1*34123Sbostic /* 224579Szliu * Copyright (c) 1985 Regents of the University of California. 3*34123Sbostic * All rights reserved. 4*34123Sbostic * 5*34123Sbostic * Redistribution and use in source and binary forms are permitted 6*34123Sbostic * provided that this notice is preserved and that due credit is given 7*34123Sbostic * to the University of California at Berkeley. The name of the University 8*34123Sbostic * may not be used to endorse or promote products derived from this 9*34123Sbostic * software without specific prior written permission. This software 10*34123Sbostic * is provided ``as is'' without express or implied warranty. 11*34123Sbostic * 12*34123Sbostic * All recipients should regard themselves as participants in an ongoing 13*34123Sbostic * research project and hence should feel obligated to report their 14*34123Sbostic * experiences (good or bad) with these elementary function codes, using 15*34123Sbostic * the sendbug(8) program, to the authors. 1624579Szliu */ 1724579Szliu 1824579Szliu #ifndef lint 19*34123Sbostic static char sccsid[] = "@(#)cabs.c 5.2 (Berkeley) 04/29/88"; 20*34123Sbostic #endif /* not lint */ 2124579Szliu 2224579Szliu /* HYPOT(X,Y) 2324579Szliu * RETURN THE SQUARE ROOT OF X^2 + Y^2 WHERE Z=X+iY 2424579Szliu * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS) 2524579Szliu * CODED IN C BY K.C. NG, 11/28/84; 2624579Szliu * REVISED BY K.C. NG, 7/12/85. 2724579Szliu * 2824579Szliu * Required system supported functions : 2924579Szliu * copysign(x,y) 3024579Szliu * finite(x) 3124579Szliu * scalb(x,N) 3224579Szliu * sqrt(x) 3324579Szliu * 3424579Szliu * Method : 3524579Szliu * 1. replace x by |x| and y by |y|, and swap x and 3624579Szliu * y if y > x (hence x is never smaller than y). 3724579Szliu * 2. Hypot(x,y) is computed by: 3824579Szliu * Case I, x/y > 2 3924579Szliu * 4024579Szliu * y 4124579Szliu * hypot = x + ----------------------------- 4224579Szliu * 2 4324579Szliu * sqrt ( 1 + [x/y] ) + x/y 4424579Szliu * 4524579Szliu * Case II, x/y <= 2 4624579Szliu * y 4724579Szliu * hypot = x + -------------------------------------------------- 4824579Szliu * 2 4924579Szliu * [x/y] - 2 5024579Szliu * (sqrt(2)+1) + (x-y)/y + ----------------------------- 5124579Szliu * 2 5224579Szliu * sqrt ( 1 + [x/y] ) + sqrt(2) 5324579Szliu * 5424579Szliu * 5524579Szliu * 5624579Szliu * Special cases: 5724579Szliu * hypot(x,y) is INF if x or y is +INF or -INF; else 5824579Szliu * hypot(x,y) is NAN if x or y is NAN. 5924579Szliu * 6024579Szliu * Accuracy: 6124579Szliu * hypot(x,y) returns the sqrt(x^2+y^2) with error less than 1 ulps (units 6224579Szliu * in the last place). See Kahan's "Interval Arithmetic Options in the 6324579Szliu * Proposed IEEE Floating Point Arithmetic Standard", Interval Mathematics 6424579Szliu * 1980, Edited by Karl L.E. Nickel, pp 99-128. (A faster but less accurate 6524579Szliu * code follows in comments.) In a test run with 500,000 random arguments 6624579Szliu * on a VAX, the maximum observed error was .959 ulps. 6724579Szliu * 6824579Szliu * Constants: 6924579Szliu * The hexadecimal values are the intended ones for the following constants. 