xref: /csrg-svn/lib/libm/vax/argred.s (revision 24565)
1*24565Szliu#
2*24565Szliu# Copyright (c) 1985 Regents of the University of California.
3*24565Szliu#
4*24565Szliu# Use and reproduction of this software are granted  in  accordance  with
5*24565Szliu# the terms and conditions specified in  the  Berkeley  Software  License
6*24565Szliu# Agreement (in particular, this entails acknowledgement of the programs'
7*24565Szliu# source, and inclusion of this notice) with the additional understanding
8*24565Szliu# that  all  recipients  should regard themselves as participants  in  an
9*24565Szliu# ongoing  research  project and hence should  feel  obligated  to report
10*24565Szliu# their  experiences (good or bad) with these elementary function  codes,
11*24565Szliu# using "sendbug 4bsd-bugs@BERKELEY", to the authors.
12*24565Szliu#
13*24565Szliu
14*24565Szliu# @(#)argred.s	1.1 (ELEFUNT) 09/06/85
15*24565Szliu
16*24565Szliu#  libm$argred implements Bob Corbett's argument reduction and
17*24565Szliu#  libm$sincos implements Peter Tang's double precision sin/cos.
18*24565Szliu#
19*24565Szliu#  Note: The two entry points libm$argred and libm$sincos are meant
20*24565Szliu#        to be used only by _sin, _cos and _tan.
21*24565Szliu#
22*24565Szliu# method: true range reduction to [-pi/4,pi/4], P. Tang  &  B. Corbett
23*24565Szliu# S. McDonald, April 4,  1985
24*24565Szliu#
25*24565Szliu	.globl	libm$argred
26*24565Szliu	.globl	libm$sincos
27*24565Szliu	.text
28*24565Szliu	.align	1
29*24565Szliu
30*24565Szliulibm$argred:
31*24565Szliu#
32*24565Szliu#  Compare the argument with the largest possible that can
33*24565Szliu#  be reduced by table lookup.  r3 := |x|  will be used in  table_lookup .
34*24565Szliu#
35*24565Szliu	movd	r0,r3
36*24565Szliu	bgeq	abs1
37*24565Szliu	mnegd	r3,r3
38*24565Szliuabs1:
39*24565Szliu	cmpd	r3,$0d+4.55530934770520019583e+01
40*24565Szliu	blss	small_arg
41*24565Szliu	jsb	trigred
42*24565Szliu	rsb
43*24565Szliusmall_arg:
44*24565Szliu	jsb	table_lookup
45*24565Szliu	rsb
46*24565Szliu#
47*24565Szliu#  At this point,
48*24565Szliu#	   r0  contains the quadrant number, 0, 1, 2, or 3;
49*24565Szliu#	r2/r1  contains the reduced argument as a D-format number;
50*24565Szliu#  	   r3  contains a F-format extension to the reduced argument;
51*24565Szliu#          r4  contains a  0 or 1  corresponding to a  sin or cos  entry.
52*24565Szliu#
53*24565Szliulibm$sincos:
54*24565Szliu#
55*24565Szliu#  Compensate for a cosine entry by adding one to the quadrant number.
56*24565Szliu#
57*24565Szliu	addl2	r4,r0
58*24565Szliu#
59*24565Szliu#  Polyd clobbers  r5-r0 ;  save  X  in  r7/r6 .
60*24565Szliu#  This can be avoided by rewriting  trigred .
61*24565Szliu#
62*24565Szliu	movd	r1,r6
63*24565Szliu#
64*24565Szliu#  Likewise, save  alpha  in  r8 .
65*24565Szliu#  This can be avoided by rewriting  trigred .
66*24565Szliu#
67*24565Szliu	movf	r3,r8
68*24565Szliu#
69*24565Szliu#  Odd or even quadrant?  cosine if odd, sine otherwise.
70*24565Szliu#  Save  floor(quadrant/2) in  r9  ; it determines the final sign.
71*24565Szliu#
72*24565Szliu	rotl	$-1,r0,r9
73*24565Szliu	blss	cosine
74*24565Szliusine:
75*24565Szliu	muld2	r1,r1		# Xsq = X * X
76*24565Szliu	polyd	r1,$7,sin_coef	# Q = P(Xsq) , of deg 7
77*24565Szliu	mulf3	$0f3.0,r8,r4	# beta = 3 * alpha
78*24565Szliu	mulf2	r0,r4		# beta = Q * beta
79*24565Szliu	addf2	r8,r4		# beta = alpha + beta
80*24565Szliu	muld2	r6,r0		# S(X) = X * Q
81*24565Szliu#	cvtfd	r4,r4		... r5 = 0 after a polyd.
82*24565Szliu	addd2	r4,r0		# S(X) = beta + S(X)
83*24565Szliu	addd2	r6,r0		# S(X) = X + S(X)
84*24565Szliu	brb	done
85*24565Szliucosine:
86*24565Szliu	muld2	r6,r6		# Xsq = X * X
87*24565Szliu	beql	zero_arg
88*24565Szliu	mulf2	r1,r8		# beta = X * alpha
89*24565Szliu	polyd	r6,$7,cos_coef	# Q = P'(Xsq) , of deg 7
90*24565Szliu	subd3	r0,r8,r0	# beta = beta - Q
91*24565Szliu	subw2	$0x80,r6	# Xsq = Xsq / 2
92*24565Szliu	addd2	r0,r6		# Xsq = Xsq + beta
93*24565Szliuzero_arg:
94*24565Szliu	subd3	r6,$0d1.0,r0	# C(X) = 1 - Xsq
95*24565Szliudone:
96*24565Szliu	blbc	r9,even
97*24565Szliu	mnegd	r0,r0
98*24565Szliueven:
99*24565Szliu	rsb
100*24565Szliu
101*24565Szliu.data
102*24565Szliu.align	2
103*24565Szliu
104*24565Szliusin_coef:
105*24565Szliu	.double	0d-7.53080332264191085773e-13	# s7 = 2^-29 -1.a7f2504ffc49f8..
