xref: /csrg-svn/lib/libm/common_source/pow.c (revision 34126)
1 /*
2  * Copyright (c) 1985 Regents of the University of California.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms are permitted
6  * provided that this notice is preserved and that due credit is given
7  * to the University of California at Berkeley. The name of the University
8  * may not be used to endorse or promote products derived from this
9  * software without specific prior written permission. This software
10  * is provided ``as is'' without express or implied warranty.
11  *
12  * All recipients should regard themselves as participants in an ongoing
13  * research project and hence should feel obligated to report their
14  * experiences (good or bad) with these elementary function codes, using
15  * the sendbug(8) program, to the authors.
16  */
17 
18 #ifndef lint
19 static char sccsid[] = "@(#)pow.c	5.2 (Berkeley) 04/29/88";
20 #endif /* not lint */
21 
22 /* POW(X,Y)
23  * RETURN X**Y
24  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
25  * CODED IN C BY K.C. NG, 1/8/85;
26  * REVISED BY K.C. NG on 7/10/85.
27  *
28  * Required system supported functions:
29  *      scalb(x,n)
30  *      logb(x)
31  *	copysign(x,y)
32  *	finite(x)
33  *	drem(x,y)
34  *
35  * Required kernel functions:
36  *	exp__E(a,c)	...return  exp(a+c) - 1 - a*a/2
37  *	log__L(x)	...return  (log(1+x) - 2s)/s, s=x/(2+x)
38  *	pow_p(x,y)	...return  +(anything)**(finite non zero)
39  *
40  * Method
41  *	1. Compute and return log(x) in three pieces:
42  *		log(x) = n*ln2 + hi + lo,
43  *	   where n is an integer.
44  *	2. Perform y*log(x) by simulating muti-precision arithmetic and
45  *	   return the answer in three pieces:
46  *		y*log(x) = m*ln2 + hi + lo,
47  *	   where m is an integer.
48  *	3. Return x**y = exp(y*log(x))
49  *		= 2^m * ( exp(hi+lo) ).
50  *
51  * Special cases:
52  *	(anything) ** 0  is 1 ;
53  *	(anything) ** 1  is itself;
54  *	(anything) ** NaN is NaN;
55  *	NaN ** (anything except 0) is NaN;
56  *	+-(anything > 1) ** +INF is +INF;
57  *	+-(anything > 1) ** -INF is +0;
58  *	+-(anything < 1) ** +INF is +0;
59  *	+-(anything < 1) ** -INF is +INF;
60  *	+-1 ** +-INF is NaN and signal INVALID;
61  *	+0 ** +(anything except 0, NaN)  is +0;
62  *	-0 ** +(anything except 0, NaN, odd integer)  is +0;
63  *	+0 ** -(anything except 0, NaN)  is +INF and signal DIV-BY-ZERO;
64  *	-0 ** -(anything except 0, NaN, odd integer)  is +INF with signal;
65  *	-0 ** (odd integer) = -( +0 ** (odd integer) );
66  *	+INF ** +(anything except 0,NaN) is +INF;
67  *	+INF ** -(anything except 0,NaN) is +0;
68  *	-INF ** (odd integer) = -( +INF ** (odd integer) );
69  *	-INF ** (even integer) = ( +INF ** (even integer) );
70  *	-INF ** -(anything except integer,NaN) is NaN with signal;
71  *	-(x=anything) ** (k=integer) is (-1)**k * (x ** k);
72  *	-(anything except 0) ** (non-integer) is NaN with signal;
73  *
74  * Accuracy:
75  *	pow(x,y) returns x**y nearly rounded. In particular, on a SUN, a VAX,
76  *	and a Zilog Z8000,
77  *			pow(integer,integer)
78  *	always returns the correct integer provided it is representable.
79  *	In a test run with 100,000 random arguments with 0 < x, y < 20.0
80  *	on a VAX, the maximum observed error was 1.79 ulps (units in the
81  *	last place).
82  *
83  * Constants :
84  * The hexadecimal values are the intended ones for the following constants.
