1*61318Sbostic# Copyright (c) 1985, 1993 2*61318Sbostic# The Regents of the University of California. All rights reserved. 324565Szliu# 445308Sbostic# %sccs.include.redist.sh% 534125Sbostic# 6*61318Sbostic# @(#)argred.s 8.1 (Berkeley) 06/04/93 734125Sbostic# 824728Selefunt .data 924728Selefunt .align 2 1024728Selefunt_sccsid: 11*61318Sbostic.asciz "@(#)argred.s 1.1 (Berkeley) 8/21/85; 8.1 (ucb.elefunt) 06/04/93" 1224565Szliu 1324565Szliu# libm$argred implements Bob Corbett's argument reduction and 1424565Szliu# libm$sincos implements Peter Tang's double precision sin/cos. 1524565Szliu# 1624565Szliu# Note: The two entry points libm$argred and libm$sincos are meant 1724565Szliu# to be used only by _sin, _cos and _tan. 1824565Szliu# 1924565Szliu# method: true range reduction to [-pi/4,pi/4], P. Tang & B. Corbett 2024565Szliu# S. McDonald, April 4, 1985 2124565Szliu# 2224565Szliu .globl libm$argred 2324565Szliu .globl libm$sincos 2424565Szliu .text 2524565Szliu .align 1 2624565Szliu 2724565Szliulibm$argred: 2824565Szliu# 2924565Szliu# Compare the argument with the largest possible that can 3024565Szliu# be reduced by table lookup. r3 := |x| will be used in table_lookup . 3124565Szliu# 3224565Szliu movd r0,r3 3324565Szliu bgeq abs1 3424565Szliu mnegd r3,r3 3524565Szliuabs1: 3624565Szliu cmpd r3,$0d+4.55530934770520019583e+01 3724565Szliu blss small_arg 3824565Szliu jsb trigred 3924565Szliu rsb 4024565Szliusmall_arg: 4124565Szliu jsb table_lookup 4224565Szliu rsb 4324565Szliu# 4424565Szliu# At this point, 4524565Szliu# r0 contains the quadrant number, 0, 1, 2, or 3; 4624565Szliu# r2/r1 contains the reduced argument as a D-format number; 4724565Szliu# r3 contains a F-format extension to the reduced argument; 4824565Szliu# r4 contains a 0 or 1 corresponding to a sin or cos entry. 4924565Szliu# 5024565Szliulibm$sincos: 5124565Szliu# 5224565Szliu# Compensate for a cosine entry by adding one to the quadrant number. 5324565Szliu# 5424565Szliu addl2 r4,r0 5524565Szliu# 5624565Szliu# Polyd clobbers r5-r0 ; save X in r7/r6 . 5724565Szliu# This can be avoided by rewriting trigred . 5824565Szliu# 5924565Szliu movd r1,r6 6024565Szliu# 6124565Szliu# Likewise, save alpha in r8 . 6224565Szliu# This can be avoided by rewriting trigred . 6324565Szliu# 6424565Szliu movf r3,r8 6524565Szliu# 6624565Szliu# Odd or even quadrant? cosine if odd, sine otherwise. 6724565Szliu# Save floor(quadrant/2) in r9 ; it determines the final sign. 6824565Szliu# 6924565Szliu rotl $-1,r0,r9 7024565Szliu blss cosine 7124565Szliusine: 7224565Szliu muld2 r1,r1 # Xsq = X * X 7326924Szliu cmpw $0x2480,r1 # [zl] Xsq > 2^-56? 7426924Szliu blss 1f # [zl] yes, go ahead and do polyd 7526924Szliu clrq r1 # [zl] work around 11/780 FPA polyd bug 7626924Szliu1: 7724565Szliu polyd r1,$7,sin_coef # Q = P(Xsq) , of deg 7 7824565Szliu mulf3 $0f3.0,r8,r4 # beta = 3 * alpha 7924565Szliu mulf2 r0,r4 # beta = Q * beta 8024565Szliu addf2 r8,r4 # beta = alpha + beta 8124565Szliu muld2 r6,r0 # S(X) = X * Q 8224565Szliu# cvtfd r4,r4 ... r5 = 0 after a polyd. 8324565Szliu addd2 r4,r0 # S(X) = beta + S(X) 8424565Szliu addd2 r6,r0 # S(X) = X + S(X) 8524565Szliu brb done 8624565Szliucosine: 8724565Szliu muld2 r6,r6 # Xsq = X * X 8824565Szliu beql zero_arg 8924565Szliu mulf2 r1,r8 # beta = X * alpha 9024565Szliu polyd r6,$7,cos_coef # Q = P'(Xsq) , of deg 7 9124565Szliu subd3 r0,r8,r0 # beta = beta - Q 9224565Szliu subw2 $0x80,r6 # Xsq = Xsq / 2 9324565Szliu addd2 r0,r6 # Xsq = Xsq + beta 9424565Szliuzero_arg: 9524565Szliu subd3 r6,$0d1.0,r0 # C(X) = 1 - Xsq 9624565Szliudone: 9724565Szliu blbc r9,even 9824565Szliu mnegd r0,r0 9924565Szliueven: 10024565Szliu rsb 10124565Szliu 10224565Szliu.data 10324565Szliu.align 2 10424565Szliu 10524565Szliusin_coef: 10624565Szliu .double 0d-7.53080332264191085773e-13 # s7 = 2^-29 -1.a7f2504ffc49f8.. 