134123Sbostic /* 224579Szliu * Copyright (c) 1985 Regents of the University of California. 334123Sbostic * All rights reserved. 434123Sbostic * 542657Sbostic * %sccs.include.redist.c% 624579Szliu */ 724579Szliu 824579Szliu #ifndef lint 9*58565Sralph static char sccsid[] = "@(#)cabs.c 5.7 (Berkeley) 03/08/93"; 1034123Sbostic #endif /* not lint */ 1124579Szliu 1224579Szliu /* HYPOT(X,Y) 1324579Szliu * RETURN THE SQUARE ROOT OF X^2 + Y^2 WHERE Z=X+iY 1424579Szliu * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS) 1524579Szliu * CODED IN C BY K.C. NG, 11/28/84; 1624579Szliu * REVISED BY K.C. NG, 7/12/85. 1724579Szliu * 1824579Szliu * Required system supported functions : 1924579Szliu * copysign(x,y) 2024579Szliu * finite(x) 2124579Szliu * scalb(x,N) 2224579Szliu * sqrt(x) 2324579Szliu * 2424579Szliu * Method : 2524579Szliu * 1. replace x by |x| and y by |y|, and swap x and 2624579Szliu * y if y > x (hence x is never smaller than y). 2724579Szliu * 2. Hypot(x,y) is computed by: 2824579Szliu * Case I, x/y > 2 2924579Szliu * 3024579Szliu * y 3124579Szliu * hypot = x + ----------------------------- 3224579Szliu * 2 3324579Szliu * sqrt ( 1 + [x/y] ) + x/y 3424579Szliu * 3524579Szliu * Case II, x/y <= 2 3624579Szliu * y 3724579Szliu * hypot = x + -------------------------------------------------- 3824579Szliu * 2 3924579Szliu * [x/y] - 2 4024579Szliu * (sqrt(2)+1) + (x-y)/y + ----------------------------- 4124579Szliu * 2 4224579Szliu * sqrt ( 1 + [x/y] ) + sqrt(2) 4324579Szliu * 4424579Szliu * 4524579Szliu * 4624579Szliu * Special cases: 4724579Szliu * hypot(x,y) is INF if x or y is +INF or -INF; else 4824579Szliu * hypot(x,y) is NAN if x or y is NAN. 4924579Szliu * 5024579Szliu * Accuracy: 5124579Szliu * hypot(x,y) returns the sqrt(x^2+y^2) with error less than 1 ulps (units 5224579Szliu * in the last place). See Kahan's "Interval Arithmetic Options in the 5324579Szliu * Proposed IEEE Floating Point Arithmetic Standard", Interval Mathematics 5424579Szliu * 1980, Edited by Karl L.E. Nickel, pp 99-128. (A faster but less accurate 5524579Szliu * code follows in comments.) In a test run with 500,000 random arguments 5624579Szliu * on a VAX, the maximum observed error was .959 ulps. 5724579Szliu * 5824579Szliu * Constants: 5924579Szliu * The hexadecimal values are the intended ones for the following constants. 6024579Szliu * The decimal values may be used, provided that the compiler will convert 6124579Szliu * from decimal to binary accurately enough to produce the hexadecimal values 6224579Szliu * shown. 6324579Szliu */ 6435681Sbostic #include "mathimpl.h" 6524579Szliu 6635681Sbostic vc(r2p1hi, 2.4142135623730950345E0 ,8279,411a,ef32,99fc, 2, .9A827999FCEF32) 6735681Sbostic vc(r2p1lo, 1.4349369327986523769E-17 ,597d,2484,754b,89b3, -55, .84597D89B3754B) 6835681Sbostic vc(sqrt2, 1.4142135623730950622E0 ,04f3,40b5,de65,33f9, 1, .B504F333F9DE65) 6924579Szliu 7035681Sbostic ic(r2p1hi, 2.4142135623730949234E0 , 1, 1.3504F333F9DE6) 7135681Sbostic ic(r2p1lo, 1.2537167179050217666E-16 , -53, 1.21165F626CDD5) 7235681Sbostic ic(sqrt2, 1.4142135623730951455E0 , 0, 1.6A09E667F3BCD) 7335681Sbostic 7435681Sbostic #ifdef vccast 7535681Sbostic #define r2p1hi vccast(r2p1hi) 7635681Sbostic #define r2p1lo vccast(r2p1lo) 7735681Sbostic #define sqrt2 vccast(sqrt2) 7835681Sbostic #endif 7935681Sbostic 8031991Szliu double 8131991Szliu hypot(x,y) 8224579Szliu double x, y; 8324579Szliu { 8435681Sbostic static const double zero=0, one=1, 8524579Szliu small=1.0E-18; /* fl(1+small)==1 */ 8635681Sbostic static const ibig=30; /* fl(1+2**(2*ibig))==1 */ 8735681Sbostic double t,r; 8835681Sbostic int exp; 8924579Szliu 9024579Szliu if(finite(x)) 9124579Szliu if(finite(y)) 9224579Szliu { 9324579Szliu