124565Szliu# 224565Szliu# Copyright (c) 1985 Regents of the University of California. 324565Szliu# 424565Szliu# Use and reproduction of this software are granted in accordance with 524565Szliu# the terms and conditions specified in the Berkeley Software License 624565Szliu# Agreement (in particular, this entails acknowledgement of the programs' 724565Szliu# source, and inclusion of this notice) with the additional understanding 824565Szliu# that all recipients should regard themselves as participants in an 924565Szliu# ongoing research project and hence should feel obligated to report 1024565Szliu# their experiences (good or bad) with these elementary function codes, 1124565Szliu# using "sendbug 4bsd-bugs@BERKELEY", to the authors. 1224565Szliu# 13*24728Selefunt .data 14*24728Selefunt .align 2 15*24728Selefunt_sccsid: 16*24728Selefunt.asciz "@(#)argred.s 1.1 (Berkeley) 8/21/85; 1.3 (ucb.elefunt) 09/12/85" 1724565Szliu 1824565Szliu# libm$argred implements Bob Corbett's argument reduction and 1924565Szliu# libm$sincos implements Peter Tang's double precision sin/cos. 2024565Szliu# 2124565Szliu# Note: The two entry points libm$argred and libm$sincos are meant 2224565Szliu# to be used only by _sin, _cos and _tan. 2324565Szliu# 2424565Szliu# method: true range reduction to [-pi/4,pi/4], P. Tang & B. Corbett 2524565Szliu# S. McDonald, April 4, 1985 2624565Szliu# 2724565Szliu .globl libm$argred 2824565Szliu .globl libm$sincos 2924565Szliu .text 3024565Szliu .align 1 3124565Szliu 3224565Szliulibm$argred: 3324565Szliu# 3424565Szliu# Compare the argument with the largest possible that can 3524565Szliu# be reduced by table lookup. r3 := |x| will be used in table_lookup . 3624565Szliu# 3724565Szliu movd r0,r3 3824565Szliu bgeq abs1 3924565Szliu mnegd r3,r3 4024565Szliuabs1: 4124565Szliu cmpd r3,$0d+4.55530934770520019583e+01 4224565Szliu blss small_arg 4324565Szliu jsb trigred 4424565Szliu rsb 4524565Szliusmall_arg: 4624565Szliu jsb table_lookup 4724565Szliu rsb 4824565Szliu# 4924565Szliu# At this point, 5024565Szliu# r0 contains the quadrant number, 0, 1, 2, or 3; 5124565Szliu# r2/r1 contains the reduced argument as a D-format number; 5224565Szliu# r3 contains a F-format extension to the reduced argument; 5324565Szliu# r4 contains a 0 or 1 corresponding to a sin or cos entry. 5424565Szliu# 5524565Szliulibm$sincos: 5624565Szliu# 5724565Szliu# Compensate for a cosine entry by adding one to the quadrant number. 5824565Szliu# 5924565Szliu addl2 r4,r0 6024565Szliu# 6124565Szliu# Polyd clobbers r5-r0 ; save X in r7/r6 . 6224565Szliu# This can be avoided by rewriting trigred . 6324565Szliu# 6424565Szliu movd r1,r6 6524565Szliu# 6624565Szliu# Likewise, save alpha in r8 . 6724565Szliu# This can be avoided by rewriting trigred . 6824565Szliu# 6924565Szliu movf r3,r8 7024565Szliu# 7124565Szliu# Odd or even quadrant? cosine if odd, sine otherwise. 7224565Szliu# Save floor(quadrant/2) in r9 ; it determines the final sign. 7324565Szliu# 7424565Szliu rotl $-1,r0,r9 7524565Szliu blss cosine 7624565Szliusine: 7724565Szliu muld2 r1,r1 # Xsq = X * X 7824565Szliu polyd r1,$7,sin_coef # Q = P(Xsq) , of deg 7 7924565Szliu mulf3 $0f3.0,r8,r4 # beta = 3 * alpha 8024565Szliu mulf2 r0,r4 # beta = Q * beta 8124565Szliu addf2 r8,r4 # beta = alpha + beta 8224565Szliu muld2 r6,r0 # S(X) = X * Q 8324565Szliu# cvtfd r4,r4 ... r5 = 0 after a polyd. 