10724565Szliu .double 0d+1.60573519267703489121e-10 # s6 = 2^-21 1.611adaede473c8.. 10824565Szliu .double 0d-2.50520965150706067211e-08 # s5 = 2^-1a -1.ae644921ed8382.. 10924565Szliu .double 0d+2.75573191800593885716e-06 # s4 = 2^-13 1.71de3a4b884278.. 11024565Szliu .double 0d-1.98412698411850507950e-04 # s3 = 2^-0d -1.a01a01a0125e7d.. 11124565Szliu .double 0d+8.33333333333325688985e-03 # s2 = 2^-07 1.11111111110e50 11224565Szliu .double 0d-1.66666666666666664354e-01 # s1 = 2^-03 -1.55555555555554 11324565Szliu .double 0d+0.00000000000000000000e+00 # s0 = 0 11424565Szliu 11524565Szliucos_coef: 11624565Szliu .double 0d-1.13006966202629430300e-11 # s7 = 2^-25 -1.8D9BA04D1374BE.. 11724565Szliu .double 0d+2.08746646574796004700e-09 # s6 = 2^-1D 1.1EE632650350BA.. 11824565Szliu .double 0d-2.75573073031284417300e-07 # s5 = 2^-16 -1.27E4F31411719E.. 11924565Szliu .double 0d+2.48015872682668025200e-05 # s4 = 2^-10 1.A01A0196B902E8.. 12024565Szliu .double 0d-1.38888888888464709200e-03 # s3 = 2^-0A -1.6C16C16C11FACE.. 12124565Szliu .double 0d+4.16666666666664761400e-02 # s2 = 2^-05 1.5555555555539E 12224565Szliu .double 0d+0.00000000000000000000e+00 # s1 = 0 12324565Szliu .double 0d+0.00000000000000000000e+00 # s0 = 0 12424565Szliu 12524565Szliu# 12624565Szliu# Multiples of pi/2 expressed as the sum of three doubles, 12724565Szliu# 12824565Szliu# trailing: n * pi/2 , n = 0, 1, 2, ..., 29 12924565Szliu# trailing[n] , 13024565Szliu# 13124565Szliu# middle: n * pi/2 , n = 0, 1, 2, ..., 29 13224565Szliu# middle[n] , 13324565Szliu# 13424565Szliu# leading: n * pi/2 , n = 0, 1, 2, ..., 29 13524565Szliu# leading[n] , 13624565Szliu# 13724565Szliu# where 13824565Szliu# leading[n] := (n * pi/2) rounded, 13924565Szliu# middle[n] := (n * pi/2 - leading[n]) rounded, 14024565Szliu# trailing[n] := (( n * pi/2 - leading[n]) - middle[n]) rounded . 14124565Szliu 14224565Szliutrailing: 14324565Szliu .double 0d+0.00000000000000000000e+00 # 0 * pi/2 trailing 14424565Szliu .double 0d+4.33590506506189049611e-35 # 1 * pi/2 trailing 14524565Szliu .double 0d+8.67181013012378099223e-35 # 2 * pi/2 trailing 14624565Szliu .double 0d+1.30077151951856714215e-34 # 3 * pi/2 trailing 14724565Szliu .double 0d+1.73436202602475619845e-34 # 4 * pi/2 trailing 14824565Szliu .double 0d-1.68390735624352669192e-34 # 5 * pi/2 trailing 14924565Szliu .double 0d+2.60154303903713428430e-34 # 6 * pi/2 trailing 15024565Szliu .double 0d-8.16726343231148352150e-35 # 7 * pi/2 trailing 15124565Szliu .double 0d+3.46872405204951239689e-34 # 8 * pi/2 trailing 15224565Szliu .double 0d+3.90231455855570147991e-34 # 9 * pi/2 trailing 15324565Szliu .double 0d-3.36781471248705338384e-34 # 10 * pi/2 trailing 15424565Szliu .double 0d-1.06379439835298071785e-33 # 11 * pi/2 trailing 15524565Szliu .double 0d+5.20308607807426856861e-34 # 12 * pi/2 trailing 15624565Szliu .double 0d+5.63667658458045770509e-34 # 13 * pi/2 trailing 15724565Szliu .double 0d-1.63345268646229670430e-34 # 14 * pi/2 trailing 15824565Szliu .double 0d-1.19986217995610764801e-34 # 15 * pi/2 trailing 15924565Szliu .double 0d+6.93744810409902479378e-34 # 16 * pi/2 trailing 16024565Szliu .double 0d-8.03640094449267300110e-34 # 17 * pi/2 trailing 16124565Szliu .double 0d+7.80462911711140295982e-34 # 18 * pi/2 trailing 16224565Szliu .double 0d-7.16921993148029483506e-34 # 19 * pi/2 trailing 16324565Szliu .double 