7024579Szliu * The decimal values may be used, provided that the compiler will convert 7124579Szliu * from decimal to binary accurately enough to produce the hexadecimal values 7224579Szliu * shown. 7324579Szliu */ 7424579Szliu 7531855Szliu #if defined(vax)||defined(tahoe) /* VAX D format */ 7631855Szliu #ifdef vax 7731814Szliu #define _0x(A,B) 0x/**/A/**/B 7831855Szliu #else /* vax */ 7931814Szliu #define _0x(A,B) 0x/**/B/**/A 8031855Szliu #endif /* vax */ 8124579Szliu /* static double */ 8224579Szliu /* r2p1hi = 2.4142135623730950345E0 , Hex 2^ 2 * .9A827999FCEF32 */ 8324579Szliu /* r2p1lo = 1.4349369327986523769E-17 , Hex 2^-55 * .84597D89B3754B */ 8424579Szliu /* sqrt2 = 1.4142135623730950622E0 ; Hex 2^ 1 * .B504F333F9DE65 */ 8531814Szliu static long r2p1hix[] = { _0x(8279,411a), _0x(ef32,99fc)}; 8631814Szliu static long r2p1lox[] = { _0x(597d,2484), _0x(754b,89b3)}; 8731814Szliu static long sqrt2x[] = { _0x(04f3,40b5), _0x(de65,33f9)}; 8824579Szliu #define r2p1hi (*(double*)r2p1hix) 8924579Szliu #define r2p1lo (*(double*)r2p1lox) 9024579Szliu #define sqrt2 (*(double*)sqrt2x) 9131855Szliu #else /* defined(vax)||defined(tahoe) */ 9224579Szliu static double 9324579Szliu r2p1hi = 2.4142135623730949234E0 , /*Hex 2^1 * 1.3504F333F9DE6 */ 9424579Szliu r2p1lo = 1.2537167179050217666E-16 , /*Hex 2^-53 * 1.21165F626CDD5 */ 9524579Szliu sqrt2 = 1.4142135623730951455E0 ; /*Hex 2^ 0 * 1.6A09E667F3BCD */ 9631855Szliu #endif /* defined(vax)||defined(tahoe) */ 9724579Szliu 9831991Szliu double 9931991Szliu hypot(x,y) 10024579Szliu double x, y; 10124579Szliu { 10224579Szliu static double zero=0, one=1, 10324579Szliu small=1.0E-18; /* fl(1+small)==1 */ 10424579Szliu static ibig=30; /* fl(1+2**(2*ibig))==1 */ 10524579Szliu double copysign(),scalb(),logb(),sqrt(),t,r; 10624579Szliu int finite(), exp; 10724579Szliu 10824579Szliu if(finite(x)) 10924579Szliu if(finite(y)) 11024579Szliu { 11124579Szliu x=copysign(x,one); 11224579Szliu y=copysign(y,one); 11324579Szliu if(y > x) 11424579Szliu { t=x; x=y; y=t; } 11524579Szliu if(x == zero) return(zero); 11624579Szliu if(y == zero) return(x); 11724579Szliu exp= logb(x); 11824579Szliu if(exp-(int)logb(y) > ibig ) 11924579Szliu /* raise inexact flag and return |x| */ 12024579Szliu { one+small; return(x); } 12124579Szliu 12224579Szliu /* start computing sqrt(x^2 + y^2) */ 12324579Szliu r=x-y; 12424579Szliu if(r>y) { /* x/y > 2 */ 12524579Szliu r=x/y; 12624579Szliu r=r+sqrt(one+r*r); } 12724579Szliu else { /* 1 <= x/y <= 2 */ 12824579Szliu r/=y; t=r*(r+2.0); 12924579Szliu r+=t/(sqrt2+sqrt(2.0+t)); 13024579Szliu r+=r2p1lo; r+=r2p1hi; } 13124579Szliu 13224579Szliu r=y/r; 13324579Szliu return(x+r); 13424579Szliu 13524579Szliu } 13624579Szliu 13724579Szliu else if(y==y) /* y is +-INF */ 13824579Szliu return(copysign(y,one)); 13924579Szliu else 14024579Szliu return(y); /* y is NaN and x is finite */ 14124579Szliu 14224579Szliu else if(x==x) /* x is +-INF */ 14324579Szliu return (copysign(x,one)); 14424579Szliu else if(finite(y)) 14524579Szliu return(x); /* x is NaN, y is finite */ 14631855Szliu #if !defined(vax)&&!defined(tahoe) 14724579Szliu else if(y!