8424565Szliu addd2 r4,r0 # S(X) = beta + S(X) 8524565Szliu addd2 r6,r0 # S(X) = X + S(X) 8624565Szliu brb done 8724565Szliucosine: 8824565Szliu muld2 r6,r6 # Xsq = X * X 8924565Szliu beql zero_arg 9024565Szliu mulf2 r1,r8 # beta = X * alpha 9124565Szliu polyd r6,$7,cos_coef # Q = P'(Xsq) , of deg 7 9224565Szliu subd3 r0,r8,r0 # beta = beta - Q 9324565Szliu subw2 $0x80,r6 # Xsq = Xsq / 2 9424565Szliu addd2 r0,r6 # Xsq = Xsq + beta 9524565Szliuzero_arg: 9624565Szliu subd3 r6,$0d1.0,r0 # C(X) = 1 - Xsq 9724565Szliudone: 9824565Szliu blbc r9,even 9924565Szliu mnegd r0,r0 10024565Szliueven: 10124565Szliu rsb 10224565Szliu 10324565Szliu.data 10424565Szliu.align 2 10524565Szliu 10624565Szliusin_coef: 10724565Szliu .double 0d-7.53080332264191085773e-13 # s7 = 2^-29 -1.a7f2504ffc49f8.. 10824565Szliu .double 0d+1.60573519267703489121e-10 # s6 = 2^-21 1.611adaede473c8.. 10924565Szliu .double 0d-2.50520965150706067211e-08 # s5 = 2^-1a -1.ae644921ed8382.. 11024565Szliu .double 0d+2.75573191800593885716e-06 # s4 = 2^-13 1.71de3a4b884278.. 11124565Szliu .double 0d-1.98412698411850507950e-04 # s3 = 2^-0d -1.a01a01a0125e7d.. 11224565Szliu .double 0d+8.33333333333325688985e-03 # s2 = 2^-07 1.11111111110e50 11324565Szliu .double 0d-1.66666666666666664354e-01 # s1 = 2^-03 -1.55555555555554 11424565Szliu .double 0d+0.00000000000000000000e+00 # s0 = 0 11524565Szliu 11624565Szliucos_coef: 11724565Szliu .double 0d-1.13006966202629430300e-11 # s7 = 2^-25 -1.8D9BA04D1374BE.. 11824565Szliu .double 0d+2.08746646574796004700e-09 # s6 = 2^-1D 1.1EE632650350BA.. 11924565Szliu .double 0d-2.75573073031284417300e-07 # s5 = 2^-16 -1.27E4F31411719E.. 12024565Szliu .double 0d+2.48015872682668025200e-05 # s4 = 2^-10 1.A01A0196B902E8.. 12124565Szliu .double 0d-1.38888888888464709200e-03 # s3 = 2^-0A -1.6C16C16C11FACE.. 12224565Szliu .double 0d+4.16666666666664761400e-02 # s2 = 2^-05 1.5555555555539E 12324565Szliu .double 0d+0.00000000000000000000e+00 # s1 = 0 12424565Szliu .double 0d+0.00000000000000000000e+00 # s0 = 0 12524565Szliu 12624565Szliu# 12724565Szliu# Multiples of pi/2 expressed as the sum of three doubles, 12824565Szliu# 12924565Szliu# trailing: n * pi/2 , n = 0, 1, 2, ..., 29 13024565Szliu# trailing[n] , 13124565Szliu# 13224565Szliu# middle: n * pi/2 , n = 0, 1, 2, ..., 29 13324565Szliu# middle[n] , 13424565Szliu# 13524565Szliu# leading: n * pi/2 , n = 0, 1, 2, ..., 29 13624565Szliu# leading[n] , 13724565Szliu# 13824565Szliu# where 13924565Szliu# leading[n] := (n * pi/2) rounded, 14024565Szliu# middle[n] := (n * pi/2 - leading[n]) rounded, 14124565Szliu# trailing[n] := (( n * pi/2 - leading[n]) - middle[n]) rounded . 14224565Szliu 14324565Szliutrailing: 14424565Szliu .double 0d+0.00000000000000000000e+00 # 0 * pi/2 trailing 14524565Szliu .double 0d+4.33590506506189049611e-35 # 1 * pi/2 trailing 14624565Szliu .double 0d+8.67181013012378099223e-35 # 2 * pi/2 trailing 14724565Szliu .double 0d+1.30077151951856714215e-34 # 3 * pi/2 trailing 14824565Szliu .double 0d+1.73436202602475619845e-34 # 4 * pi/2 trailing 14924565Szliu .double 0d-1.68390735624352669192e-34 # 5 * pi/2 trailing 15024565Szliu .double 0d+2.60154303903713428430e-34 # 6 * pi/2 trailing 15124565Szliu .double 0d-8.16726343231148352150e-35 # 7 * pi/2 trailing 15224565Szliu .double 0d+3.46872405204951239689e-34 # 8 * pi/2 trailing 15324565Szliu .double 0d+3.90231455855570147991e-34 # 9 * pi/2 trailing 15424565Szliu .double 0d-3.36781471248705338384e-34 # 10 * pi/2 trailing 15524565Szliu .double 0d-1.06379439835298071785e-33 # 11 * pi/2 trailing 15624565Szliu .double 0d+5.20308607807426856861e-34 # 12 * pi/2 trailing 15724565Szliu .double 0d+5.63667658458045770509e-34 # 13 * pi/2 trailing 15824565Szliu .double 0d-1.63345268646229670430e-34 # 14 * pi/2 trailing 15924565Szliu .double 0d-1.19986217995610764801e-34 # 15 * pi/2 trailing 16024565Szliu .double 0d+6.93744810409902479378e-34 # 16 * pi/2 trailing 16124565Szliu .double 0d-8.03640094449267300110e-34 # 17 * pi/2 trailing 16224565Szliu .double 0d+7.80462911711140295982e-34 # 18 * pi/2 trailing 16324565Szliu .double 0d-7.16921993148029483506e-34 # 19 * pi/2 trailing 16424565Szliu .double 0d-6.73562942497410676769e-34 # 20 * pi/2 trailing 16524565Szliu .double 0d-6.30203891846791677593e-34 # 21 * pi/2 trailing 16624565Szliu .double 0d-2.12758879670596143570e-33 # 22 * pi/2 trailing 16724565Szliu .double 0d+2.53800212047402350390e-33 # 23 * pi/2 trailing 16824565Szliu .double 0d+1.04061721561485371372e-33 # 24 * pi/2 trailing 16924565Szliu .double 0d+6.11729905311472319056e-32 # 25 * pi/2 trailing 17024565Szliu .double 0d+1.12733531691609154102e-33 # 26 * pi/2 trailing 17124565Szliu .double 0d-3.70049587943078297272e-34 # 27 * pi/2 trailing 17224565Szliu .double 0d-3.26690537292459340860e-34 # 28 * pi/2 trailing 17324565Szliu .double 0d-1.14812616507957271361e-34 # 29 * pi/2 trailing 17424565Szliu 17524565Szliumiddle: 17624565Szliu .double 0d+0.00000000000000000000e+00 # 0 * pi/2 middle 17724565Szliu .double 0d+5.72118872610983179676e-18 # 1 * pi/2 middle 17824565Szliu .double 0d+1.14423774522196635935e-17 # 2 * pi/2 middle 17924565Szliu .double 0d-3.83475850529283316309e-17 # 3 * pi/2 middle 18024565Szliu .double 0d+2.28847549044393271871e-17 # 4 * pi/2 middle 18124565Szliu .double 0d-2.69052076007086676522e-17 # 5 * pi/2 middle 18224565Szliu .double 0d-7.66951701058566632618e-17 # 6 * pi/2 middle 18324565Szliu .double 0d-1.54628301484890040587e-17 # 7 * pi/2 middle 18424565Szliu .double 0d+4.57695098088786543741e-17 # 8 * pi/2 middle 18524565Szliu .double 0d+1.07001849766246313192e-16 # 9 * pi/2 middle 18624565Szliu .double 0d-5.38104152014173353044e-17 # 10 * pi/2 middle 18724565Szliu .double 0d-2.14622680169080983801e-16 # 11 * pi/2 middle 18824565Szliu .double 0d-1.53390340211713326524e-16 # 12 * pi/2 middle 18924565Szliu .double 0d-9.21580002543456677056e-17 # 13 * pi/2 middle 19024565Szliu .double 0d-3.09256602969780081173e-17 # 14 * pi/2 middle 19124565Szliu .double 0d+3.03066796603896507006e-17 # 15 * pi/2 middle 19224565Szliu .double 0d+9.15390196177573087482e-17 # 16 * pi/2 middle 19324565Szliu .double 0d+1.52771359575124969107e-16 # 17 * pi/2 middle 19424565Szliu .double 0d+2.14003699532492626384e-16 # 18 * pi/2 middle 19524565Szliu .double 0d-1.68853170360202329427e-16 # 19 * pi/2 middle 19624565Szliu .double 0d-1.07620830402834670609e-16 # 20 * pi/2 middle 19724565Szliu .double 0d+3.97700719404595604379e-16 # 21 * pi/2 middle 19824565Szliu .double 0d-4.29245360338161967602e-16 # 22 * pi/2 middle 19924565Szliu .double 0d-3.68013020380794313406e-16 # 23 * pi/2 middle 20024565Szliu .double 0d-3.06780680423426653047e-16 # 24 * pi/2 middle 20124565Szliu .double 0d-2.45548340466059054318e-16 # 25 * pi/2 middle 20224565Szliu .double 0d-1.84316000508691335411e-16 # 26 * pi/2 middle 20324565Szliu .double 0d-1.23083660551323675053e-16 # 27 * pi/2 middle 20424565Szliu .double 0d-6.18513205939560162346e-17 # 28 * pi/2 middle 20524565Szliu .double 0d-6.18980636588357585202e-19 # 29 * pi/2 middle 20624565Szliu 20724565Szliuleading: 20824565Szliu .double 0d+0.00000000000000000000e+00 # 0 * pi/2 leading 20924565Szliu .double 0d+1.57079632679489661351e+00 # 1 * pi/2 leading 21024565Szliu .double 0d+3.14159265358979322702e+00 # 2 * pi/2 leading 21124565Szliu .double 0d+4.71238898038468989604e+00 # 3 * pi/2 leading 21224565Szliu .double 0d+6.28318530717958645404e+00 # 4 * pi/2 leading 21324565Szliu .double 0d+7.85398163397448312306e+00 # 5 * pi/2 leading 21424565Szliu .double 0d+9.42477796076937979208e+00 # 6 * pi/2 leading 21524565Szliu .double 0d+1.09955742875642763501e+01 # 7 * pi/2 leading 21624565Szliu .double 0d+1.25663706143591729081e+01 # 8 * pi/2 leading 21724565Szliu .double 0d+1.41371669411540694661e+01 # 9 * pi/2 leading 21824565Szliu .double 0d+1.57079632679489662461e+01 # 10 * pi/2 leading 21924565Szliu .double 0d+1.72787595947438630262e+01 # 11 * pi/2 leading 22024565Szliu .double 0d+1.88495559215387595842e+01 # 12 * pi/2 leading 22124565Szliu .double 0d+2.04203522483336561422e+01 # 13 * pi/2 leading 22224565Szliu .double 0d+2.19911485751285527002e+01 # 14 * pi/2 leading 22324565Szliu .double 0d+2.35619449019234492582e+01 # 15 * pi/2 leading 22424565Szliu .double 0d+2.51327412287183458162e+01 # 16 * pi/2 leading 22524565Szliu .double 0d+2.67035375555132423742e+01 # 17 * pi/2 leading 22624565Szliu .double 0d+2.82743338823081389322e+01 # 18 * pi/2 leading 22724565Szliu .double 0d+2.98451302091030359342e+01 # 19 * pi/2 leading 22824565Szliu .double 0d+3.14159265358979324922e+01 # 20 * pi/2 leading 22924565Szliu .double 0d+3.29867228626928286062e+01 # 21 * pi/2 leading 23024565Szliu .double 0d+3.45575191894877260523e+01 # 22 * pi/2 leading 23124565Szliu .double 0d+3.61283155162826226103e+01 # 23 * pi/2 leading 23224565Szliu .double 0d+3.76991118430775191683e+01 # 24 * pi/2 leading 23324565Szliu .double 0d+3.92699081698724157263e+01 # 25 * pi/2 leading 23424565Szliu .double 0d+4.08407044966673122843e+01 # 26 * pi/2 leading 23524565Szliu .double 0d+4.24115008234622088423e+01 # 27 * pi/2 leading 23624565Szliu .double 0d+4.39822971502571054003e+01 # 28 * pi/2 leading 23724565Szliu .double 0d+4.55530934770520019583e+01 # 29 * pi/2 leading 23824565Szliu 23924565SzliutwoOverPi: 24024565Szliu .double 0d+6.36619772367581343076e-01 24124565Szliu .text 24224565Szliu .align 1 24324565Szliu 24424565Szliutable_lookup: 24524565Szliu muld3 r3,twoOverPi,r0 24624565Szliu cvtrdl r0,r0 # n = nearest int to ((2/pi)*|x|) rnded 24724565Szliu mull3 $8,r0,r5 24824565Szliu subd2 leading(r5),r3 # p = (|x| - leading n*pi/2) exactly 24924565Szliu subd3 middle(r5),r3,r1 # q = (p - middle n*pi/2) rounded 25024565Szliu subd2 r1,r3 # r = (p - q) 25124565Szliu subd2 middle(r5),r3 # r = r - middle n*pi/2 25224565Szliu subd2 trailing(r5),r3 # r = r - trailing n*pi/2 rounded 25324565Szliu# 25424565Szliu# If the original argument was negative, 25524565Szliu# negate the reduce argument and 25624565Szliu# adjust the octant/quadrant number. 25724565Szliu# 25824565Szliu tstw 4(ap) 25924565Szliu bgeq abs2 26024565Szliu mnegf r1,r1 26124565Szliu mnegf r3,r3 26224565Szliu# subb3 r0,$8,r0 ...used for pi/4 reduction -S.McD 26324565Szliu subb3 r0,$4,r0 26424565Szliuabs2: 26524565Szliu# 26624565Szliu# Clear all unneeded octant/quadrant bits. 26724565Szliu# 26824565Szliu# bicb2 $0xf8,r0 ...used for pi/4 reduction -S.McD 26924565Szliu bicb2 $0xfc,r0 27024565Szliu rsb 27124565Szliu# 27224565Szliu# p.0 27324565Szliu .text 27424565Szliu .align 2 27524565Szliu# 27624565Szliu# Only 256 (actually 225) bits of 2/pi are needed for VAX double 27724565Szliu# precision; this was determined by enumerating all the nearest 27824565Szliu# machine integer multiples of pi/2 using continued fractions. 27924565Szliu# (8a8d3673775b7ff7 required the most bits.) -S.McD 28024565Szliu# 28124565Szliu .long 0 28224565Szliu .long 0 28324565Szliu .long 0xaef1586d 28424565Szliu .long 0x9458eaf7 28524565Szliu .long 0x10e4107f 28624565Szliu .long 0xd8a5664f 28724565Szliu .long 0x4d377036 28824565Szliu .long 0x09d5f47d 28924565Szliu .long 0x91054a7f 29024565Szliu .long 0xbe60db93 29124565Szliubits2opi: 29224565Szliu .long 0x00000028 29324565Szliu .long 0 29424565Szliu# 29524565Szliu# Note: wherever you see the word `octant', read `quadrant'. 