85  * The decimal values may be used, provided that the compiler will convert
86  * from decimal to binary accurately enough to produce the hexadecimal values
87  * shown.
88  */
89 
90 #if defined(vax)||defined(tahoe)	/* VAX D format */
91 #include <errno.h>
92 extern double infnan();
93 #ifdef vax
94 #define _0x(A,B)	0x/**/A/**/B
95 #else	/* vax */
96 #define _0x(A,B)	0x/**/B/**/A
97 #endif	/* vax */
98 /* static double */
99 /* ln2hi  =  6.9314718055829871446E-1    , Hex  2^  0   *  .B17217F7D00000 */
100 /* ln2lo  =  1.6465949582897081279E-12   , Hex  2^-39   *  .E7BCD5E4F1D9CC */
101 /* invln2 =  1.4426950408889634148E0     , Hex  2^  1   *  .B8AA3B295C17F1 */
102 /* sqrt2  =  1.4142135623730950622E0     ; Hex  2^  1   *  .B504F333F9DE65 */
103 static long     ln2hix[] = { _0x(7217,4031), _0x(0000,f7d0)};
104 static long     ln2lox[] = { _0x(bcd5,2ce7), _0x(d9cc,e4f1)};
105 static long    invln2x[] = { _0x(aa3b,40b8), _0x(17f1,295c)};
106 static long     sqrt2x[] = { _0x(04f3,40b5), _0x(de65,33f9)};
107 #define    ln2hi    (*(double*)ln2hix)
108 #define    ln2lo    (*(double*)ln2lox)
109 #define   invln2    (*(double*)invln2x)
110 #define    sqrt2    (*(double*)sqrt2x)
111 #else	/* defined(vax)||defined(tahoe)	*/
112 static double
113 ln2hi  =  6.9314718036912381649E-1    , /*Hex  2^ -1   *  1.62E42FEE00000 */
114 ln2lo  =  1.9082149292705877000E-10   , /*Hex  2^-33   *  1.A39EF35793C76 */
115 invln2 =  1.4426950408889633870E0     , /*Hex  2^  0   *  1.71547652B82FE */
116 sqrt2  =  1.4142135623730951455E0     ; /*Hex  2^  0   *  1.6A09E667F3BCD */
117 #endif	/* defined(vax)||defined(tahoe)	*/
118 
119 static double zero=0.0, half=1.0/2.0, one=1.0, two=2.0, negone= -1.0;
120 
121 double pow(x,y)
122 double x,y;
123 {
124 	double drem(),pow_p(),copysign(),t;
125 	int finite();
126 
127 	if     (y==zero)      return(one);
128 	else if(y==one
129 #if !defined(vax)&&!defined(tahoe)
130 		||x!=x
131 #endif	/* !defined(vax)&&!defined(tahoe) */
132 		) return( x );      /* if x is NaN or y=1 */
133 #if !defined(vax)&&!defined(tahoe)
134 	else if(y!=y)         return( y );      /* if y is NaN */
135 #endif	/* !defined(vax)&&!defined(tahoe) */
136 	else if(!finite(y))                     /* if y is INF */
137 	     if((t=copysign(x,one))==one) return(zero/zero);
138 	     else if(t>one) return((y>zero)?y:zero);
139 	     else return((y<zero)?-y:zero);
140 	else if(y==two)       return(x*x);
141 	else if(y==negone)    return(one/x);
142 
143     /* sign(x) = 1 */
144 	else if(copysign(one,x)==one) return(pow_p(x,y));
145 
146     /* sign(x)= -1 */
147 	/* if y is an even integer */
148 	else if ( (t=drem(y,two)) == zero)	return( pow_p(-x,y) );
149 
150 	/* if y is an odd integer */
151 	else if (copysign(t,one) == one) return( -pow_p(-x,y) );
152 
153 	/* Henceforth y is not an integer */
154 	else if(x==zero)	/* x is -0 */