0d-6.73562942497410676769e-34 # 20 * pi/2 trailing 16424565Szliu .double 0d-6.30203891846791677593e-34 # 21 * pi/2 trailing 16524565Szliu .double 0d-2.12758879670596143570e-33 # 22 * pi/2 trailing 16624565Szliu .double 0d+2.53800212047402350390e-33 # 23 * pi/2 trailing 16724565Szliu .double 0d+1.04061721561485371372e-33 # 24 * pi/2 trailing 16824565Szliu .double 0d+6.11729905311472319056e-32 # 25 * pi/2 trailing 16924565Szliu .double 0d+1.12733531691609154102e-33 # 26 * pi/2 trailing 17024565Szliu .double 0d-3.70049587943078297272e-34 # 27 * pi/2 trailing 17124565Szliu .double 0d-3.26690537292459340860e-34 # 28 * pi/2 trailing 17224565Szliu .double 0d-1.14812616507957271361e-34 # 29 * pi/2 trailing 17324565Szliu 17424565Szliumiddle: 17524565Szliu .double 0d+0.00000000000000000000e+00 # 0 * pi/2 middle 17624565Szliu .double 0d+5.72118872610983179676e-18 # 1 * pi/2 middle 17724565Szliu .double 0d+1.14423774522196635935e-17 # 2 * pi/2 middle 17824565Szliu .double 0d-3.83475850529283316309e-17 # 3 * pi/2 middle 17924565Szliu .double 0d+2.28847549044393271871e-17 # 4 * pi/2 middle 18024565Szliu .double 0d-2.69052076007086676522e-17 # 5 * pi/2 middle 18124565Szliu .double 0d-7.66951701058566632618e-17 # 6 * pi/2 middle 18224565Szliu .double 0d-1.54628301484890040587e-17 # 7 * pi/2 middle 18324565Szliu .double 0d+4.57695098088786543741e-17 # 8 * pi/2 middle 18424565Szliu .double 0d+1.07001849766246313192e-16 # 9 * pi/2 middle 18524565Szliu .double 0d-5.38104152014173353044e-17 # 10 * pi/2 middle 18624565Szliu .double 0d-2.14622680169080983801e-16 # 11 * pi/2 middle 18724565Szliu .double 0d-1.53390340211713326524e-16 # 12 * pi/2 middle 18824565Szliu .double 0d-9.21580002543456677056e-17 # 13 * pi/2 middle 18924565Szliu .double 0d-3.09256602969780081173e-17 # 14 * pi/2 middle 19024565Szliu .double 0d+3.03066796603896507006e-17 # 15 * pi/2 middle 19124565Szliu .double 0d+9.15390196177573087482e-17 # 16 * pi/2 middle 19224565Szliu .double 0d+1.52771359575124969107e-16 # 17 * pi/2 middle 19324565Szliu .double 0d+2.14003699532492626384e-16 # 18 * pi/2 middle 19424565Szliu .double 0d-1.68853170360202329427e-16 # 19 * pi/2 middle 19524565Szliu .double 0d-1.07620830402834670609e-16 # 20 * pi/2 middle 19624565Szliu .double 0d+3.97700719404595604379e-16 # 21 * pi/2 middle 19724565Szliu .double 0d-4.29245360338161967602e-16 # 22 * pi/2 middle 19824565Szliu .double 0d-3.68013020380794313406e-16 # 23 * pi/2 middle 19924565Szliu .double 0d-3.06780680423426653047e-16 # 24 * pi/2 middle 20024565Szliu .double 0d-2.45548340466059054318e-16 # 25 * pi/2 middle 20124565Szliu .double 0d-1.84316000508691335411e-16 # 26 * pi/2 middle 20224565Szliu .double 0d-1.23083660551323675053e-16 # 27 * pi/2 middle 20324565Szliu .double 0d-6.18513205939560162346e-17 # 28 * pi/2 middle 20424565Szliu .double 0d-6.18980636588357585202e-19 # 29 * pi/2 middle 20524565Szliu 20624565Szliuleading: 20724565Szliu .double 0d+0.00000000000000000000e+00 # 0 * pi/2 leading 20824565Szliu .double 0d+1.57079632679489661351e+00 # 1 * pi/2 leading 20924565Szliu .double 0d+3.14159265358979322702e+00 # 2 * pi/2 leading 21024565Szliu .double 0d+4.71238898038468989604e+00 # 3 * pi/2 leading 21124565Szliu .double 0d+6.28318530717958645404e+00 # 4 * pi/2 leading 21224565Szliu .double 0d+7.85398163397448312306e+00 # 5 * pi/2 leading 21324565Szliu .double 0d+9.42477796076937979208e+00 # 6 * pi/2 leading 21424565Szliu .double 0d+1.09955742875642763501e+01 # 7 * pi/2 leading 21524565Szliu .double 0d+1.25663706143591729081e+01 # 8 * pi/2 leading 21624565Szliu .double 0d+1.41371669411540694661e+01 # 9 * pi/2 leading 