s0 = 0 13424565Szliu 13524565Szliu# 13624565Szliu# Multiples of pi/2 expressed as the sum of three doubles, 13724565Szliu# 13824565Szliu# trailing: n * pi/2 , n = 0, 1, 2, ..., 29 13924565Szliu# trailing[n] , 14024565Szliu# 14124565Szliu# middle: n * pi/2 , n = 0, 1, 2, ..., 29 14224565Szliu# middle[n] , 14324565Szliu# 14424565Szliu# leading: n * pi/2 , n = 0, 1, 2, ..., 29 14524565Szliu# leading[n] , 14624565Szliu# 14724565Szliu# where 14824565Szliu# leading[n] := (n * pi/2) rounded, 14924565Szliu# middle[n] := (n * pi/2 - leading[n]) rounded, 15024565Szliu# trailing[n] := (( n * pi/2 - leading[n]) - middle[n]) rounded . 15124565Szliu 15224565Szliutrailing: 15324565Szliu .double 0d+0.00000000000000000000e+00 # 0 * pi/2 trailing 15424565Szliu .double 0d+4.33590506506189049611e-35 # 1 * pi/2 trailing 15524565Szliu .double 0d+8.67181013012378099223e-35 # 2 * pi/2 trailing 15624565Szliu .double 0d+1.30077151951856714215e-34 # 3 * pi/2 trailing 15724565Szliu .double 0d+1.73436202602475619845e-34 # 4 * pi/2 trailing 15824565Szliu .double 0d-1.68390735624352669192e-34 # 5 * pi/2 trailing 15924565Szliu .double 0d+2.60154303903713428430e-34 # 6 * pi/2 trailing 16024565Szliu .double 0d-8.16726343231148352150e-35 # 7 * pi/2 trailing 16124565Szliu .double 0d+3.46872405204951239689e-34 # 8 * pi/2 trailing 16224565Szliu .double 0d+3.90231455855570147991e-34 # 9 * pi/2 trailing 16324565Szliu .double 0d-3.36781471248705338384e-34 # 10 * pi/2 trailing 16424565Szliu .double 0d-1.06379439835298071785e-33 # 11 * pi/2 trailing 16524565Szliu .double 0d+5.20308607807426856861e-34 # 12 * pi/2 trailing 16624565Szliu .double 0d+5.63667658458045770509e-34 # 13 * pi/2 trailing 16724565Szliu .double 0d-1.63345268646229670430e-34 # 14 * pi/2 trailing 16824565Szliu .double 0d-1.19986217995610764801e-34 # 15 * pi/2 trailing 16924565Szliu .double 0d+6.93744810409902479378e-34 # 16 * pi/2 trailing 17024565Szliu .double 0d-8.03640094449267300110e-34 # 17 * pi/2 trailing 17124565Szliu .double 0d+7.80462911711140295982e-34 # 18 * pi/2 trailing 17224565Szliu .double 0d-7.16921993148029483506e-34 # 19 * pi/2 trailing 17324565Szliu .double 0d-6.73562942497410676769e-34 # 20 * pi/2 trailing 17424565Szliu .double 0d-6.30203891846791677593e-34 # 21 * pi/2 trailing 17524565Szliu .double 0d-2.12758879670596143570e-33 # 22 * pi/2 trailing 17624565Szliu .double 0d+2.53800212047402350390e-33 # 23 * pi/2 trailing 17724565Szliu .double 0d+1.04061721561485371372e-33 # 24 * pi/2 trailing 17824565Szliu .double 0d+6.11729905311472319056e-32 # 25 * pi/2 trailing 17924565Szliu .double 0d+1.12733531691609154102e-33 # 26 * pi/2 trailing 18024565Szliu .double 0d-3.70049587943078297272e-34 # 27 * pi/2 trailing 18124565Szliu .double 0d-3.26690537292459340860e-34 # 28 * pi/2 trailing 18224565Szliu .double 0d-1.14812616507957271361e-34 # 29 * pi/2 trailing 18324565Szliu 18424565Szliumiddle: 18524565Szliu .double 0d+0.00000000000000000000e+00 # 0 * pi/2 middle 18624565Szliu .double 0d+5.72118872610983179676e-18 # 1 * pi/2 middle 18724565Szliu .double 0d+1.14423774522196635935e-17 # 2 * pi/2 middle 18824565Szliu .double 0d-3.83475850529283316309e-17 # 3 * pi/2 middle 18924565Szliu .double 0d+2.28847549044393271871e-17 # 4 * pi/2 middle 19024565Szliu .double 0d-2.69052076007086676522e-17 # 5 * pi/2 middle 19124565Szliu .double 0d-7.66951701058566632618e-17 # 6 * pi/2 middle 19224565Szliu .double 0d-1.54628301484890040587e-17 # 7 * pi/2 middle 19324565Szliu .double 0d+4.57695098088786543741e-17 # 8 * pi/2 middle 19424565Szliu .double 0d+1.07001849766246313192e-16 # 9 * pi/2 middle 19524565Szliu .double 0d-5.38104152014173353044e-17 # 10 * pi/2 middle 19624565Szliu .double 0d-2.14622680169080983801e-16 # 11 * pi/2 middle 19724565Szliu .double 0d-1.53390340211713326524e-16 # 12 * pi/2 middle 19824565Szliu .double 0d-9.21580002543456677056e-17 # 13 * pi/2 middle 19924565Szliu .double 0d-3.09256602969780081173e-17 # 14 * pi/2 middle 20024565Szliu .double 0d+3.03066796603896507006e-17 # 15 * pi/2 middle 20124565Szliu .double 0d+9.15390196177573087482e-17 # 16 * pi/2 middle 20224565Szliu .double 0d+1.52771359575124969107e-16 # 17 * pi/2 middle 20324565Szliu .double 0d+2.14003699532492626384e-16 # 18 * pi/2 middle 20424565Szliu .double 0d-1.68853170360202329427e-16 # 19 * pi/2 middle 20524565Szliu .double 0d-1.07620830402834670609e-16 # 20 * pi/2 middle 20624565Szliu .double 0d+3.97700719404595604379e-16 # 21 * pi/2 middle 20724565Szliu .double 0d-4.29245360338161967602e-16 # 22 * pi/2 middle 20824565Szliu .double 0d-3.68013020380794313406e-16 # 23 * pi/2 middle 20924565Szliu .double 0d-3.06780680423426653047e-16 # 24 * pi/2 middle 21024565Szliu .double 0d-2.45548340466059054318e-16 # 25 * pi/2 middle 21124565Szliu .double 0d-1.84316000508691335411e-16 # 26 * pi/2 middle 21224565Szliu .double 0d-1.23083660551323675053e-16 # 27 * pi/2 middle 21324565Szliu .double 0d-6.18513205939560162346e-17 # 28 * pi/2 middle 21424565Szliu .double 0d-6.18980636588357585202e-19 # 29 * pi/2 middle 21524565Szliu 21624565Szliuleading: 21724565Szliu .double 0d+0.00000000000000000000e+00 # 0 * pi/2 leading 21824565Szliu .double 0d+1.57079632679489661351e+00 # 1 * pi/2 leading 21924565Szliu .double 0d+3.14159265358979322702e+00 # 2 * pi/2 leading 22024565Szliu .double 0d+4.71238898038468989604e+00 # 3 * pi/2 leading 22124565Szliu .double 0d+6.28318530717958645404e+00 # 4 * pi/2 leading 22224565Szliu .double 0d+7.85398163397448312306e+00 # 5 * pi/2 leading 22324565Szliu .double 0d+9.42477796076937979208e+00 # 6 * pi/2 leading 22424565Szliu .double 0d+1.09955742875642763501e+01 # 7 * pi/2 leading 22524565Szliu .double 0d+1.25663706143591729081e+01 # 8 * pi/2 leading 22624565Szliu .double 0d+1.41371669411540694661e+01 # 9 * pi/2 leading 22724565Szliu .double 0d+1.57079632679489662461e+01 # 10 * pi/2 leading 22824565Szliu .double 0d+1.72787595947438630262e+01 # 11 * pi/2 leading 22924565Szliu .double 0d+1.88495559215387595842e+01 # 12 * pi/2 leading 23024565Szliu .double 0d+2.04203522483336561422e+01 # 13 * pi/2 leading 23124565Szliu .double 0d+2.19911485751285527002e+01 # 14 * pi/2 leading 23224565Szliu .double 0d+2.35619449019234492582e+01 # 15 * pi/2 leading 23324565Szliu .double 0d+2.51327412287183458162e+01 # 16 * pi/2 leading 23424565Szliu .double 0d+2.67035375555132423742e+01 # 17 * pi/2 leading 23524565Szliu .double 0d+2.82743338823081389322e+01 # 18 * pi/2 leading 23624565Szliu .double 0d+2.98451302091030359342e+01 # 19 * pi/2 leading 23724565Szliu .double 0d+3.14159265358979324922e+01 # 20 * pi/2 leading 23824565Szliu .double 0d+3.29867228626928286062e+01 # 21 * pi/2 leading 23924565Szliu .double 0d+3.45575191894877260523e+01 # 22 * pi/2 leading 24024565Szliu .double 0d+3.61283155162826226103e+01 # 23 * pi/2 leading 24124565Szliu .double 0d+3.76991118430775191683e+01 # 24 * pi/2 leading 24224565Szliu .double 0d+3.92699081698724157263e+01 # 25 * pi/2 leading 24324565Szliu .double 0d+4.08407044966673122843e+01 # 26 * pi/2 leading 24424565Szliu .double 0d+4.24115008234622088423e+01 # 27 * pi/2 leading 24524565Szliu .double 0d+4.39822971502571054003e+01 # 28 * pi/2 leading 24624565Szliu .double 0d+4.55530934770520019583e+01 # 29 * pi/2 leading 24724565Szliu 24824565SzliutwoOverPi: 24924565Szliu .double 0d+6.36619772367581343076e-01 25024565Szliu .text 25124565Szliu .align 1 25224565Szliu 25324565Szliutable_lookup: 25424565Szliu muld3 r3,twoOverPi,r0 25524565Szliu cvtrdl r0,r0 # n = nearest int to ((2/pi)*|x|) rnded 25624565Szliu mull3 $8,r0,r5 25724565Szliu subd2 leading(r5),r3 # p = (|x| - leading n*pi/2) exactly 25824565Szliu subd3 middle(r5),r3,r1 # q = (p - middle n*pi/2) rounded 25924565Szliu subd2 r1,r3 # r = (p - q) 26024565Szliu subd2 middle(r5),r3 # r = r - middle n*pi/2 26124565Szliu subd2 trailing(r5),r3 # r = r - trailing n*pi/2 rounded 26224565Szliu# 26324565Szliu# If the original argument was negative, 26424565Szliu# negate the reduce argument and 26524565Szliu# adjust the octant/quadrant number. 26624565Szliu# 26724565Szliu tstw 4(ap) 26824565Szliu bgeq abs2 26924565Szliu mnegf r1,r1 27024565Szliu mnegf r3,r3 27124565Szliu# subb3 r0,$8,r0 ...used for pi/4 reduction -S.McD 27224565Szliu subb3 r0,$4,r0 27324565Szliuabs2: 27424565Szliu# 27524565Szliu# Clear all unneeded octant/quadrant bits. 27624565Szliu# 27724565Szliu# bicb2 $0xf8,r0 ...used for pi/4 reduction -S.McD 27824565Szliu bicb2 $0xfc,r0 27924565Szliu rsb 28024565Szliu# 28124565Szliu# p.0 28224565Szliu .text 28324565Szliu .align 2 28424565Szliu# 28524565Szliu# Only 256 (actually 225) bits of 2/pi are needed for VAX double 28624565Szliu# precision; this was determined by enumerating all the nearest 28724565Szliu# machine integer multiples of pi/2 using continued fractions. 