xref: /csrg-svn/lib/libm/common_source/pow.c (revision 31812)
1 /*
2  * Copyright (c) 1985 Regents of the University of California.
3  *
4  * Use and reproduction of this software are granted  in  accordance  with
5  * the terms and conditions specified in  the  Berkeley  Software  License
6  * Agreement (in particular, this entails acknowledgement of the programs'
7  * source, and inclusion of this notice) with the additional understanding
8  * that  all  recipients  should regard themselves as participants  in  an
9  * ongoing  research  project and hence should  feel  obligated  to report
10  * their  experiences (good or bad) with these elementary function  codes,
11  * using "sendbug 4bsd-bugs@BERKELEY", to the authors.
12  */
13 
14 #ifndef lint
15 static char sccsid[] =
16 "@(#)pow.c	4.5 (Berkeley) 8/21/85; 1.5 (ucb.elefunt) 07/10/87";
17 #endif not lint
18 
19 /* POW(X,Y)
20  * RETURN X**Y
21  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
22  * CODED IN C BY K.C. NG, 1/8/85;
23  * REVISED BY K.C. NG on 7/10/85.
24  *
25  * Required system supported functions:
26  *      scalb(x,n)
27  *      logb(x)
28  *	copysign(x,y)
29  *	finite(x)
30  *	drem(x,y)
31  *
32  * Required kernel functions:
33  *	exp__E(a,c)	...return  exp(a+c) - 1 - a*a/2
34  *	log__L(x)	...return  (log(1+x) - 2s)/s, s=x/(2+x)
35  *	pow_p(x,y)	...return  +(anything)**(finite non zero)
36  *
37  * Method
38  *	1. Compute and return log(x) in three pieces:
39  *		log(x) = n*ln2 + hi + lo,
40  *	   where n is an integer.
41  *	2. Perform y*log(x) by simulating muti-precision arithmetic and
42  *	   return the answer in three pieces:
43  *		y*log(x) = m*ln2 + hi + lo,
44  *	   where m is an integer.
45  *	3. Return x**y = exp(y*log(x))
46  *		= 2^m * ( exp(hi+lo) ).
47  *
48  * Special cases:
49  *	(anything) ** 0  is 1 ;
50  *	(anything) ** 1  is itself;
51  *	(anything) ** NaN is NaN;
52  *	NaN ** (anything except 0) is NaN;
53  *	+-(anything > 1) ** +INF is +INF;
54  *	+-(anything > 1) ** -INF is +0;
55  *	+-(anything < 1) ** +INF is +0;
56  *	+-(anything < 1) ** -INF is +INF;
57  *	+-1 ** +-INF is NaN and signal INVALID;
58  *	+0 ** +(anything except 0, NaN)  is +0;
59  *	-0 ** +(anything except 0, NaN, odd integer)  is +0;
60  *	+0 ** -(anything except 0, NaN)  is +INF and signal DIV-BY-ZERO;
61  *	-0 ** -(anything except 0, NaN, odd integer)  is +INF with signal;
62  *	-0 ** (odd integer) = -( +0 ** (odd integer) );
63  *	+INF ** +(anything except 0,NaN) is +INF;
64  *	+INF ** -(anything except 0,NaN) is +0;
65  *	-INF ** (odd integer) = -( +INF ** (odd integer) );
66  *	-INF ** (even integer) = ( +INF ** (even integer) );
67  *	-INF ** -(anything except integer,NaN) is NaN with signal;
68  *	-(x=anything) ** (k=integer) is (-1)**k * (x ** k);
69  *	-(anything except 0) ** (non-integer) is NaN with signal;
70  *
71  * Accuracy:
72  *	pow(x,y) returns x**y nearly rounded. In particular, on a SUN, a VAX,
73  *	and a Zilog Z8000,
74  *			pow(integer,integer)
75  *	always returns the correct integer provided it is representable.
76  *	In a test run with 100,000 random arguments with 0 < x, y < 20.0
77  *	on a VAX, the maximum observed error was 1.79 ulps (units in the
78  *	last place).
79  *
80  * Constants :
81  * The hexadecimal values are the intended ones for the following constants.
82  * The decimal values may be used, provided that the compiler will convert
83  * from decimal to binary accurately enough to produce the hexadecimal values
84  * shown.