=y) return(y); /* x and y is NaN */ 14831855Szliu #endif /* !defined(vax)&&!defined(tahoe) */ 14924579Szliu else return(copysign(y,one)); /* y is INF */ 15024579Szliu } 15124579Szliu 15231991Szliu /* CABS(Z) 15331991Szliu * RETURN THE ABSOLUTE VALUE OF THE COMPLEX NUMBER Z = X + iY 15431991Szliu * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS) 15531991Szliu * CODED IN C BY K.C. NG, 11/28/84. 15631991Szliu * REVISED BY K.C. NG, 7/12/85. 15731991Szliu * 15831991Szliu * Required kernel function : 15931991Szliu * hypot(x,y) 16031991Szliu * 16131991Szliu * Method : 16231991Szliu * cabs(z) = hypot(x,y) . 16331991Szliu */ 16431991Szliu 16531991Szliu double 16631991Szliu cabs(z) 16731991Szliu struct { double x, y;} z; 16831991Szliu { 16931991Szliu return hypot(z.x,z.y); 17031991Szliu } 17131991Szliu 17231991Szliu double 17331991Szliu z_abs(z) 17431991Szliu struct { double x,y;} *z; 17531991Szliu { 17631991Szliu return hypot(z->x,z->y); 17731991Szliu } 17831991Szliu 17924579Szliu /* A faster but less accurate version of cabs(x,y) */ 18024579Szliu #if 0 18124579Szliu double hypot(x,y) 18224579Szliu double x, y; 18324579Szliu { 18424579Szliu static double zero=0, one=1; 18524579Szliu small=1.0E-18; /* fl(1+small)==1 */ 18624579Szliu static ibig=30; /* fl(1+2**(2*ibig))==1 */ 18724579Szliu double copysign(),scalb(),logb(),sqrt(),temp; 18824579Szliu int finite(), exp; 18924579Szliu 19024579Szliu if(finite(x)) 19124579Szliu if(finite(y)) 19224579Szliu { 19324579Szliu x=copysign(x,one); 19424579Szliu y=copysign(y,one); 19524579Szliu if(y > x) 19624579Szliu { temp=x; x=y; y=temp; } 19724579Szliu if(x == zero) return(zero); 19824579Szliu if(y == zero) return(x); 19924579Szliu exp= logb(x); 20024579Szliu x=scalb(x,-exp); 20124579Szliu if(exp-(int)logb(y) > ibig ) 20224579Szliu /* raise inexact flag and return |x| */ 20324579Szliu { one+small; return(scalb(x,exp)); } 20424579Szliu else y=scalb(y,-exp); 20524579Szliu return(scalb(sqrt(x*x+y*y),exp)); 20624579Szliu } 20724579Szliu 20824579Szliu else if(y==y) /* y is +-INF */ 20924579Szliu return(copysign(y,one)); 21024579Szliu else 21124579Szliu return(y); /* y is NaN and x is finite */ 21224579Szliu 21324579Szliu else if(x==x) /* x is +-INF */ 21424579Szliu return (copysign(x,one)); 21524579Szliu else if(finite(y)) 21624579Szliu return(x); /* x is NaN, y is finite */ 21724579Szliu else if(y!=y) return(y); /* x and y is NaN */ 21824579Szliu else return(copysign(y,one)); /* y is INF */ 21924579Szliu } 22024579Szliu #endif 221