28824565Szliu# (8a8d3673775b7ff7 required the most bits.) -S.McD 28924565Szliu# 29024565Szliu .long 0 29124565Szliu .long 0 29224565Szliu .long 0xaef1586d 29324565Szliu .long 0x9458eaf7 29424565Szliu .long 0x10e4107f 29524565Szliu .long 0xd8a5664f 29624565Szliu .long 0x4d377036 29724565Szliu .long 0x09d5f47d 29824565Szliu .long 0x91054a7f 29924565Szliu .long 0xbe60db93 30024565Szliubits2opi: 30124565Szliu .long 0x00000028 30224565Szliu .long 0 30324565Szliu# 30424565Szliu# Note: wherever you see the word `octant', read `quadrant'. 30524565Szliu# Currently this code is set up for pi/2 argument reduction. 30624565Szliu# By uncommenting/commenting the appropriate lines, it will 30724565Szliu# also serve as a pi/4 argument reduction code. 30824565Szliu# 30924565Szliu 31024565Szliu# p.1 31124565Szliu# Trigred preforms argument reduction 31224565Szliu# for the trigonometric functions. It 31324565Szliu# takes one input argument, a D-format 31424565Szliu# number in r1/r0 . The magnitude of 31524565Szliu# the input argument must be greater 31624565Szliu# than or equal to 1/2 . Trigred produces 31724565Szliu# three results: the number of the octant 31824565Szliu# occupied by the argument, the reduced 31924565Szliu# argument, and an extension of the 32024565Szliu# reduced argument. The octant number is 32124565Szliu# returned in r0 . The reduced argument 32224565Szliu# is returned as a D-format number in 32324565Szliu# r2/r1 . An 8 bit extension of the 32424565Szliu# reduced argument is returned as an 32524565Szliu# F-format number in r3. 32624565Szliu# p.2 32724565Szliutrigred: 32824565Szliu# 32924565Szliu# Save the sign of the input argument. 33024565Szliu# 33124565Szliu movw r0,-(sp) 33224565Szliu# 33324565Szliu# Extract the exponent field. 33424565Szliu# 33524565Szliu extzv $7,$7,r0,r2 33624565Szliu# 33724565Szliu# Convert the fraction part of the input 33824565Szliu# argument into a quadword integer. 33924565Szliu# 34024565Szliu bicw2 $0xff80,r0 34124565Szliu bisb2 $0x80,r0 # -S.McD 34224565Szliu rotl $16,r0,r0 34324565Szliu rotl $16,r1,r1 34424565Szliu# 34524565Szliu# If r1 is negative, add 1 to r0 . This 34624565Szliu# adjustment is made so that the two's 34724565Szliu# complement multiplications done later 34824565Szliu# will produce unsigned results. 34924565Szliu# 35024565Szliu bgeq posmid 35124565Szliu incl r0 35224565Szliuposmid: 35324565Szliu# p.3 35424565Szliu# 35524565Szliu# Set r3 to the address of the first quadword 35624565Szliu# used to obtain the needed portion of 2/pi . 35724565Szliu# The address is longword aligned to ensure 35824565Szliu# efficient access. 35924565Szliu# 36024565Szliu ashl $-3,r2,r3 36124565Szliu bicb2 $3,r3 36224565Szliu subl3 r3,$bits2opi,r3 36324565Szliu# 36424565Szliu# Set r2 to the size of the shift needed to 36524565Szliu# obtain the correct portion of 2/pi . 36624565Szliu# 36724565Szliu bicb2 $0xe0,r2 36824565Szliu# p.4 36924565Szliu# 37024565Szliu# Move the needed 128 bits of 2/pi into 37124565Szliu# r11 - r8 . Adjust the numbers to allow 37224565Szliu# for unsigned multiplication. 