106*24565Szliu	.double	0d+1.60573519267703489121e-10	# s6 = 2^-21  1.611adaede473c8..
107*24565Szliu	.double	0d-2.50520965150706067211e-08	# s5 = 2^-1a -1.ae644921ed8382..
108*24565Szliu	.double	0d+2.75573191800593885716e-06	# s4 = 2^-13  1.71de3a4b884278..
109*24565Szliu	.double	0d-1.98412698411850507950e-04	# s3 = 2^-0d -1.a01a01a0125e7d..
110*24565Szliu	.double	0d+8.33333333333325688985e-03	# s2 = 2^-07  1.11111111110e50
111*24565Szliu	.double	0d-1.66666666666666664354e-01	# s1 = 2^-03 -1.55555555555554
112*24565Szliu	.double	0d+0.00000000000000000000e+00	# s0 = 0
113*24565Szliu
114*24565Szliucos_coef:
115*24565Szliu	.double	0d-1.13006966202629430300e-11	# s7 = 2^-25 -1.8D9BA04D1374BE..
116*24565Szliu	.double	0d+2.08746646574796004700e-09	# s6 = 2^-1D  1.1EE632650350BA..
117*24565Szliu	.double	0d-2.75573073031284417300e-07	# s5 = 2^-16 -1.27E4F31411719E..
118*24565Szliu	.double	0d+2.48015872682668025200e-05	# s4 = 2^-10  1.A01A0196B902E8..
119*24565Szliu	.double	0d-1.38888888888464709200e-03	# s3 = 2^-0A -1.6C16C16C11FACE..
120*24565Szliu	.double	0d+4.16666666666664761400e-02	# s2 = 2^-05  1.5555555555539E
121*24565Szliu	.double	0d+0.00000000000000000000e+00	# s1 = 0
122*24565Szliu	.double	0d+0.00000000000000000000e+00	# s0 = 0
123*24565Szliu
124*24565Szliu#
125*24565Szliu#  Multiples of  pi/2  expressed as the sum of three doubles,
126*24565Szliu#
127*24565Szliu#  trailing:	n * pi/2 ,  n = 0, 1, 2, ..., 29
128*24565Szliu#			trailing[n] ,
129*24565Szliu#
130*24565Szliu#  middle:	n * pi/2 ,  n = 0, 1, 2, ..., 29
131*24565Szliu#			middle[n]   ,
132*24565Szliu#
133*24565Szliu#  leading:	n * pi/2 ,  n = 0, 1, 2, ..., 29
134*24565Szliu#			leading[n]  ,
135*24565Szliu#
136*24565Szliu#	where
137*24565Szliu#		leading[n]  := (n * pi/2)  rounded,
138*24565Szliu#		middle[n]   := (n * pi/2  -  leading[n])  rounded,
139*24565Szliu#		trailing[n] := (( n * pi/2 - leading[n]) - middle[n])  rounded .
140*24565Szliu
141*24565Szliutrailing:
142*24565Szliu	.double	0d+0.00000000000000000000e+00	#  0 * pi/2  trailing
143*24565Szliu	.double	0d+4.33590506506189049611e-35	#  1 * pi/2  trailing
144*24565Szliu	.double	0d+8.67181013012378099223e-35	#  2 * pi/2  trailing
145*24565Szliu	.double	0d+1.30077151951856714215e-34	#  3 * pi/2  trailing
146*24565Szliu	.double	0d+1.73436202602475619845e-34	#  4 * pi/2  trailing
147*24565Szliu	.double	0d-1.68390735624352669192e-34	#  5 * pi/2  trailing
148*24565Szliu	.double	0d+2.60154303903713428430e-34	#  6 * pi/2  trailing
149*24565Szliu	.double	0d-8.16726343231148352150e-35	#  7 * pi/2  trailing
150*24565Szliu	.double	0d+3.46872405204951239689e-34	#  8 * pi/2  trailing
151*24565Szliu	.double	0d+3.90231455855570147991e-34	#  9 * pi/2  trailing
152*24565Szliu	.double	0d-3.36781471248705338384e-34	# 10 * pi/2  trailing
153*24565Szliu	.double	0d-1.06379439835298071785e-33	# 11 * pi/2  trailing
154*24565Szliu	.double	0d+5.20308607807426856861e-34	# 12 * pi/2  trailing
155*24565Szliu	.double	0d+5.63667658458045770509e-34	# 13 * pi/2  trailing
156*24565Szliu	.double	0d-1.63345268646229670430e-34	# 14 * pi/2  trailing
157*24565Szliu	.double	0d-1.19986217995610764801e-34	# 15 * pi/2  trailing
158*24565Szliu	.double	0d+6.93744810409902479378e-34	# 16 * pi/2  trailing
159*24565Szliu	.double	0d-8.03640094449267300110e-34	# 17 * pi/2  trailing
160*24565Szliu	.double	0d+7.80462911711140295982e-34	# 18 * pi/2  trailing
161*24565Szliu	.double	0d-7.16921993148029483506e-34	# 19 * pi/2  trailing
162*24565Szliu	.double	0d-6.73562942497410676769e-34	# 20 * pi/2  trailing
163*24565Szliu	.double	0d-6.30203891846791677593e-34	# 21 * pi/2  trailing