155 	    return((y>zero)?-x:one/(-x));
156 	else {			/* return NaN */
157 #if defined(vax)||defined(tahoe)
158 	    return (infnan(EDOM));	/* NaN */
159 #else	/* defined(vax)||defined(tahoe) */
160 	    return(zero/zero);
161 #endif	/* defined(vax)||defined(tahoe) */
162 	}
163 }
164 
165 /* pow_p(x,y) return x**y for x with sign=1 and finite y */
166 static double pow_p(x,y)
167 double x,y;
168 {
169         double logb(),scalb(),copysign(),log__L(),exp__E();
170         double c,s,t,z,tx,ty;
171 #ifdef tahoe
172 	double tahoe_tmp;
173 #endif	/* tahoe */
174         float sx,sy;
175 	long k=0;
176         int n,m;
177 
178 	if(x==zero||!finite(x)) {           /* if x is +INF or +0 */
179 #if defined(vax)||defined(tahoe)
180 	     return((y>zero)?x:infnan(ERANGE));	/* if y<zero, return +INF */
181 #else	/* defined(vax)||defined(tahoe) */
182 	     return((y>zero)?x:one/x);
183 #endif	/* defined(vax)||defined(tahoe) */
184 	}
185 	if(x==1.0) return(x);	/* if x=1.0, return 1 since y is finite */
186 
187     /* reduce x to z in [sqrt(1/2)-1, sqrt(2)-1] */
188         z=scalb(x,-(n=logb(x)));
189 #if !defined(vax)&&!defined(tahoe)	/* IEEE double; subnormal number */
190         if(n <= -1022) {n += (m=logb(z)); z=scalb(z,-m);}
191 #endif	/* !defined(vax)&&!defined(tahoe) */
192         if(z >= sqrt2 ) {n += 1; z *= half;}  z -= one ;
193 
194     /* log(x) = nlog2+log(1+z) ~ nlog2 + t + tx */
195 	s=z/(two+z); c=z*z*half; tx=s*(c+log__L(s*s));
196 	t= z-(c-tx); tx += (z-t)-c;
197 
198    /* if y*log(x) is neither too big nor too small */
199 	if((s=logb(y)+logb(n+t)) < 12.0)
200 	    if(s>-60.0) {
201 
202 	/* compute y*log(x) ~ mlog2 + t + c */
203         	s=y*(n+invln2*t);
204                 m=s+copysign(half,s);   /* m := nint(y*log(x)) */
205 		k=y;
206 		if((double)k==y) {	/* if y is an integer */
207 		    k = m-k*n;
208 		    sx=t; tx+=(t-sx); }
209 		else	{		/* if y is not an integer */
210 		    k =m;
211 	 	    tx+=n*ln2lo;
212 		    sx=(c=n*ln2hi)+t; tx+=(c-sx)+t; }
213 	   /* end of checking whether k==y */
214 
215                 sy=y; ty=y-sy;          /* y ~ sy + ty */
216 #ifdef tahoe
217 		s = (tahoe_tmp = sx)*sy-k*ln2hi;
218 #else	/* tahoe */
219 		s=(double)sx*sy-k*ln2hi;        /* (sy+ty)*(sx+tx)-kln2 */
220 #endif	/* tahoe */
221 		z=(tx*ty-k*ln2lo);
222 		tx=tx*sy; ty=sx*ty;
223 		t=ty+z; t+=tx; t+=s;
224 		c= -((((t-s)-tx)-ty)-z);
225 
226 	    /* return exp(y*log(x)) */
227 		t += exp__E(t,c); return(scalb(one+t,m));
228 	     }
229 	/* end of if log(y*log(x)) > -60.0 */
230 
231 	    else
232 		/* exp(+- tiny) = 1 with inexact flag */
233 			{ln2hi+ln2lo; return(one);}
234 	    else if(copysign(one,y)*(n+invln2*t) <zero)
235 		/* exp(-(big#)) underflows to zero */
236 	        	return(scalb(one,-5000));
237 	    else
238 	        /* exp(+(big#)) overflows to INF */
239 	    		return(scalb(one, 5000));
240 
241 }
242