29624565Szliu# Currently this code is set up for pi/2 argument reduction. 29724565Szliu# By uncommenting/commenting the appropriate lines, it will 29824565Szliu# also serve as a pi/4 argument reduction code. 29924565Szliu# 30024565Szliu 30124565Szliu# p.1 30224565Szliu# Trigred preforms argument reduction 30324565Szliu# for the trigonometric functions. It 30424565Szliu# takes one input argument, a D-format 30524565Szliu# number in r1/r0 . The magnitude of 30624565Szliu# the input argument must be greater 30724565Szliu# than or equal to 1/2 . Trigred produces 30824565Szliu# three results: the number of the octant 30924565Szliu# occupied by the argument, the reduced 31024565Szliu# argument, and an extension of the 31124565Szliu# reduced argument. The octant number is 31224565Szliu# returned in r0 . The reduced argument 31324565Szliu# is returned as a D-format number in 31424565Szliu# r2/r1 . An 8 bit extension of the 31524565Szliu# reduced argument is returned as an 31624565Szliu# F-format number in r3. 31724565Szliu# p.2 31824565Szliutrigred: 31924565Szliu# 32024565Szliu# Save the sign of the input argument. 32124565Szliu# 32224565Szliu movw r0,-(sp) 32324565Szliu# 32424565Szliu# Extract the exponent field. 32524565Szliu# 32624565Szliu extzv $7,$7,r0,r2 32724565Szliu# 32824565Szliu# Convert the fraction part of the input 32924565Szliu# argument into a quadword integer. 33024565Szliu# 33124565Szliu bicw2 $0xff80,r0 33224565Szliu bisb2 $0x80,r0 # -S.McD 33324565Szliu rotl $16,r0,r0 33424565Szliu rotl $16,r1,r1 33524565Szliu# 33624565Szliu# If r1 is negative, add 1 to r0 . This 33724565Szliu# adjustment is made so that the two's 33824565Szliu# complement multiplications done later 33924565Szliu# will produce unsigned results. 34024565Szliu# 34124565Szliu bgeq posmid 34224565Szliu incl r0 34324565Szliuposmid: 34424565Szliu# p.3 34524565Szliu# 34624565Szliu# Set r3 to the address of the first quadword 34724565Szliu# used to obtain the needed portion of 2/pi . 34824565Szliu# The address is longword aligned to ensure 34924565Szliu# efficient access. 35024565Szliu# 35124565Szliu ashl $-3,r2,r3 35224565Szliu bicb2 $3,r3 35324565Szliu subl3 r3,$bits2opi,r3 35424565Szliu# 35524565Szliu# Set r2 to the size of the shift needed to 35624565Szliu# obtain the correct portion of 2/pi . 35724565Szliu# 35824565Szliu bicb2 $0xe0,r2 35924565Szliu# p.4 36024565Szliu# 36124565Szliu# Move the needed 128 bits of 2/pi into 36224565Szliu# r11 - r8 . Adjust the numbers to allow 36324565Szliu# for unsigned multiplication. 36424565Szliu# 36524565Szliu ashq r2,(r3),r10 36624565Szliu 36724565Szliu subl2 $4,r3 36824565Szliu ashq r2,(r3),r9 36924565Szliu bgeq signoff1 37024565Szliu incl r11 37124565Szliusignoff1: 37224565Szliu subl2 $4,r3 37324565Szliu ashq r2,(r3),r8 37424565Szliu bgeq signoff2 37524565Szliu incl r10 37624565Szliusignoff2: 37724565Szliu subl2 $4,r3 37824565Szliu ashq r2,(r3),r7 37924565Szliu bgeq signoff3 38024565Szliu incl r9 38124565Szliusignoff3: 38224565Szliu# p.5 38324565Szliu# 38424565Szliu# Multiply the contents of r0/r1 by the 38524565Szliu# slice of 2/pi in r11 - r8 . 38624565Szliu# 38724565Szliu emul r0,r8,$0,r4 38824565Szliu emul r0,r9,r5,r5 38924565Szliu emul r0,r10,r6,r6 39024565Szliu 39124565Szliu emul r1,r8,$0,r7 39224565Szliu emul r1,r9,r8,r8 39324565Szliu emul r1,r10,r9,r9 39424565Szliu emul r1,r11,r10,r10 39524565Szliu 39624565Szliu addl2 r4,r8 39724565Szliu adwc r5,r9 39824565Szliu adwc r6,r10 39924565Szliu# p.6 40024565Szliu# 40124565Szliu# If there are more than five leading zeros 40224565Szliu# after the first two quotient bits or if there 40324565Szliu# are more than five leading ones after the first 40424565Szliu# two quotient bits, generate more fraction bits. 40524565Szliu# Otherwise, branch to code to produce the result. 