21724565Szliu .double 0d+1.57079632679489662461e+01 # 10 * pi/2 leading 21824565Szliu .double 0d+1.72787595947438630262e+01 # 11 * pi/2 leading 21924565Szliu .double 0d+1.88495559215387595842e+01 # 12 * pi/2 leading 22024565Szliu .double 0d+2.04203522483336561422e+01 # 13 * pi/2 leading 22124565Szliu .double 0d+2.19911485751285527002e+01 # 14 * pi/2 leading 22224565Szliu .double 0d+2.35619449019234492582e+01 # 15 * pi/2 leading 22324565Szliu .double 0d+2.51327412287183458162e+01 # 16 * pi/2 leading 22424565Szliu .double 0d+2.67035375555132423742e+01 # 17 * pi/2 leading 22524565Szliu .double 0d+2.82743338823081389322e+01 # 18 * pi/2 leading 22624565Szliu .double 0d+2.98451302091030359342e+01 # 19 * pi/2 leading 22724565Szliu .double 0d+3.14159265358979324922e+01 # 20 * pi/2 leading 22824565Szliu .double 0d+3.29867228626928286062e+01 # 21 * pi/2 leading 22924565Szliu .double 0d+3.45575191894877260523e+01 # 22 * pi/2 leading 23024565Szliu .double 0d+3.61283155162826226103e+01 # 23 * pi/2 leading 23124565Szliu .double 0d+3.76991118430775191683e+01 # 24 * pi/2 leading 23224565Szliu .double 0d+3.92699081698724157263e+01 # 25 * pi/2 leading 23324565Szliu .double 0d+4.08407044966673122843e+01 # 26 * pi/2 leading 23424565Szliu .double 0d+4.24115008234622088423e+01 # 27 * pi/2 leading 23524565Szliu .double 0d+4.39822971502571054003e+01 # 28 * pi/2 leading 23624565Szliu .double 0d+4.55530934770520019583e+01 # 29 * pi/2 leading 23724565Szliu 23824565SzliutwoOverPi: 23924565Szliu .double 0d+6.36619772367581343076e-01 24024565Szliu .text 24124565Szliu .align 1 24224565Szliu 24324565Szliutable_lookup: 24424565Szliu muld3 r3,twoOverPi,r0 24524565Szliu cvtrdl r0,r0 # n = nearest int to ((2/pi)*|x|) rnded 24624565Szliu mull3 $8,r0,r5 24724565Szliu subd2 leading(r5),r3 # p = (|x| - leading n*pi/2) exactly 24824565Szliu subd3 middle(r5),r3,r1 # q = (p - middle n*pi/2) rounded 24924565Szliu subd2 r1,r3 # r = (p - q) 25024565Szliu subd2 middle(r5),r3 # r = r - middle n*pi/2 25124565Szliu subd2 trailing(r5),r3 # r = r - trailing n*pi/2 rounded 25224565Szliu# 25324565Szliu# If the original argument was negative, 25424565Szliu# negate the reduce argument and 25524565Szliu# adjust the octant/quadrant number. 25624565Szliu# 25724565Szliu tstw 4(ap) 25824565Szliu bgeq abs2 25924565Szliu mnegf r1,r1 26024565Szliu mnegf r3,r3 26124565Szliu# subb3 r0,$8,r0 ...used for pi/4 reduction -S.McD 26224565Szliu subb3 r0,$4,r0 26324565Szliuabs2: 26424565Szliu# 26524565Szliu# Clear all unneeded octant/quadrant bits. 26624565Szliu# 26724565Szliu# bicb2 $0xf8,r0 ...used for pi/4 reduction -S.McD 26824565Szliu bicb2 $0xfc,r0 26924565Szliu rsb 27024565Szliu# 27124565Szliu# p.0 27224565Szliu .text 27324565Szliu .align 2 27424565Szliu# 27524565Szliu# Only 256 (actually 225) bits of 2/pi are needed for VAX double 27624565Szliu# precision; this was determined by enumerating all the nearest 27724565Szliu# machine integer multiples of pi/2 using continued fractions. 27824565Szliu# (8a8d3673775b7ff7 required the most bits.) -S.McD 27924565Szliu# 28024565Szliu .long 0 28124565Szliu .long 0 28224565Szliu .long 0xaef1586d 28324565Szliu .long 0x9458eaf7 28424565Szliu .long 0x10e4107f 28524565Szliu .long 0xd8a5664f 28624565Szliu .long 0x4d377036 28724565Szliu .long 0x09d5f47d 28824565Szliu .long 0x91054a7f 28924565Szliu .long 0xbe60db93 29024565Szliubits2opi: 29124565Szliu .long 0x00000028 29224565Szliu .long 0 29324565Szliu# 29424565Szliu# Note: wherever you see the word `octant', read `quadrant'. 29524565Szliu# Currently this code is set up for pi/2 argument reduction. 