164*24565Szliu	.double	0d-2.12758879670596143570e-33	# 22 * pi/2  trailing
165*24565Szliu	.double	0d+2.53800212047402350390e-33	# 23 * pi/2  trailing
166*24565Szliu	.double	0d+1.04061721561485371372e-33	# 24 * pi/2  trailing
167*24565Szliu	.double	0d+6.11729905311472319056e-32	# 25 * pi/2  trailing
168*24565Szliu	.double	0d+1.12733531691609154102e-33	# 26 * pi/2  trailing
169*24565Szliu	.double	0d-3.70049587943078297272e-34	# 27 * pi/2  trailing
170*24565Szliu	.double	0d-3.26690537292459340860e-34	# 28 * pi/2  trailing
171*24565Szliu	.double	0d-1.14812616507957271361e-34	# 29 * pi/2  trailing
172*24565Szliu
173*24565Szliumiddle:
174*24565Szliu	.double	0d+0.00000000000000000000e+00	#  0 * pi/2  middle
175*24565Szliu	.double	0d+5.72118872610983179676e-18	#  1 * pi/2  middle
176*24565Szliu	.double	0d+1.14423774522196635935e-17	#  2 * pi/2  middle
177*24565Szliu	.double	0d-3.83475850529283316309e-17	#  3 * pi/2  middle
178*24565Szliu	.double	0d+2.28847549044393271871e-17	#  4 * pi/2  middle
179*24565Szliu	.double	0d-2.69052076007086676522e-17	#  5 * pi/2  middle
180*24565Szliu	.double	0d-7.66951701058566632618e-17	#  6 * pi/2  middle
181*24565Szliu	.double	0d-1.54628301484890040587e-17	#  7 * pi/2  middle
182*24565Szliu	.double	0d+4.57695098088786543741e-17	#  8 * pi/2  middle
183*24565Szliu	.double	0d+1.07001849766246313192e-16	#  9 * pi/2  middle
184*24565Szliu	.double	0d-5.38104152014173353044e-17	# 10 * pi/2  middle
185*24565Szliu	.double	0d-2.14622680169080983801e-16	# 11 * pi/2  middle
186*24565Szliu	.double	0d-1.53390340211713326524e-16	# 12 * pi/2  middle
187*24565Szliu	.double	0d-9.21580002543456677056e-17	# 13 * pi/2  middle
188*24565Szliu	.double	0d-3.09256602969780081173e-17	# 14 * pi/2  middle
189*24565Szliu	.double	0d+3.03066796603896507006e-17	# 15 * pi/2  middle
190*24565Szliu	.double	0d+9.15390196177573087482e-17	# 16 * pi/2  middle
191*24565Szliu	.double	0d+1.52771359575124969107e-16	# 17 * pi/2  middle
192*24565Szliu	.double	0d+2.14003699532492626384e-16	# 18 * pi/2  middle
193*24565Szliu	.double	0d-1.68853170360202329427e-16	# 19 * pi/2  middle
194*24565Szliu	.double	0d-1.07620830402834670609e-16	# 20 * pi/2  middle
195*24565Szliu	.double	0d+3.97700719404595604379e-16	# 21 * pi/2  middle
196*24565Szliu	.double	0d-4.29245360338161967602e-16	# 22 * pi/2  middle
197*24565Szliu	.double	0d-3.68013020380794313406e-16	# 23 * pi/2  middle
198*24565Szliu	.double	0d-3.06780680423426653047e-16	# 24 * pi/2  middle
199*24565Szliu	.double	0d-2.45548340466059054318e-16	# 25 * pi/2  middle
200*24565Szliu	.double	0d-1.84316000508691335411e-16	# 26 * pi/2  middle
201*24565Szliu	.double	0d-1.23083660551323675053e-16	# 27 * pi/2  middle
202*24565Szliu	.double	0d-6.18513205939560162346e-17	# 28 * pi/2  middle
203*24565Szliu	.double	0d-6.18980636588357585202e-19	# 29 * pi/2  middle
204*24565Szliu
205*24565Szliuleading:
206*24565Szliu	.double	0d+0.00000000000000000000e+00	#  0 * pi/2  leading
207*24565Szliu	.double	0d+1.57079632679489661351e+00	#  1 * pi/2  leading
208*24565Szliu	.double	0d+3.14159265358979322702e+00	#  2 * pi/2  leading
209*24565Szliu	.double	0d+4.71238898038468989604e+00	#  3 * pi/2  leading
210*24565Szliu	.double	0d+6.28318530717958645404e+00	#  4 * pi/2  leading
211*24565Szliu	.double	0d+7.85398163397448312306e+00	#  5 * pi/2  leading
212*24565Szliu	.double	0d+9.42477796076937979208e+00	#  6 * pi/2  leading
213*24565Szliu	.double	0d+1.09955742875642763501e+01	#  7 * pi/2  leading
214*24565Szliu	.double	0d+1.25663706143591729081e+01	#  8 * pi/2  leading
215*24565Szliu	.double	0d+1.41371669411540694661e+01	#  9 * pi/2  leading