37324565Szliu# 37424565Szliu ashq r2,(r3),r10 37524565Szliu 37624565Szliu subl2 $4,r3 37724565Szliu ashq r2,(r3),r9 37824565Szliu bgeq signoff1 37924565Szliu incl r11 38024565Szliusignoff1: 38124565Szliu subl2 $4,r3 38224565Szliu ashq r2,(r3),r8 38324565Szliu bgeq signoff2 38424565Szliu incl r10 38524565Szliusignoff2: 38624565Szliu subl2 $4,r3 38724565Szliu ashq r2,(r3),r7 38824565Szliu bgeq signoff3 38924565Szliu incl r9 39024565Szliusignoff3: 39124565Szliu# p.5 39224565Szliu# 39324565Szliu# Multiply the contents of r0/r1 by the 39424565Szliu# slice of 2/pi in r11 - r8 . 39524565Szliu# 39624565Szliu emul r0,r8,$0,r4 39724565Szliu emul r0,r9,r5,r5 39824565Szliu emul r0,r10,r6,r6 39924565Szliu 40024565Szliu emul r1,r8,$0,r7 40124565Szliu emul r1,r9,r8,r8 40224565Szliu emul r1,r10,r9,r9 40324565Szliu emul r1,r11,r10,r10 40424565Szliu 40524565Szliu addl2 r4,r8 40624565Szliu adwc r5,r9 40724565Szliu adwc r6,r10 40824565Szliu# p.6 40924565Szliu# 41024565Szliu# If there are more than five leading zeros 41124565Szliu# after the first two quotient bits or if there 41224565Szliu# are more than five leading ones after the first 41324565Szliu# two quotient bits, generate more fraction bits. 41424565Szliu# Otherwise, branch to code to produce the result. 41524565Szliu# 41624565Szliu bicl3 $0xc1ffffff,r10,r4 41724565Szliu beql more1 41824565Szliu cmpl $0x3e000000,r4 41924565Szliu bneq result 42024565Szliumore1: 42124565Szliu# p.7 42224565Szliu# 42324565Szliu# generate another 32 result bits. 42424565Szliu# 42524565Szliu subl2 $4,r3 42624565Szliu ashq r2,(r3),r5 42724565Szliu bgeq signoff4 42824565Szliu 42924565Szliu emul r1,r6,$0,r4 43024565Szliu addl2 r1,r5 43124565Szliu emul r0,r6,r5,r5 43224565Szliu addl2 r0,r6 43324565Szliu brb addbits1 43424565Szliu 43524565Szliusignoff4: 43624565Szliu emul r1,r6,$0,r4 43724565Szliu emul r0,r6,r5,r5 43824565Szliu 43924565Szliuaddbits1: 44024565Szliu addl2 r5,r7 44124565Szliu adwc r6,r8 44224565Szliu adwc $0,r9 44324565Szliu adwc $0,r10 44424565Szliu# p.8 44524565Szliu# 44624565Szliu# Check for massive cancellation. 44724565Szliu# 44824565Szliu bicl3 $0xc0000000,r10,r6 44924565Szliu# bneq more2 -S.McD Test was backwards 45024565Szliu beql more2 45124565Szliu cmpl $0x3fffffff,r6 45224565Szliu bneq result 45324565Szliumore2: 45424565Szliu# p.9 45524565Szliu# 45624565Szliu# If massive cancellation has occurred, 45724565Szliu# generate another 24 result bits. 45824565Szliu# Testing has shown there will always be 45924565Szliu# enough bits after this point. 46024565Szliu# 46124565Szliu subl2 $4,r3 46224565Szliu ashq r2,(r3),r5 46324565Szliu bgeq signoff5 46424565Szliu 46524565Szliu emul r0,r6,r4,r5 46624565Szliu addl2 r0,r6 46724565Szliu brb addbits2 46824565Szliu 46924565Szliusignoff5: 47024565Szliu emul r0,r6,r4,r5 47124565Szliu 47224565Szliuaddbits2: 47324565Szliu addl2 r6,r7 47424565Szliu adwc $0,r8 47524565Szliu adwc $0,r9 47624565Szliu adwc $0,r10 47724565Szliu# p.10 47824565Szliu# 47924565Szliu# The following code produces the reduced 48024565Szliu# argument from the product bits contained 48124565Szliu# in r10 - r7 . 