29624565Szliu# By uncommenting/commenting the appropriate lines, it will 29724565Szliu# also serve as a pi/4 argument reduction code. 29824565Szliu# 29924565Szliu 30024565Szliu# p.1 30124565Szliu# Trigred preforms argument reduction 30224565Szliu# for the trigonometric functions. It 30324565Szliu# takes one input argument, a D-format 30424565Szliu# number in r1/r0 . The magnitude of 30524565Szliu# the input argument must be greater 30624565Szliu# than or equal to 1/2 . Trigred produces 30724565Szliu# three results: the number of the octant 30824565Szliu# occupied by the argument, the reduced 30924565Szliu# argument, and an extension of the 31024565Szliu# reduced argument. The octant number is 31124565Szliu# returned in r0 . The reduced argument 31224565Szliu# is returned as a D-format number in 31324565Szliu# r2/r1 . An 8 bit extension of the 31424565Szliu# reduced argument is returned as an 31524565Szliu# F-format number in r3. 31624565Szliu# p.2 31724565Szliutrigred: 31824565Szliu# 31924565Szliu# Save the sign of the input argument. 32024565Szliu# 32124565Szliu movw r0,-(sp) 32224565Szliu# 32324565Szliu# Extract the exponent field. 32424565Szliu# 32524565Szliu extzv $7,$7,r0,r2 32624565Szliu# 32724565Szliu# Convert the fraction part of the input 32824565Szliu# argument into a quadword integer. 32924565Szliu# 33024565Szliu bicw2 $0xff80,r0 33124565Szliu bisb2 $0x80,r0 # -S.McD 33224565Szliu rotl $16,r0,r0 33324565Szliu rotl $16,r1,r1 33424565Szliu# 33524565Szliu# If r1 is negative, add 1 to r0 . This 33624565Szliu# adjustment is made so that the two's 33724565Szliu# complement multiplications done later 33824565Szliu# will produce unsigned results. 33924565Szliu# 34024565Szliu bgeq posmid 34124565Szliu incl r0 34224565Szliuposmid: 34324565Szliu# p.3 34424565Szliu# 34524565Szliu# Set r3 to the address of the first quadword 34624565Szliu# used to obtain the needed portion of 2/pi . 34724565Szliu# The address is longword aligned to ensure 34824565Szliu# efficient access. 34924565Szliu# 35024565Szliu ashl $-3,r2,r3 35124565Szliu bicb2 $3,r3 35224565Szliu subl3 r3,$bits2opi,r3 35324565Szliu# 35424565Szliu# Set r2 to the size of the shift needed to 35524565Szliu# obtain the correct portion of 2/pi . 35624565Szliu# 35724565Szliu bicb2 $0xe0,r2 35824565Szliu# p.4 35924565Szliu# 36024565Szliu# Move the needed 128 bits of 2/pi into 36124565Szliu# r11 - r8 . Adjust the numbers to allow 36224565Szliu# for unsigned multiplication. 36324565Szliu# 36424565Szliu ashq r2,(r3),r10 36524565Szliu 36624565Szliu subl2 $4,r3 36724565Szliu ashq r2,(r3),r9 36824565Szliu bgeq signoff1 36924565Szliu incl r11 37024565Szliusignoff1: 37124565Szliu subl2 $4,r3 37224565Szliu ashq r2,(r3),r8 37324565Szliu bgeq signoff2 37424565Szliu incl r10 37524565Szliusignoff2: 37624565Szliu subl2 $4,r3 37724565Szliu ashq r2,(r3),r7 37824565Szliu bgeq signoff3 37924565Szliu incl r9 38024565Szliusignoff3: 38124565Szliu# p.5 38224565Szliu# 38324565Szliu# Multiply the contents of r0/r1 by the 38424565Szliu# slice of 2/pi in r11 - r8 . 38524565Szliu# 38624565Szliu emul r0,r8,$0,r4 38724565Szliu emul r0,r9,r5,r5 38824565Szliu emul r0,r10,r6,r6 38924565Szliu 39024565Szliu emul r1,r8,$0,r7 39124565Szliu emul r1,r9,r8,r8 39224565Szliu emul r1,r10,r9,r9 39324565Szliu emul r1,r11,r10,r10 39424565Szliu 39524565Szliu addl2 r4,r8 39624565Szliu adwc r5,r9 39724565Szliu adwc r6,r10 39824565Szliu# p.6 39924565Szliu# 40024565Szliu# If there are more than five leading zeros 40124565Szliu# after the first two quotient bits or if there 40224565Szliu# are more than five leading ones after the first 40324565Szliu# two quotient bits, generate more fraction bits. 40424565Szliu# Otherwise, branch to code to produce the result. 