216*24565Szliu	.double	0d+1.57079632679489662461e+01	# 10 * pi/2  leading
217*24565Szliu	.double	0d+1.72787595947438630262e+01	# 11 * pi/2  leading
218*24565Szliu	.double	0d+1.88495559215387595842e+01	# 12 * pi/2  leading
219*24565Szliu	.double	0d+2.04203522483336561422e+01	# 13 * pi/2  leading
220*24565Szliu	.double	0d+2.19911485751285527002e+01	# 14 * pi/2  leading
221*24565Szliu	.double	0d+2.35619449019234492582e+01	# 15 * pi/2  leading
222*24565Szliu	.double	0d+2.51327412287183458162e+01	# 16 * pi/2  leading
223*24565Szliu	.double	0d+2.67035375555132423742e+01	# 17 * pi/2  leading
224*24565Szliu	.double	0d+2.82743338823081389322e+01	# 18 * pi/2  leading
225*24565Szliu	.double	0d+2.98451302091030359342e+01	# 19 * pi/2  leading
226*24565Szliu	.double	0d+3.14159265358979324922e+01	# 20 * pi/2  leading
227*24565Szliu	.double	0d+3.29867228626928286062e+01	# 21 * pi/2  leading
228*24565Szliu	.double	0d+3.45575191894877260523e+01	# 22 * pi/2  leading
229*24565Szliu	.double	0d+3.61283155162826226103e+01	# 23 * pi/2  leading
230*24565Szliu	.double	0d+3.76991118430775191683e+01	# 24 * pi/2  leading
231*24565Szliu	.double	0d+3.92699081698724157263e+01	# 25 * pi/2  leading
232*24565Szliu	.double	0d+4.08407044966673122843e+01	# 26 * pi/2  leading
233*24565Szliu	.double	0d+4.24115008234622088423e+01	# 27 * pi/2  leading
234*24565Szliu	.double	0d+4.39822971502571054003e+01	# 28 * pi/2  leading
235*24565Szliu	.double	0d+4.55530934770520019583e+01	# 29 * pi/2  leading
236*24565Szliu
237*24565SzliutwoOverPi:
238*24565Szliu	.double	0d+6.36619772367581343076e-01
239*24565Szliu	.text
240*24565Szliu	.align	1
241*24565Szliu
242*24565Szliutable_lookup:
243*24565Szliu	muld3	r3,twoOverPi,r0
244*24565Szliu	cvtrdl	r0,r0			# n = nearest int to ((2/pi)*|x|) rnded
245*24565Szliu	mull3	$8,r0,r5
246*24565Szliu	subd2	leading(r5),r3		# p = (|x| - leading n*pi/2) exactly
247*24565Szliu	subd3	middle(r5),r3,r1	# q = (p - middle  n*pi/2) rounded
248*24565Szliu	subd2	r1,r3			# r = (p - q)
249*24565Szliu	subd2	middle(r5),r3		# r =  r - middle  n*pi/2
250*24565Szliu	subd2	trailing(r5),r3		# r =  r - trailing n*pi/2  rounded
251*24565Szliu#
252*24565Szliu#  If the original argument was negative,
253*24565Szliu#  negate the reduce argument and
254*24565Szliu#  adjust the octant/quadrant number.
255*24565Szliu#
256*24565Szliu	tstw	4(ap)
257*24565Szliu	bgeq	abs2
258*24565Szliu	mnegf	r1,r1
259*24565Szliu	mnegf	r3,r3
260*24565Szliu#	subb3	r0,$8,r0	...used for  pi/4  reduction -S.McD
261*24565Szliu	subb3	r0,$4,r0
262*24565Szliuabs2:
263*24565Szliu#
264*24565Szliu#  Clear all unneeded octant/quadrant bits.
265*24565Szliu#
266*24565Szliu#	bicb2	$0xf8,r0	...used for  pi/4  reduction -S.McD
267*24565Szliu	bicb2	$0xfc,r0
268*24565Szliu	rsb
269*24565Szliu#
270*24565Szliu#						p.0
271*24565Szliu	.text
272*24565Szliu	.align	2
273*24565Szliu#
274*24565Szliu# Only 256 (actually 225) bits of 2/pi are needed for VAX double
275*24565Szliu# precision; this was determined by enumerating all the nearest
276*24565Szliu# machine integer multiples of pi/2 using continued fractions.
277*24565Szliu# (8a8d3673775b7ff7 required the most bits.)		-S.McD
278*24565Szliu#
279*24565Szliu	.long	0
280*24565Szliu	.long	0
281*24565Szliu	.long	0xaef1586d
282*24565Szliu	.long	0x9458eaf7
283*24565Szliu	.long	0x10e4107f
284*24565Szliu	.long	0xd8a5664f
285*24565Szliu	.long	0x4d377036
286*24565Szliu	.long	0x09d5f47d
287*24565Szliu	.long	0x91054a7f
288*24565Szliu	.long	0xbe60db93
289*24565Szliubits2opi:
290*24565Szliu	.long	0x00000028
291*24565Szliu	.long	0
292*24565Szliu#
293*24565Szliu#  Note: wherever you see the word `octant', read `quadrant'.