48224565Szliu# 48324565Szliuresult: 48424565Szliu# 48524565Szliu# Extract the octant number from r10 . 48624565Szliu# 48724565Szliu# extzv $29,$3,r10,r0 ...used for pi/4 reduction -S.McD 48824565Szliu extzv $30,$2,r10,r0 48924565Szliu# 49024565Szliu# Clear the octant bits in r10 . 49124565Szliu# 49224565Szliu# bicl2 $0xe0000000,r10 ...used for pi/4 reduction -S.McD 49324565Szliu bicl2 $0xc0000000,r10 49424565Szliu# 49524565Szliu# Zero the sign flag. 49624565Szliu# 49724565Szliu clrl r5 49824565Szliu# p.11 49924565Szliu# 50024565Szliu# Check to see if the fraction is greater than 50124565Szliu# or equal to one-half. If it is, add one 50224565Szliu# to the octant number, set the sign flag 50324565Szliu# on, and replace the fraction with 1 minus 50424565Szliu# the fraction. 50524565Szliu# 50624565Szliu# bitl $0x10000000,r10 ...used for pi/4 reduction -S.McD 50724565Szliu bitl $0x20000000,r10 50824565Szliu beql small 50924565Szliu incl r0 51024565Szliu incl r5 51124565Szliu# subl3 r10,$0x1fffffff,r10 ...used for pi/4 reduction -S.McD 51224565Szliu subl3 r10,$0x3fffffff,r10 51324565Szliu mcoml r9,r9 51424565Szliu mcoml r8,r8 51524565Szliu mcoml r7,r7 51624565Szliusmall: 51724565Szliu# p.12 51824565Szliu# 51924565Szliu## Test whether the first 29 bits of the ...used for pi/4 reduction -S.McD 52024565Szliu# Test whether the first 30 bits of the 52124565Szliu# fraction are zero. 52224565Szliu# 52324565Szliu tstl r10 52424565Szliu beql tiny 52524565Szliu# 52624565Szliu# Find the position of the first one bit in r10 . 52724565Szliu# 52824565Szliu cvtld r10,r1 52924565Szliu extzv $7,$7,r1,r1 53024565Szliu# 53124565Szliu# Compute the size of the shift needed. 53224565Szliu# 53324565Szliu subl3 r1,$32,r6 53424565Szliu# 53524565Szliu# Shift up the high order 64 bits of the 53624565Szliu# product. 53724565Szliu# 53824565Szliu ashq r6,r9,r10 53924565Szliu ashq r6,r8,r9 54024565Szliu brb mult 54124565Szliu# p.13 54224565Szliu# 54324565Szliu# Test to see if the sign bit of r9 is on. 54424565Szliu# 54524565Szliutiny: 54624565Szliu tstl r9 54724565Szliu bgeq tinier 54824565Szliu# 54924565Szliu# If it is, shift the product bits up 32 bits. 55024565Szliu# 55124565Szliu movl $32,r6 55224565Szliu movq r8,r10 55324565Szliu tstl r10 55424565Szliu brb mult 55524565Szliu# p.14 55624565Szliu# 55724565Szliu# Test whether r9 is zero. It is probably 55824565Szliu# impossible for both r10 and r9 to be 55924565Szliu# zero, but until proven to be so, the test 56024565Szliu# must be made. 56124565Szliu# 56224565Szliutinier: 56324565Szliu beql zero 56424565Szliu# 56524565Szliu# Find the position of the first one bit in r9 . 56624565Szliu# 56724565Szliu cvtld r9,r1 56824565Szliu extzv $7,$7,r1,r1 56924565Szliu# 57024565Szliu# Compute the size of the shift needed. 57124565Szliu# 57224565Szliu subl3 r1,$32,r1 57324565Szliu addl3 $32,r1,r6 57424565Szliu# 57524565Szliu# Shift up the high order 64 bits of the 57624565Szliu# product. 