40624565Szliu# 40724565Szliu bicl3 $0xc1ffffff,r10,r4 40824565Szliu beql more1 40924565Szliu cmpl $0x3e000000,r4 41024565Szliu bneq result 41124565Szliumore1: 41224565Szliu# p.7 41324565Szliu# 41424565Szliu# generate another 32 result bits. 41524565Szliu# 41624565Szliu subl2 $4,r3 41724565Szliu ashq r2,(r3),r5 41824565Szliu bgeq signoff4 41924565Szliu 42024565Szliu emul r1,r6,$0,r4 42124565Szliu addl2 r1,r5 42224565Szliu emul r0,r6,r5,r5 42324565Szliu addl2 r0,r6 42424565Szliu brb addbits1 42524565Szliu 42624565Szliusignoff4: 42724565Szliu emul r1,r6,$0,r4 42824565Szliu emul r0,r6,r5,r5 42924565Szliu 43024565Szliuaddbits1: 43124565Szliu addl2 r5,r7 43224565Szliu adwc r6,r8 43324565Szliu adwc $0,r9 43424565Szliu adwc $0,r10 43524565Szliu# p.8 43624565Szliu# 43724565Szliu# Check for massive cancellation. 43824565Szliu# 43924565Szliu bicl3 $0xc0000000,r10,r6 44024565Szliu# bneq more2 -S.McD Test was backwards 44124565Szliu beql more2 44224565Szliu cmpl $0x3fffffff,r6 44324565Szliu bneq result 44424565Szliumore2: 44524565Szliu# p.9 44624565Szliu# 44724565Szliu# If massive cancellation has occurred, 44824565Szliu# generate another 24 result bits. 44924565Szliu# Testing has shown there will always be 45024565Szliu# enough bits after this point. 45124565Szliu# 45224565Szliu subl2 $4,r3 45324565Szliu ashq r2,(r3),r5 45424565Szliu bgeq signoff5 45524565Szliu 45624565Szliu emul r0,r6,r4,r5 45724565Szliu addl2 r0,r6 45824565Szliu brb addbits2 45924565Szliu 46024565Szliusignoff5: 46124565Szliu emul r0,r6,r4,r5 46224565Szliu 46324565Szliuaddbits2: 46424565Szliu addl2 r6,r7 46524565Szliu adwc $0,r8 46624565Szliu adwc $0,r9 46724565Szliu adwc $0,r10 46824565Szliu# p.10 46924565Szliu# 47024565Szliu# The following code produces the reduced 47124565Szliu# argument from the product bits contained 47224565Szliu# in r10 - r7 . 47324565Szliu# 47424565Szliuresult: 47524565Szliu# 47624565Szliu# Extract the octant number from r10 . 47724565Szliu# 47824565Szliu# extzv $29,$3,r10,r0 ...used for pi/4 reduction -S.McD 47924565Szliu extzv $30,$2,r10,r0 48024565Szliu# 48124565Szliu# Clear the octant bits in r10 . 48224565Szliu# 48324565Szliu# bicl2 $0xe0000000,r10 ...used for pi/4 reduction -S.McD 48424565Szliu bicl2 $0xc0000000,r10 48524565Szliu# 48624565Szliu# Zero the sign flag. 48724565Szliu# 48824565Szliu clrl r5 48924565Szliu# p.11 49024565Szliu# 49124565Szliu# Check to see if the fraction is greater than 49224565Szliu# or equal to one-half. If it is, add one 49324565Szliu# to the octant number, set the sign flag 49424565Szliu# on, and replace the fraction with 1 minus 49524565Szliu# the fraction. 49624565Szliu# 49724565Szliu# bitl $0x10000000,r10 ...used for pi/4 reduction -S.McD 49824565Szliu bitl $0x20000000,r10 49924565Szliu beql small 50024565Szliu incl r0 50124565Szliu incl r5 50224565Szliu# subl3 r10,$0x1fffffff,r10 ...used for pi/4 reduction -S.McD 50324565Szliu subl3 r10,$0x3fffffff,r10 50424565Szliu mcoml r9,r9 50524565Szliu mcoml r8,r8 50624565Szliu mcoml r7,r7 50724565Szliusmall: 50824565Szliu# p.12 50924565Szliu# 51024565Szliu## Test whether the first 29 bits of the ...used for pi/4 reduction -S.McD 51124565Szliu# Test whether the first 30 bits of the 51224565Szliu# fraction are zero. 51324565Szliu# 51424565Szliu tstl r10 51524565Szliu beql tiny 51624565Szliu# 51724565Szliu# Find the position of the first one bit in r10 . 