40524565Szliu# 40624565Szliu bicl3 $0xc1ffffff,r10,r4 40724565Szliu beql more1 40824565Szliu cmpl $0x3e000000,r4 40924565Szliu bneq result 41024565Szliumore1: 41124565Szliu# p.7 41224565Szliu# 41324565Szliu# generate another 32 result bits. 41424565Szliu# 41524565Szliu subl2 $4,r3 41624565Szliu ashq r2,(r3),r5 41724565Szliu bgeq signoff4 41824565Szliu 41924565Szliu emul r1,r6,$0,r4 42024565Szliu addl2 r1,r5 42124565Szliu emul r0,r6,r5,r5 42224565Szliu addl2 r0,r6 42324565Szliu brb addbits1 42424565Szliu 42524565Szliusignoff4: 42624565Szliu emul r1,r6,$0,r4 42724565Szliu emul r0,r6,r5,r5 42824565Szliu 42924565Szliuaddbits1: 43024565Szliu addl2 r5,r7 43124565Szliu adwc r6,r8 43224565Szliu adwc $0,r9 43324565Szliu adwc $0,r10 43424565Szliu# p.8 43524565Szliu# 43624565Szliu# Check for massive cancellation. 43724565Szliu# 43824565Szliu bicl3 $0xc0000000,r10,r6 43924565Szliu# bneq more2 -S.McD Test was backwards 44024565Szliu beql more2 44124565Szliu cmpl $0x3fffffff,r6 44224565Szliu bneq result 44324565Szliumore2: 44424565Szliu# p.9 44524565Szliu# 44624565Szliu# If massive cancellation has occurred, 44724565Szliu# generate another 24 result bits. 44824565Szliu# Testing has shown there will always be 44924565Szliu# enough bits after this point. 45024565Szliu# 45124565Szliu subl2 $4,r3 45224565Szliu ashq r2,(r3),r5 45324565Szliu bgeq signoff5 45424565Szliu 45524565Szliu emul r0,r6,r4,r5 45624565Szliu addl2 r0,r6 45724565Szliu brb addbits2 45824565Szliu 45924565Szliusignoff5: 46024565Szliu emul r0,r6,r4,r5 46124565Szliu 46224565Szliuaddbits2: 46324565Szliu addl2 r6,r7 46424565Szliu adwc $0,r8 46524565Szliu adwc $0,r9 46624565Szliu adwc $0,r10 46724565Szliu# p.10 46824565Szliu# 46924565Szliu# The following code produces the reduced 47024565Szliu# argument from the product bits contained 47124565Szliu# in r10 - r7 . 47224565Szliu# 47324565Szliuresult: 47424565Szliu# 47524565Szliu# Extract the octant number from r10 . 47624565Szliu# 47724565Szliu# extzv $29,$3,r10,r0 ...used for pi/4 reduction -S.McD 47824565Szliu extzv $30,$2,r10,r0 47924565Szliu# 48024565Szliu# Clear the octant bits in r10 . 48124565Szliu# 48224565Szliu# bicl2 $0xe0000000,r10 ...used for pi/4 reduction -S.McD 48324565Szliu bicl2 $0xc0000000,r10 48424565Szliu# 48524565Szliu# Zero the sign flag. 48624565Szliu# 48724565Szliu clrl r5 48824565Szliu# p.11 48924565Szliu# 49024565Szliu# Check to see if the fraction is greater than 49124565Szliu# or equal to one-half. If it is, add one 49224565Szliu# to the octant number, set the sign flag 49324565Szliu# on, and replace the fraction with 1 minus 49424565Szliu# the fraction. 49524565Szliu# 49624565Szliu# bitl $0x10000000,r10 ...used for pi/4 reduction -S.McD 49724565Szliu bitl $0x20000000,r10 49824565Szliu beql small 49924565Szliu incl r0 50024565Szliu incl r5 50124565Szliu# subl3 r10,$0x1fffffff,r10 ...used for pi/4 reduction -S.McD 50224565Szliu subl3 r10,$0x3fffffff,r10 50324565Szliu mcoml r9,r9 50424565Szliu mcoml r8,r8 50524565Szliu mcoml r7,r7 50624565Szliusmall: 50724565Szliu# p.12 50824565Szliu# 50924565Szliu## Test whether the first 29 bits of the ...used for pi/4 reduction -S.McD 51024565Szliu# Test whether the first 30 bits of the 51124565Szliu# fraction are zero. 51224565Szliu# 51324565Szliu tstl r10 51424565Szliu beql tiny 51524565Szliu# 51624565Szliu# Find the position of the first one bit in r10 . 51724565Szliu# 51824565Szliu cvtld r10,r1 51924565Szliu extzv $7,$7,r1,r1 52024565Szliu# 52124565Szliu# Compute the size of the shift needed. 