57724565Szliu# 57824565Szliu ashq r1,r8,r10 57924565Szliu ashq r1,r7,r9 58024565Szliu brb mult 58124565Szliu# p.15 58224565Szliu# 58324565Szliu# The following code sets the reduced 58424565Szliu# argument to zero. 58524565Szliu# 58624565Szliuzero: 58724565Szliu clrl r1 58824565Szliu clrl r2 58924565Szliu clrl r3 59024565Szliu brw return 59124565Szliu# p.16 59224565Szliu# 59324565Szliu# At this point, r0 contains the octant number, 59424565Szliu# r6 indicates the number of bits the fraction 59524565Szliu# has been shifted, r5 indicates the sign of 59624565Szliu# the fraction, r11/r10 contain the high order 59724565Szliu# 64 bits of the fraction, and the condition 59824565Szliu# codes indicate where the sign bit of r10 59924565Szliu# is on. The following code multiplies the 60024565Szliu# fraction by pi/2 . 60124565Szliu# 60224565Szliumult: 60324565Szliu# 60424565Szliu# Save r11/r10 in r4/r1 . -S.McD 60524565Szliu movl r11,r4 60624565Szliu movl r10,r1 60724565Szliu# 60824565Szliu# If the sign bit of r10 is on, add 1 to r11 . 60924565Szliu# 61024565Szliu bgeq signoff6 61124565Szliu incl r11 61224565Szliusignoff6: 61324565Szliu# p.17 61424565Szliu# 61524565Szliu# Move pi/2 into r3/r2 . 61624565Szliu# 61724565Szliu movq $0xc90fdaa22168c235,r2 61824565Szliu# 61924565Szliu# Multiply the fraction by the portion of pi/2 62024565Szliu# in r2 . 62124565Szliu# 62224565Szliu emul r2,r10,$0,r7 62324565Szliu emul r2,r11,r8,r7 62424565Szliu# 62524565Szliu# Multiply the fraction by the portion of pi/2 62624565Szliu# in r3 . 62724565Szliu emul r3,r10,$0,r9 62824565Szliu emul r3,r11,r10,r10 62924565Szliu# 63024565Szliu# Add the product bits together. 63124565Szliu# 63224565Szliu addl2 r7,r9 63324565Szliu adwc r8,r10 63424565Szliu adwc $0,r11 63524565Szliu# 63624565Szliu# Compensate for not sign extending r8 above.-S.McD 63724565Szliu# 63824565Szliu tstl r8 63924565Szliu bgeq signoff6a 64024565Szliu decl r11 64124565Szliusignoff6a: 64224565Szliu# 64324565Szliu# Compensate for r11/r10 being unsigned. -S.McD 64424565Szliu# 64524565Szliu addl2 r2,r10 64624565Szliu adwc r3,r11 64724565Szliu# 64824565Szliu# Compensate for r3/r2 being unsigned. -S.McD 64924565Szliu# 65024565Szliu addl2 r1,r10 65124565Szliu adwc r4,r11 65224565Szliu# p.18 65324565Szliu# 65424565Szliu# If the sign bit of r11 is zero, shift the 65524565Szliu# product bits up one bit and increment r6 . 65624565Szliu# 65724565Szliu blss signon 65824565Szliu incl r6 65924565Szliu ashq $1,r10,r10 66024565Szliu tstl r9 66124565Szliu bgeq signoff7 66224565Szliu incl r10 66324565Szliusignoff7: 66424565Szliusignon: 66524565Szliu# p.19 66624565Szliu# 66724565Szliu# Shift the 56 most significant product 66824565Szliu# bits into r9/r8 . The sign extension 66924565Szliu# will be handled later. 67024565Szliu# 67124565Szliu ashq $-8,r10,r8 67224565Szliu# 67324565Szliu# Convert the low order 8 bits of r10 67424565Szliu# into an F-format number. 