51824565Szliu# 51924565Szliu cvtld r10,r1 52024565Szliu extzv $7,$7,r1,r1 52124565Szliu# 52224565Szliu# Compute the size of the shift needed. 52324565Szliu# 52424565Szliu subl3 r1,$32,r6 52524565Szliu# 52624565Szliu# Shift up the high order 64 bits of the 52724565Szliu# product. 52824565Szliu# 52924565Szliu ashq r6,r9,r10 53024565Szliu ashq r6,r8,r9 53124565Szliu brb mult 53224565Szliu# p.13 53324565Szliu# 53424565Szliu# Test to see if the sign bit of r9 is on. 53524565Szliu# 53624565Szliutiny: 53724565Szliu tstl r9 53824565Szliu bgeq tinier 53924565Szliu# 54024565Szliu# If it is, shift the product bits up 32 bits. 54124565Szliu# 54224565Szliu movl $32,r6 54324565Szliu movq r8,r10 54424565Szliu tstl r10 54524565Szliu brb mult 54624565Szliu# p.14 54724565Szliu# 54824565Szliu# Test whether r9 is zero. It is probably 54924565Szliu# impossible for both r10 and r9 to be 55024565Szliu# zero, but until proven to be so, the test 55124565Szliu# must be made. 55224565Szliu# 55324565Szliutinier: 55424565Szliu beql zero 55524565Szliu# 55624565Szliu# Find the position of the first one bit in r9 . 55724565Szliu# 55824565Szliu cvtld r9,r1 55924565Szliu extzv $7,$7,r1,r1 56024565Szliu# 56124565Szliu# Compute the size of the shift needed. 56224565Szliu# 56324565Szliu subl3 r1,$32,r1 56424565Szliu addl3 $32,r1,r6 56524565Szliu# 56624565Szliu# Shift up the high order 64 bits of the 56724565Szliu# product. 56824565Szliu# 56924565Szliu ashq r1,r8,r10 57024565Szliu ashq r1,r7,r9 57124565Szliu brb mult 57224565Szliu# p.15 57324565Szliu# 57424565Szliu# The following code sets the reduced 57524565Szliu# argument to zero. 57624565Szliu# 57724565Szliuzero: 57824565Szliu clrl r1 57924565Szliu clrl r2 58024565Szliu clrl r3 58124565Szliu brw return 58224565Szliu# p.16 58324565Szliu# 58424565Szliu# At this point, r0 contains the octant number, 58524565Szliu# r6 indicates the number of bits the fraction 58624565Szliu# has been shifted, r5 indicates the sign of 58724565Szliu# the fraction, r11/r10 contain the high order 58824565Szliu# 64 bits of the fraction, and the condition 58924565Szliu# codes indicate where the sign bit of r10 59024565Szliu# is on. The following code multiplies the 59124565Szliu# fraction by pi/2 . 59224565Szliu# 59324565Szliumult: 59424565Szliu# 59524565Szliu# Save r11/r10 in r4/r1 . -S.McD 59624565Szliu movl r11,r4 59724565Szliu movl r10,r1 59824565Szliu# 59924565Szliu# If the sign bit of r10 is on, add 1 to r11 . 60024565Szliu# 60124565Szliu bgeq signoff6 60224565Szliu incl r11 60324565Szliusignoff6: 60424565Szliu# p.17 60524565Szliu# 60624565Szliu# Move pi/2 into r3/r2 . 60724565Szliu# 60824565Szliu movq $0xc90fdaa22168c235,r2 60924565Szliu# 61024565Szliu# Multiply the fraction by the portion of pi/2 61124565Szliu# in r2 . 61224565Szliu# 61324565Szliu emul r2,r10,$0,r7 61424565Szliu emul r2,r11,r8,r7 61524565Szliu# 61624565Szliu# Multiply the fraction by the portion of pi/2 61724565Szliu# in r3 . 61824565Szliu emul r3,r10,$0,r9 61924565Szliu emul r3,r11,r10,r10 62024565Szliu# 62124565Szliu# Add the product bits together. 62224565Szliu# 62324565Szliu addl2 r7,r9 62424565Szliu adwc r8,r10 62524565Szliu adwc $0,r11 62624565Szliu# 62724565Szliu# Compensate for not sign extending r8 above.-S.McD 62824565Szliu# 62924565Szliu tstl r8 63024565Szliu bgeq signoff6a 63124565Szliu decl r11 63224565Szliusignoff6a: 63324565Szliu# 63424565Szliu# Compensate for r11/r10 being unsigned. -S.McD 63524565Szliu# 63624565Szliu addl2 r2,r10 63724565Szliu adwc r3,r11 63824565Szliu# 63924565Szliu# Compensate for r3/r2 being unsigned. -S.McD 64024565Szliu# 64124565Szliu addl2 r1,r10 64224565Szliu adwc r4,r11 64324565Szliu# p.18 64424565Szliu# 64524565Szliu# If the sign bit of r11 is zero, shift the 64624565Szliu# product bits up one bit and increment r6 . 