52224565Szliu# 52324565Szliu subl3 r1,$32,r6 52424565Szliu# 52524565Szliu# Shift up the high order 64 bits of the 52624565Szliu# product. 52724565Szliu# 52824565Szliu ashq r6,r9,r10 52924565Szliu ashq r6,r8,r9 53024565Szliu brb mult 53124565Szliu# p.13 53224565Szliu# 53324565Szliu# Test to see if the sign bit of r9 is on. 53424565Szliu# 53524565Szliutiny: 53624565Szliu tstl r9 53724565Szliu bgeq tinier 53824565Szliu# 53924565Szliu# If it is, shift the product bits up 32 bits. 54024565Szliu# 54124565Szliu movl $32,r6 54224565Szliu movq r8,r10 54324565Szliu tstl r10 54424565Szliu brb mult 54524565Szliu# p.14 54624565Szliu# 54724565Szliu# Test whether r9 is zero. It is probably 54824565Szliu# impossible for both r10 and r9 to be 54924565Szliu# zero, but until proven to be so, the test 55024565Szliu# must be made. 55124565Szliu# 55224565Szliutinier: 55324565Szliu beql zero 55424565Szliu# 55524565Szliu# Find the position of the first one bit in r9 . 55624565Szliu# 55724565Szliu cvtld r9,r1 55824565Szliu extzv $7,$7,r1,r1 55924565Szliu# 56024565Szliu# Compute the size of the shift needed. 56124565Szliu# 56224565Szliu subl3 r1,$32,r1 56324565Szliu addl3 $32,r1,r6 56424565Szliu# 56524565Szliu# Shift up the high order 64 bits of the 56624565Szliu# product. 56724565Szliu# 56824565Szliu ashq r1,r8,r10 56924565Szliu ashq r1,r7,r9 57024565Szliu brb mult 57124565Szliu# p.15 57224565Szliu# 57324565Szliu# The following code sets the reduced 57424565Szliu# argument to zero. 57524565Szliu# 57624565Szliuzero: 57724565Szliu clrl r1 57824565Szliu clrl r2 57924565Szliu clrl r3 58024565Szliu brw return 58124565Szliu# p.16 58224565Szliu# 58324565Szliu# At this point, r0 contains the octant number, 58424565Szliu# r6 indicates the number of bits the fraction 58524565Szliu# has been shifted, r5 indicates the sign of 58624565Szliu# the fraction, r11/r10 contain the high order 58724565Szliu# 64 bits of the fraction, and the condition 58824565Szliu# codes indicate where the sign bit of r10 58924565Szliu# is on. The following code multiplies the 59024565Szliu# fraction by pi/2 . 59124565Szliu# 59224565Szliumult: 59324565Szliu# 59424565Szliu# Save r11/r10 in r4/r1 . -S.McD 59524565Szliu movl r11,r4 59624565Szliu movl r10,r1 59724565Szliu# 59824565Szliu# If the sign bit of r10 is on, add 1 to r11 . 59924565Szliu# 60024565Szliu bgeq signoff6 60124565Szliu incl r11 60224565Szliusignoff6: 60324565Szliu# p.17 60424565Szliu# 60524565Szliu# Move pi/2 into r3/r2 . 60624565Szliu# 60724565Szliu movq $0xc90fdaa22168c235,r2 60824565Szliu# 60924565Szliu# Multiply the fraction by the portion of pi/2 61024565Szliu# in r2 . 61124565Szliu# 61224565Szliu emul r2,r10,$0,r7 61324565Szliu emul r2,r11,r8,r7 61424565Szliu# 61524565Szliu# Multiply the fraction by the portion of pi/2 61624565Szliu# in r3 . 61724565Szliu emul r3,r10,$0,r9 61824565Szliu emul r3,r11,r10,r10 61924565Szliu# 62024565Szliu# Add the product bits together. 62124565Szliu# 62224565Szliu addl2 r7,r9 62324565Szliu adwc r8,r10 62424565Szliu adwc $0,r11 62524565Szliu# 62624565Szliu# Compensate for not sign extending r8 above.-S.McD 62724565Szliu# 62824565Szliu tstl r8 62924565Szliu bgeq signoff6a 63024565Szliu decl r11 63124565Szliusignoff6a: 63224565Szliu# 63324565Szliu# Compensate for r11/r10 being unsigned. -S.McD 63424565Szliu# 63524565Szliu addl2 r2,r10 63624565Szliu adwc r3,r11 63724565Szliu# 63824565Szliu# Compensate for r3/r2 being unsigned. -S.McD 63924565Szliu# 64024565Szliu addl2 r1,r10 64124565Szliu adwc r4,r11 64224565Szliu# p.18 64324565Szliu# 64424565Szliu# If the sign bit of r11 is zero, shift the 64524565Szliu# product bits up one bit and increment r6 . 