x=copysign(x,one); 9424579Szliu y=copysign(y,one); 9524579Szliu if(y > x) 9624579Szliu { t=x; x=y; y=t; } 9724579Szliu if(x == zero) return(zero); 9824579Szliu if(y == zero) return(x); 9924579Szliu exp= logb(x); 10024579Szliu if(exp-(int)logb(y) > ibig ) 10124579Szliu /* raise inexact flag and return |x| */ 10224579Szliu { one+small; return(x); } 10324579Szliu 10424579Szliu /* start computing sqrt(x^2 + y^2) */ 10524579Szliu r=x-y; 10624579Szliu if(r>y) { /* x/y > 2 */ 10724579Szliu r=x/y; 10824579Szliu r=r+sqrt(one+r*r); } 10924579Szliu else { /* 1 <= x/y <= 2 */ 11024579Szliu r/=y; t=r*(r+2.0); 11124579Szliu r+=t/(sqrt2+sqrt(2.0+t)); 11224579Szliu r+=r2p1lo; r+=r2p1hi; } 11324579Szliu 11424579Szliu r=y/r; 11524579Szliu return(x+r); 11624579Szliu 11724579Szliu } 11824579Szliu 11924579Szliu else if(y==y) /* y is +-INF */ 12024579Szliu return(copysign(y,one)); 12124579Szliu else 12224579Szliu return(y); /* y is NaN and x is finite */ 12324579Szliu 12424579Szliu else if(x==x) /* x is +-INF */ 12524579Szliu return (copysign(x,one)); 12624579Szliu else if(finite(y)) 12724579Szliu return(x); /* x is NaN, y is finite */ 12831855Szliu #if !defined(vax)&&!defined(tahoe) 12924579Szliu else if(y!=y) return(y); /* x and y is NaN */ 13031855Szliu #endif /* !defined(vax)&&!defined(tahoe) */ 13124579Szliu else return(copysign(y,one)); /* y is INF */ 13224579Szliu } 13324579Szliu 13431991Szliu /* CABS(Z) 13531991Szliu * RETURN THE ABSOLUTE VALUE OF THE COMPLEX NUMBER Z = X + iY 13631991Szliu * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS) 13731991Szliu * CODED IN C BY K.C. NG, 11/28/84. 13831991Szliu * REVISED BY K.C. NG, 7/12/85. 13931991Szliu * 14031991Szliu * Required kernel function : 14131991Szliu * hypot(x,y) 14231991Szliu * 14331991Szliu * Method : 14431991Szliu * cabs(z) = hypot(x,y) . 14531991Szliu */ 14631991Szliu 147*58565Sralph struct complex { double x, y; }; 148*58565Sralph 14931991Szliu double 15031991Szliu cabs(z) 151*58565Sralph struct complex z; 15231991Szliu { 15331991Szliu return hypot(z.x,z.y); 15431991Szliu } 15531991Szliu 15631991Szliu double 15731991Szliu z_abs(z) 158*58565Sralph struct complex *z; 15931991Szliu { 16031991Szliu return hypot(z->x,z->y); 16131991Szliu } 16231991Szliu 16324579Szliu /* A faster but less accurate version of cabs(x,y) */ 16424579Szliu #if 0 16524579Szliu double hypot(x,y) 16624579Szliu double x, y; 16724579Szliu { 16835681Sbostic static const double zero=0, one=1; 16924579Szliu small=1.0E-18; /* fl(1+small)==1 */ 17035681Sbostic static const ibig=30; /* fl(1+2**(2*ibig))==1 */ 17135681Sbostic double temp; 17235681Sbostic int exp; 17324579Szliu 17424579Szliu if(finite(x)) 17524579Szliu if(finite(y)) 17624579Szliu { 17724579Szliu x=copysign(x,one); 17824579Szliu y=copysign(y,one); 17924579Szliu if(y > x) 18024579Szliu { temp=x; x=y; y=temp; } 18124579Szliu if(x == zero) return(zero); 18224579Szliu if(y == zero) return(x); 18324579Szliu exp= logb(x); 18424579Szliu x=scalb(x,-exp); 18524579Szliu if(exp-(int)logb(y) > ibig ) 18624579Szliu /* raise inexact flag and return |x| */ 18724579Szliu { one+small; return(scalb(x,exp)); } 18824579Szliu else y=scalb(y,-exp); 18924579Szliu return(scalb(sqrt(x*x+y*y),exp)); 19024579Szliu } 19124579Szliu 19224579Szliu else if(y==y) /* y is +-INF */ 19324579Szliu return(copysign(y,one)); 19424579Szliu else 19524579Szliu return(y); /* y is NaN and x is finite */ 19624579Szliu 19724579Szliu else if(x==x) /* x is +-INF */ 19824579Szliu return (copysign(x,one)); 19924579Szliu else if(finite(y)) 20024579Szliu return(x); /* x is NaN, y is finite */ 20124579Szliu else if(y!=y) return(y); /* x and y is NaN */ 20224579Szliu else return(copysign(y,one)); /* y is INF */ 20324579Szliu } 20424579Szliu #endif 205