64724565Szliu# 64824565Szliu blss signon 64924565Szliu incl r6 65024565Szliu ashq $1,r10,r10 65124565Szliu tstl r9 65224565Szliu bgeq signoff7 65324565Szliu incl r10 65424565Szliusignoff7: 65524565Szliusignon: 65624565Szliu# p.19 65724565Szliu# 65824565Szliu# Shift the 56 most significant product 65924565Szliu# bits into r9/r8 . The sign extension 66024565Szliu# will be handled later. 66124565Szliu# 66224565Szliu ashq $-8,r10,r8 66324565Szliu# 66424565Szliu# Convert the low order 8 bits of r10 66524565Szliu# into an F-format number. 66624565Szliu# 66724565Szliu cvtbf r10,r3 66824565Szliu# 66924565Szliu# If the result of the conversion was 67024565Szliu# negative, add 1 to r9/r8 . 67124565Szliu# 67224565Szliu bgeq chop 67324565Szliu incl r8 67424565Szliu adwc $0,r9 67524565Szliu# 67624565Szliu# If r9 is now zero, branch to special 67724565Szliu# code to handle that possibility. 67824565Szliu# 67924565Szliu beql carryout 68024565Szliuchop: 68124565Szliu# p.20 68224565Szliu# 68324565Szliu# Convert the number in r9/r8 into 68424565Szliu# D-format number in r2/r1 . 68524565Szliu# 68624565Szliu rotl $16,r8,r2 68724565Szliu rotl $16,r9,r1 68824565Szliu# 68924565Szliu# Set the exponent field to the appropriate 69024565Szliu# value. Note that the extra bits created by 69124565Szliu# sign extension are now eliminated. 69224565Szliu# 69324565Szliu subw3 r6,$131,r6 69424565Szliu insv r6,$7,$9,r1 69524565Szliu# 69624565Szliu# Set the exponent field of the F-format 69724565Szliu# number in r3 to the appropriate value. 69824565Szliu# 69924565Szliu tstf r3 70024565Szliu beql return 70124565Szliu# extzv $7,$8,r3,r4 -S.McD 70224565Szliu extzv $7,$7,r3,r4 70324565Szliu addw2 r4,r6 70424565Szliu# subw2 $217,r6 -S.McD 70524565Szliu subw2 $64,r6 70624565Szliu insv r6,$7,$8,r3 70724565Szliu brb return 70824565Szliu# p.21 70924565Szliu# 71024565Szliu# The following code generates the appropriate 71124565Szliu# result for the unlikely possibility that 71224565Szliu# rounding the number in r9/r8 resulted in 71324565Szliu# a carry out. 71424565Szliu# 71524565Szliucarryout: 71624565Szliu clrl r1 71724565Szliu clrl r2 71824565Szliu subw3 r6,$132,r6 71924565Szliu insv r6,$7,$9,r1 72024565Szliu tstf r3 72124565Szliu beql return 72224565Szliu extzv $7,$8,r3,r4 72324565Szliu addw2 r4,r6 72424565Szliu subw2 $218,r6 72524565Szliu insv r6,$7,$8,r3 72624565Szliu# p.22 72724565Szliu# 72824565Szliu# The following code makes an needed 72924565Szliu# adjustments to the signs of the 73024565Szliu# results or to the octant number, and 73124565Szliu# then returns. 73224565Szliu# 73324565Szliureturn: 73424565Szliu# 73524565Szliu# Test if the fraction was greater than or 73624565Szliu# equal to 1/2 . If so, negate the reduced 73724565Szliu# argument. 73824565Szliu# 73924565Szliu blbc r5,signoff8 74024565Szliu mnegf r1,r1 74124565Szliu mnegf r3,r3 74224565Szliusignoff8: 74324565Szliu# p.23 74424565Szliu# 74524565Szliu# If the original argument was negative, 74624565Szliu# negate the reduce argument and 74724565Szliu# adjust the octant number. 74824565Szliu# 74924565Szliu tstw (sp)+ 75024565Szliu bgeq signoff9 75124565Szliu mnegf r1,r1 75224565Szliu mnegf r3,r3 75324565Szliu# subb3 r0,$8,r0 ...used for pi/4 reduction -S.McD 75424565Szliu subb3 r0,$4,r0 75524565Szliusignoff9: 75624565Szliu# 75724565Szliu# Clear all unneeded octant bits. 75824565Szliu# 75924565Szliu# bicb2 $0xf8,r0 ...used for pi/4 reduction -S.McD 76024565Szliu bicb2 $0xfc,r0 76124565Szliu# 76224565Szliu# Return. 76324565Szliu# 76424565Szliu rsb 765