64624565Szliu# 64724565Szliu blss signon 64824565Szliu incl r6 64924565Szliu ashq $1,r10,r10 65024565Szliu tstl r9 65124565Szliu bgeq signoff7 65224565Szliu incl r10 65324565Szliusignoff7: 65424565Szliusignon: 65524565Szliu# p.19 65624565Szliu# 65724565Szliu# Shift the 56 most significant product 65824565Szliu# bits into r9/r8 . The sign extension 65924565Szliu# will be handled later. 66024565Szliu# 66124565Szliu ashq $-8,r10,r8 66224565Szliu# 66324565Szliu# Convert the low order 8 bits of r10 66424565Szliu# into an F-format number. 66524565Szliu# 66624565Szliu cvtbf r10,r3 66724565Szliu# 66824565Szliu# If the result of the conversion was 66924565Szliu# negative, add 1 to r9/r8 . 67024565Szliu# 67124565Szliu bgeq chop 67224565Szliu incl r8 67324565Szliu adwc $0,r9 67424565Szliu# 67524565Szliu# If r9 is now zero, branch to special 67624565Szliu# code to handle that possibility. 67724565Szliu# 67824565Szliu beql carryout 67924565Szliuchop: 68024565Szliu# p.20 68124565Szliu# 68224565Szliu# Convert the number in r9/r8 into 68324565Szliu# D-format number in r2/r1 . 68424565Szliu# 68524565Szliu rotl $16,r8,r2 68624565Szliu rotl $16,r9,r1 68724565Szliu# 68824565Szliu# Set the exponent field to the appropriate 68924565Szliu# value. Note that the extra bits created by 69024565Szliu# sign extension are now eliminated. 69124565Szliu# 69224565Szliu subw3 r6,$131,r6 69324565Szliu insv r6,$7,$9,r1 69424565Szliu# 69524565Szliu# Set the exponent field of the F-format 69624565Szliu# number in r3 to the appropriate value. 69724565Szliu# 69824565Szliu tstf r3 69924565Szliu beql return 70024565Szliu# extzv $7,$8,r3,r4 -S.McD 70124565Szliu extzv $7,$7,r3,r4 70224565Szliu addw2 r4,r6 70324565Szliu# subw2 $217,r6 -S.McD 70424565Szliu subw2 $64,r6 70524565Szliu insv r6,$7,$8,r3 70624565Szliu brb return 70724565Szliu# p.21 70824565Szliu# 70924565Szliu# The following code generates the appropriate 71024565Szliu# result for the unlikely possibility that 71124565Szliu# rounding the number in r9/r8 resulted in 71224565Szliu# a carry out. 71324565Szliu# 71424565Szliucarryout: 71524565Szliu clrl r1 71624565Szliu clrl r2 71724565Szliu subw3 r6,$132,r6 71824565Szliu insv r6,$7,$9,r1 71924565Szliu tstf r3 72024565Szliu beql return 72124565Szliu extzv $7,$8,r3,r4 72224565Szliu addw2 r4,r6 72324565Szliu subw2 $218,r6 72424565Szliu insv r6,$7,$8,r3 72524565Szliu# p.22 72624565Szliu# 72724565Szliu# The following code makes an needed 72824565Szliu# adjustments to the signs of the 72924565Szliu# results or to the octant number, and 73024565Szliu# then returns. 73124565Szliu# 73224565Szliureturn: 73324565Szliu# 73424565Szliu# Test if the fraction was greater than or 73524565Szliu# equal to 1/2 . If so, negate the reduced 73624565Szliu# argument. 73724565Szliu# 73824565Szliu blbc r5,signoff8 73924565Szliu mnegf r1,r1 74024565Szliu mnegf r3,r3 74124565Szliusignoff8: 74224565Szliu# p.23 74324565Szliu# 74424565Szliu# If the original argument was negative, 74524565Szliu# negate the reduce argument and 74624565Szliu# adjust the octant number. 74724565Szliu# 74824565Szliu tstw (sp)+ 74924565Szliu bgeq signoff9 75024565Szliu mnegf r1,r1 75124565Szliu mnegf r3,r3 75224565Szliu# subb3 r0,$8,r0 ...used for pi/4 reduction -S.McD 75324565Szliu subb3 r0,$4,r0 75424565Szliusignoff9: 75524565Szliu# 75624565Szliu# Clear all unneeded octant bits. 75724565Szliu# 75824565Szliu# bicb2 $0xf8,r0 ...used for pi/4 reduction -S.McD 75924565Szliu bicb2 $0xfc,r0 76024565Szliu# 76124565Szliu# Return. 76224565Szliu# 76324565Szliu rsb 764