67524565Szliu# 67624565Szliu cvtbf r10,r3 67724565Szliu# 67824565Szliu# If the result of the conversion was 67924565Szliu# negative, add 1 to r9/r8 . 68024565Szliu# 68124565Szliu bgeq chop 68224565Szliu incl r8 68324565Szliu adwc $0,r9 68424565Szliu# 68524565Szliu# If r9 is now zero, branch to special 68624565Szliu# code to handle that possibility. 68724565Szliu# 68824565Szliu beql carryout 68924565Szliuchop: 69024565Szliu# p.20 69124565Szliu# 69224565Szliu# Convert the number in r9/r8 into 69324565Szliu# D-format number in r2/r1 . 69424565Szliu# 69524565Szliu rotl $16,r8,r2 69624565Szliu rotl $16,r9,r1 69724565Szliu# 69824565Szliu# Set the exponent field to the appropriate 69924565Szliu# value. Note that the extra bits created by 70024565Szliu# sign extension are now eliminated. 70124565Szliu# 70224565Szliu subw3 r6,$131,r6 70324565Szliu insv r6,$7,$9,r1 70424565Szliu# 70524565Szliu# Set the exponent field of the F-format 70624565Szliu# number in r3 to the appropriate value. 70724565Szliu# 70824565Szliu tstf r3 70924565Szliu beql return 71024565Szliu# extzv $7,$8,r3,r4 -S.McD 71124565Szliu extzv $7,$7,r3,r4 71224565Szliu addw2 r4,r6 71324565Szliu# subw2 $217,r6 -S.McD 71424565Szliu subw2 $64,r6 71524565Szliu insv r6,$7,$8,r3 71624565Szliu brb return 71724565Szliu# p.21 71824565Szliu# 71924565Szliu# The following code generates the appropriate 72024565Szliu# result for the unlikely possibility that 72124565Szliu# rounding the number in r9/r8 resulted in 72224565Szliu# a carry out. 72324565Szliu# 72424565Szliucarryout: 72524565Szliu clrl r1 72624565Szliu clrl r2 72724565Szliu subw3 r6,$132,r6 72824565Szliu insv r6,$7,$9,r1 72924565Szliu tstf r3 73024565Szliu beql return 73124565Szliu extzv $7,$8,r3,r4 73224565Szliu addw2 r4,r6 73324565Szliu subw2 $218,r6 73424565Szliu insv r6,$7,$8,r3 73524565Szliu# p.22 73624565Szliu# 73724565Szliu# The following code makes an needed 73824565Szliu# adjustments to the signs of the 73924565Szliu# results or to the octant number, and 74024565Szliu# then returns. 74124565Szliu# 74224565Szliureturn: 74324565Szliu# 74424565Szliu# Test if the fraction was greater than or 74524565Szliu# equal to 1/2 . If so, negate the reduced 74624565Szliu# argument. 74724565Szliu# 74824565Szliu blbc r5,signoff8 74924565Szliu mnegf r1,r1 75024565Szliu mnegf r3,r3 75124565Szliusignoff8: 75224565Szliu# p.23 75324565Szliu# 75424565Szliu# If the original argument was negative, 75524565Szliu# negate the reduce argument and 75624565Szliu# adjust the octant number. 75724565Szliu# 75824565Szliu tstw (sp)+ 75924565Szliu bgeq signoff9 76024565Szliu mnegf r1,r1 76124565Szliu mnegf r3,r3 76224565Szliu# subb3 r0,$8,r0 ...used for pi/4 reduction -S.McD 76324565Szliu subb3 r0,$4,r0 76424565Szliusignoff9: 76524565Szliu# 76624565Szliu# Clear all unneeded octant bits. 76724565Szliu# 76824565Szliu# bicb2 $0xf8,r0 ...used for pi/4 reduction -S.McD 76924565Szliu bicb2 $0xfc,r0 77024565Szliu# 77124565Szliu# Return. 77224565Szliu# 77324565Szliu rsb 774