294*24565Szliu#  Currently this code is set up for  pi/2  argument reduction.
295*24565Szliu#  By uncommenting/commenting the appropriate lines, it will
296*24565Szliu#  also serve as a  pi/4  argument reduction code.
297*24565Szliu#
298*24565Szliu
299*24565Szliu#						p.1
300*24565Szliu#  Trigred  preforms argument reduction
301*24565Szliu#  for the trigonometric functions.  It
302*24565Szliu#  takes one input argument, a D-format
303*24565Szliu#  number in  r1/r0 .  The magnitude of
304*24565Szliu#  the input argument must be greater
305*24565Szliu#  than or equal to  1/2 .  Trigred produces
306*24565Szliu#  three results:  the number of the octant
307*24565Szliu#  occupied by the argument, the reduced
308*24565Szliu#  argument, and an extension of the
309*24565Szliu#  reduced argument.  The octant number is
310*24565Szliu#  returned in  r0 .  The reduced argument
311*24565Szliu#  is returned as a D-format number in
312*24565Szliu#  r2/r1 .  An 8 bit extension of the
313*24565Szliu#  reduced argument is returned as an
314*24565Szliu#  F-format number in r3.
315*24565Szliu#						p.2
316*24565Szliutrigred:
317*24565Szliu#
318*24565Szliu#  Save the sign of the input argument.
319*24565Szliu#
320*24565Szliu	movw	r0,-(sp)
321*24565Szliu#
322*24565Szliu#  Extract the exponent field.
323*24565Szliu#
324*24565Szliu	extzv	$7,$7,r0,r2
325*24565Szliu#
326*24565Szliu#  Convert the fraction part of the input
327*24565Szliu#  argument into a quadword integer.
328*24565Szliu#
329*24565Szliu	bicw2	$0xff80,r0
330*24565Szliu	bisb2	$0x80,r0	# -S.McD
331*24565Szliu	rotl	$16,r0,r0
332*24565Szliu	rotl	$16,r1,r1
333*24565Szliu#
334*24565Szliu#  If  r1  is negative, add  1  to  r0 .  This
335*24565Szliu#  adjustment is made so that the two's
336*24565Szliu#  complement multiplications done later
337*24565Szliu#  will produce unsigned results.
338*24565Szliu#
339*24565Szliu	bgeq	posmid
340*24565Szliu	incl	r0
341*24565Szliuposmid:
342*24565Szliu#						p.3
343*24565Szliu#
344*24565Szliu#  Set  r3  to the address of the first quadword
345*24565Szliu#  used to obtain the needed portion of  2/pi .
346*24565Szliu#  The address is longword aligned to ensure
347*24565Szliu#  efficient access.
348*24565Szliu#
349*24565Szliu	ashl	$-3,r2,r3
350*24565Szliu	bicb2	$3,r3
351*24565Szliu	subl3	r3,$bits2opi,r3
352*24565Szliu#
353*24565Szliu#  Set  r2  to the size of the shift needed to
354*24565Szliu#  obtain the correct portion of  2/pi .
355*24565Szliu#
356*24565Szliu	bicb2	$0xe0,r2
357*24565Szliu#						p.4
358*24565Szliu#
359*24565Szliu#  Move the needed  128  bits of  2/pi  into
360*24565Szliu#  r11 - r8 .  Adjust the numbers to allow
361*24565Szliu#  for unsigned multiplication.
362*24565Szliu#
363*24565Szliu	ashq	r2,(r3),r10
364*24565Szliu
365*24565Szliu	subl2	$4,r3
366*24565Szliu	ashq	r2,(r3),r9
367*24565Szliu	bgeq	signoff1
368*24565Szliu	incl	r11
369*24565Szliusignoff1:
370*24565Szliu	subl2	$4,r3
371*24565Szliu	ashq	r2,(r3),r8
372*24565Szliu	bgeq	signoff2
373*24565Szliu	incl	r10
374*24565Szliusignoff2:
375*24565Szliu	subl2	$4,r3
376*24565Szliu	ashq	r2,(r3),r7
377*24565Szliu	bgeq	signoff3
378*24565Szliu	incl	r9
379*24565Szliusignoff3:
380*24565Szliu#						p.5
381*24565Szliu#
382*24565Szliu#  Multiply the contents of  r0/r1  by the
383*24565Szliu#  slice of  2/pi  in  r11 - r8 .
384*24565Szliu#
385*24565Szliu	emul	r0,r8,$0,r4
386*24565Szliu	emul	r0,r9,r5,r5
387*24565Szliu	emul	r0,r10,r6,r6
388*24565Szliu
389*24565Szliu	emul	r1,r8,$0,r7
390*24565Szliu	emul	r1,r9,r8,r8
391*24565Szliu	emul	r1,r10,r9,r9
392*24565Szliu	emul	r1,r11,r10,r10
393*24565Szliu
394*24565Szliu	addl2	r4,r8
395*24565Szliu	adwc	r5,r9
396*24565Szliu	adwc	r6,r10
397*24565Szliu#						p.6
398*24565Szliu#
399*24565Szliu#  If there are more than five leading zeros
400*24565Szliu#  after the first two quotient bits or if there
401*24565Szliu#  are more than five leading ones after the first
402*24565Szliu#  two quotient bits, generate more fraction bits.
403*24565Szliu#  Otherwise, branch to code to produce the result.
404*24565Szliu#
405*24565Szliu	bicl3	$0xc1ffffff,r10,r4
406*24565Szliu	beql	more1
407*24565Szliu	cmpl	$0x3e000000,r4
408*24565Szliu	bneq	result
409*24565Szliumore1:
410*24565Szliu#						p.7
411*24565Szliu#
412*24565Szliu#  generate another  32  result bits.
413*24565Szliu#
414*24565Szliu	subl2	$4,r3
415*24565Szliu	ashq	r2,(r3),r5
416*24565Szliu	bgeq	signoff4
417*24565Szliu
418*24565Szliu	emul	r1,r6,$0,r4
419*24565Szliu	addl2	r1,r5
420*24565Szliu	emul	r0,r6,r5,r5
421*24565Szliu	addl2	r0,r6
422*24565Szliu	brb	addbits1
423*24565Szliu
424*24565Szliusignoff4:
425*24565Szliu	emul	r1,r6,$0,r4
426*24565Szliu	emul	r0,r6,r5,r5
427*24565Szliu
428*24565Szliuaddbits1:
429*24565Szliu	addl2	r5,r7
430*24565Szliu	adwc	r6,r8
431*24565Szliu	adwc	$0,r9
432*24565Szliu	adwc	$0,r10
433*24565Szliu#						p.8
434*24565Szliu#
435*24565Szliu#  Check for massive cancellation.
436*24565Szliu#
437*24565Szliu	bicl3	$0xc0000000,r10,r6
438*24565Szliu#	bneq	more2			-S.McD  Test was backwards
439*24565Szliu	beql	more2
440*24565Szliu	cmpl	$0x3fffffff,r6
441*24565Szliu	bneq	result
442*24565Szliumore2:
443*24565Szliu#						p.9
444*24565Szliu#
445*24565Szliu#  If massive cancellation has occurred,
446*24565Szliu#  generate another  24  result bits.
447*24565Szliu#  Testing has shown there will always be
448*24565Szliu#  enough bits after this point.
449*24565Szliu#
450*24565Szliu	subl2	$4,r3
451*24565Szliu	ashq	r2,(r3),r5
452*24565Szliu	bgeq	signoff5
453*24565Szliu
454*24565Szliu	emul	r0,r6,r4,r5
455*24565Szliu	addl2	r0,r6
456*24565Szliu	brb	addbits2
457*24565Szliu
458*24565Szliusignoff5:
459*24565Szliu	emul	r0,r6,r4,r5
460*24565Szliu
461*24565Szliuaddbits2:
462*24565Szliu	addl2	r6,r7
463*24565Szliu	adwc	$0,r8
464*24565Szliu	adwc	$0,r9
465*24565Szliu	adwc	$0,r10
466*24565Szliu#						p.10
467*24565Szliu#
468*24565Szliu#  The following code produces the reduced
469*24565Szliu#  argument from the product bits contained
470*24565Szliu#  in  r10 - r7 .
471*24565Szliu#
472*24565Szliuresult:
473*24565Szliu#
474*24565Szliu#  Extract the octant number from  r10 .
475*24565Szliu#
476*24565Szliu#	extzv	$29,$3,r10,r0	...used for  pi/4  reduction -S.McD
477*24565Szliu	extzv	$30,$2,r10,r0
478*24565Szliu#
479*24565Szliu#  Clear the octant bits in  r10 .
480*24565Szliu#
481*24565Szliu#	bicl2	$0xe0000000,r10	...used for  pi/4  reduction -S.McD
482*24565Szliu	bicl2	$0xc0000000,r10
483*24565Szliu#
484*24565Szliu#  Zero the sign flag.
485*24565Szliu#
486*24565Szliu	clrl	r5
487*24565Szliu#						p.11
488*24565Szliu#
489*24565Szliu#  Check to see if the fraction is greater than
490*24565Szliu#  or equal to one-half.  If it is, add one
491*24565Szliu#  to the octant number, set the sign flag
492*24565Szliu#  on, and replace the fraction with  1 minus
493*24565Szliu#  the fraction.
494*24565Szliu#
495*24565Szliu#	bitl	$0x10000000,r10		...used for  pi/4  reduction -S.McD
496*24565Szliu	bitl	$0x20000000,r10
497*24565Szliu	beql	small
498*24565Szliu	incl	r0
499*24565Szliu	incl	r5
500*24565Szliu#	subl3	r10,$0x1fffffff,r10	...used for  pi/4  reduction -S.McD
501*24565Szliu	subl3	r10,$0x3fffffff,r10
502*24565Szliu	mcoml	r9,r9
503*24565Szliu	mcoml	r8,r8
504*24565Szliu	mcoml	r7,r7
505*24565Szliusmall:
506*24565Szliu#						p.12
507*24565Szliu#
508*24565Szliu##  Test whether the first  29  bits of the ...used for  pi/4  reduction -S.McD
509*24565Szliu#  Test whether the first  30  bits of the
510*24565Szliu#  fraction are zero.
511*24565Szliu#
512*24565Szliu	tstl	r10
513*24565Szliu	beql	tiny
514*24565Szliu#
515*24565Szliu#  Find the position of the first one bit in  r10 .
516*24565Szliu#
517*24565Szliu	cvtld	r10,r1
518*24565Szliu	extzv	$7,$7,r1,r1
519*24565Szliu#
520*24565Szliu#  Compute the size of the shift needed.
521*24565Szliu#
522*24565Szliu	subl3	r1,$32,r6
523*24565Szliu#
524*24565Szliu#  Shift up the high order  64  bits of the
525*24565Szliu#  product.
526*24565Szliu#
527*24565Szliu	ashq	r6,r9,r10
528*24565Szliu	ashq	r6,r8,r9
529*24565Szliu	brb	mult
530*24565Szliu#						p.13
531*24565Szliu#
532*24565Szliu#  Test to see if the sign bit of  r9  is on.
533*24565Szliu#
534*24565Szliutiny:
535*24565Szliu	tstl	r9
536*24565Szliu	bgeq	tinier
537*24565Szliu#
538*24565Szliu#  If it is, shift the product bits up  32  bits.
539*24565Szliu#
540*24565Szliu	movl	$32,r6
541*24565Szliu	movq	r8,r10
542*24565Szliu	tstl	r10
543*24565Szliu	brb	mult
544*24565Szliu#						p.14
545*24565Szliu#
546*24565Szliu#  Test whether  r9  is zero.  It is probably
547*24565Szliu#  impossible for both  r10  and  r9  to be
548*24565Szliu#  zero, but until proven to be so, the test
549*24565Szliu#  must be made.
550*24565Szliu#
551*24565Szliutinier:
552*24565Szliu	beql	zero
553*24565Szliu#
554*24565Szliu#  Find the position of the first one bit in  r9 .
555*24565Szliu#
556*24565Szliu	cvtld	r9,r1
557*24565Szliu	extzv	$7,$7,r1,r1
558*24565Szliu#
559*24565Szliu#  Compute the size of the shift needed.
560*24565Szliu#
561*24565Szliu	subl3	r1,$32,r1
562*24565Szliu	addl3	$32,r1,r6
563*24565Szliu#
564*24565Szliu#  Shift up the high order  64  bits of the
565*24565Szliu#  product.
566*24565Szliu#
567*24565Szliu	ashq	r1,r8,r10
568*24565Szliu	ashq	r1,r7,r9
569*24565Szliu	brb	mult
570*24565Szliu#						p.15
571*24565Szliu#
572*24565Szliu#  The following code sets the reduced
573*24565Szliu#  argument to zero.
574*24565Szliu#
575*24565Szliuzero:
576*24565Szliu	clrl	r1
577*24565Szliu	clrl	r2
578*24565Szliu	clrl	r3
579*24565Szliu	brw	return
580*24565Szliu#						p.16
581*24565Szliu#
582*24565Szliu#  At this point,  r0  contains the octant number,
583*24565Szliu#  r6  indicates the number of bits the fraction
584*24565Szliu#  has been shifted,  r5  indicates the sign of
585*24565Szliu#  the fraction,  r11/r10  contain the high order
586*24565Szliu#  64  bits of the fraction, and the condition
587*24565Szliu#  codes indicate where the sign bit of  r10
588*24565Szliu#  is on.  The following code multiplies the
589*24565Szliu#  fraction by  pi/2 .
590*24565Szliu#
591*24565Szliumult:
592*24565Szliu#
593*24565Szliu#  Save  r11/r10  in  r4/r1 .		-S.McD
594*24565Szliu	movl	r11,r4
595*24565Szliu	movl	r10,r1
596*24565Szliu#
597*24565Szliu#  If the sign bit of  r10  is on, add  1  to  r11 .
598*24565Szliu#
599*24565Szliu	bgeq	signoff6
600*24565Szliu	incl	r11
601*24565Szliusignoff6:
602*24565Szliu#						p.17
603*24565Szliu#
604*24565Szliu#  Move  pi/2  into  r3/r2 .
605*24565Szliu#
606*24565Szliu	movq	$0xc90fdaa22168c235,r2
607*24565Szliu#
608*24565Szliu#  Multiply the fraction by the portion of  pi/2
609*24565Szliu#  in  r2 .
610*24565Szliu#
611*24565Szliu	emul	r2,r10,$0,r7
612*24565Szliu	emul	r2,r11,r8,r7
613*24565Szliu#
614*24565Szliu#  Multiply the fraction by the portion of  pi/2
615*24565Szliu#  in  r3 .
616*24565Szliu	emul	r3,r10,$0,r9
617*24565Szliu	emul	r3,r11,r10,r10
618*24565Szliu#
619*24565Szliu#  Add the product bits together.
620*24565Szliu#
621*24565Szliu	addl2	r7,r9
622*24565Szliu	adwc	r8,r10
623*24565Szliu	adwc	$0,r11
624*24565Szliu#
625*24565Szliu#  Compensate for not sign extending  r8  above.-S.McD
626*24565Szliu#
627*24565Szliu	tstl	r8
628*24565Szliu	bgeq	signoff6a
629*24565Szliu	decl	r11
630*24565Szliusignoff6a:
631*24565Szliu#
632*24565Szliu#  Compensate for  r11/r10  being unsigned.	-S.McD
633*24565Szliu#
634*24565Szliu	addl2	r2,r10
635*24565Szliu	adwc	r3,r11
636*24565Szliu#
637*24565Szliu#  Compensate for  r3/r2  being unsigned.	-S.McD
638*24565Szliu#
639*24565Szliu	addl2	r1,r10
640*24565Szliu	adwc	r4,r11
641*24565Szliu#						p.18
642*24565Szliu#
643*24565Szliu#  If the sign bit of  r11  is zero, shift the
644*24565Szliu#  product bits up one bit and increment  r6 .
645*24565Szliu#
646*24565Szliu	blss	signon
647*24565Szliu	incl	r6
648*24565Szliu	ashq	$1,r10,r10
649*24565Szliu	tstl	r9
650*24565Szliu	bgeq	signoff7
651*24565Szliu	incl	r10
652*24565Szliusignoff7:
653*24565Szliusignon:
654*24565Szliu#						p.19
655*24565Szliu#
656*24565Szliu#  Shift the  56  most significant product
657*24565Szliu#  bits into  r9/r8 .  The sign extension
658*24565Szliu#  will be handled later.
659*24565Szliu#
660*24565Szliu	ashq	$-8,r10,r8
661*24565Szliu#
662*24565Szliu#  Convert the low order  8  bits of  r10
663*24565Szliu#  into an F-format number.
664*24565Szliu#
665*24565Szliu	cvtbf	r10,r3
666*24565Szliu#
667*24565Szliu#  If the result of the conversion was
668*24565Szliu#  negative, add  1  to  r9/r8 .
669*24565Szliu#
670*24565Szliu	bgeq	chop
671*24565Szliu	incl	r8
672*24565Szliu	adwc	$0,r9
673*24565Szliu#
674*24565Szliu#  If  r9  is now zero, branch to special
675*24565Szliu#  code to handle that possibility.
676*24565Szliu#
677*24565Szliu	beql	carryout
678*24565Szliuchop:
679*24565Szliu#						p.20
680*24565Szliu#
681*24565Szliu#  Convert the number in  r9/r8  into
682*24565Szliu#  D-format number in  r2/r1 .
683*24565Szliu#
684*24565Szliu	rotl	$16,r8,r2
685*24565Szliu	rotl	$16,r9,r1
686*24565Szliu#
687*24565Szliu#  Set the exponent field to the appropriate
688*24565Szliu#  value.  Note that the extra bits created by
689*24565Szliu#  sign extension are now eliminated.
690*24565Szliu#
691*24565Szliu	subw3	r6,$131,r6
692*24565Szliu	insv	r6,$7,$9,r1
693*24565Szliu#
694*24565Szliu#  Set the exponent field of the F-format
695*24565Szliu#  number in  r3  to the appropriate value.
696*24565Szliu#
697*24565Szliu	tstf	r3
698*24565Szliu	beql	return
699*24565Szliu#	extzv	$7,$8,r3,r4	-S.McD
700*24565Szliu	extzv	$7,$7,r3,r4
701*24565Szliu	addw2	r4,r6
702*24565Szliu#	subw2	$217,r6		-S.McD
703*24565Szliu	subw2	$64,r6
704*24565Szliu	insv	r6,$7,$8,r3
705*24565Szliu	brb	return
706*24565Szliu#						p.21
707*24565Szliu#
708*24565Szliu#  The following code generates the appropriate
709*24565Szliu#  result for the unlikely possibility that
710*24565Szliu#  rounding the number in  r9/r8  resulted in
711*24565Szliu#  a carry out.
712*24565Szliu#
713*24565Szliucarryout:
714*24565Szliu	clrl	r1
715*24565Szliu	clrl	r2
716*24565Szliu	subw3	r6,$132,r6
717*24565Szliu	insv	r6,$7,$9,r1
718*24565Szliu	tstf	r3
719*24565Szliu	beql	return
720*24565Szliu	extzv	$7,$8,r3,r4
721*24565Szliu	addw2	r4,r6
722*24565Szliu	subw2	$218,r6
723*24565Szliu	insv	r6,$7,$8,r3
724*24565Szliu#						p.22
725*24565Szliu#
726*24565Szliu#  The following code makes an needed
727*24565Szliu#  adjustments to the signs of the
728*24565Szliu#  results or to the octant number, and
729*24565Szliu#  then returns.
730*24565Szliu#
731*24565Szliureturn:
732*24565Szliu#
733*24565Szliu#  Test if the fraction was greater than or
734*24565Szliu#  equal to  1/2 .  If so, negate the reduced
735*24565Szliu#  argument.
736*24565Szliu#
737*24565Szliu	blbc	r5,signoff8
738*24565Szliu	mnegf	r1,r1
739*24565Szliu	mnegf	r3,r3
740*24565Szliusignoff8:
741*24565Szliu#						p.23
742*24565Szliu#
743*24565Szliu#  If the original argument was negative,
744*24565Szliu#  negate the reduce argument and
745*24565Szliu#  adjust the octant number.
746*24565Szliu#
747*24565Szliu	tstw	(sp)+
748*24565Szliu	bgeq	signoff9
749*24565Szliu	mnegf	r1,r1
750*24565Szliu	mnegf	r3,r3
751*24565Szliu#	subb3	r0,$8,r0	...used for  pi/4  reduction -S.McD
752*24565Szliu	subb3	r0,$4,r0
753*24565Szliusignoff9:
754*24565Szliu#
755*24565Szliu#  Clear all unneeded octant bits.
756*24565Szliu#
757*24565Szliu#	bicb2	$0xf8,r0	...used for  pi/4  reduction -S.McD
758*24565Szliu	bicb2	$0xfc,r0
759*24565Szliu#
760*24565Szliu#  Return.
761*24565Szliu#
762*24565Szliu	rsb
763