85  */
86 
87 #if (defined(VAX)||defined(TAHOE))	/* VAX D format */
88 #include <errno.h>
89 extern double infnan();
90 #ifdef VAX
91 #define _0x(A,B)	0x/**/A/**/B
92 #else	/* VAX */
93 #define _0x(A,B)	0x/**/B/**/A
94 #endif	/* VAX */
95 /* static double */
96 /* ln2hi  =  6.9314718055829871446E-1    , Hex  2^  0   *  .B17217F7D00000 */
97 /* ln2lo  =  1.6465949582897081279E-12   , Hex  2^-39   *  .E7BCD5E4F1D9CC */
98 /* invln2 =  1.4426950408889634148E0     , Hex  2^  1   *  .B8AA3B295C17F1 */
99 /* sqrt2  =  1.4142135623730950622E0     ; Hex  2^  1   *  .B504F333F9DE65 */
100 static long     ln2hix[] = { _0x(7217,4031), _0x(0000,f7d0)};
101 static long     ln2lox[] = { _0x(bcd5,2ce7), _0x(d9cc,e4f1)};
102 static long    invln2x[] = { _0x(aa3b,40b8), _0x(17f1,295c)};
103 static long     sqrt2x[] = { _0x(04f3,40b5), _0x(de65,33f9)};
104 #define    ln2hi    (*(double*)ln2hix)
105 #define    ln2lo    (*(double*)ln2lox)
106 #define   invln2    (*(double*)invln2x)
107 #define    sqrt2    (*(double*)sqrt2x)
108 #else	/* IEEE double */
109 static double
110 ln2hi  =  6.9314718036912381649E-1    , /*Hex  2^ -1   *  1.62E42FEE00000 */
111 ln2lo  =  1.9082149292705877000E-10   , /*Hex  2^-33   *  1.A39EF35793C76 */
112 invln2 =  1.4426950408889633870E0     , /*Hex  2^  0   *  1.71547652B82FE */
113 sqrt2  =  1.4142135623730951455E0     ; /*Hex  2^  0   *  1.6A09E667F3BCD */
114 #endif
115 
116 static double zero=0.0, half=1.0/2.0, one=1.0, two=2.0, negone= -1.0;
117 
118 double pow(x,y)
119 double x,y;
120 {
121 	double drem(),pow_p(),copysign(),t;
122 	int finite();
123 
124 	if     (y==zero)      return(one);
125 	else if(y==one
126 #if (!defined(VAX)&&!defined(TAHOE))
127 		||x!=x
128 #endif
129 		) return( x );      /* if x is NaN or y=1 */
130 #if (!defined(VAX)&&!defined(TAHOE))
131 	else if(y!=y)         return( y );      /* if y is NaN */
132 #endif
133 	else if(!finite(y))                     /* if y is INF */
134 	     if((t=copysign(x,one))==one) return(zero/zero);
135 	     else if(t>one) return((y>zero)?y:zero);
136 	     else return((y<zero)?-y:zero);
137 	else if(y==two)       return(x*x);
138 	else if(y==negone)    return(one/x);
139 
140     /* sign(x) = 1 */
141 	else if(copysign(one,x)==one) return(pow_p(x,y));
142 
143     /* sign(x)= -1 */
144 	/* if y is an even integer */
145 	else if ( (t=drem(y,two)) == zero)	return( pow_p(-x,y) );
146 
147 	/* if y is an odd integer */
148 	else if (copysign(t,one) == one) return( -pow_p(-x,y) );
149 
150 	/* Henceforth y is not an integer */
151 	else if(x==zero)	/* x is -0 */
152 	    return((y>zero)?-x:one/(-x));
153 	else {			/* return NaN */
154 #if (defined(VAX)||defined(TAHOE))
155 	    return (infnan(EDOM));	/* NaN */
156 #else	/* IEEE double */
157 	    return(zero/zero);
158 #endif
159 	}
160 }
161 
162 /* pow_p(x,y) return x**y for x with sign=1 and finite y */
163 static double pow_p(x,y)
164 double x,y;
165 {
166         double logb(),scalb(),copysign(),log__L(),exp__E();
167         double c,s,t,z,tx,ty;
168         float sx,sy;
169 	long k=0;
170         int n,m;
171 
172 	if(x==zero||!finite(x)) {           /* if x is +INF or +0 */
173 #if (defined(VAX)||defined(TAHOE))
174 	     return((y>zero)?x:infnan(ERANGE));	/* if y<zero, return +INF */
175 #else
176 	     return((y>zero)?x:one/x);
177 #endif
178 	}
179 	if(x==1.0) return(x);	/* if x=1.0, return 1 since y is finite */
180 
181     /* reduce x to z in [sqrt(1/2)-1, sqrt(2)-1] */
182         z=scalb(x,-(n=logb(x)));
183 #if (!defined(VAX)&&!defined(TAHOE))	/* IEEE double; subnormal number */
184         if(n <= -1022) {n += (m=logb(z)); z=scalb(z,-m);}
185 #endif
186         if(z >= sqrt2 ) {n += 1; z *= half;}  z -= one ;
187 
188     /* log(x) = nlog2+log(1+z) ~ nlog2 + t + tx */
189 	s=z/(two+z); c=z*z*half; tx=s*(c+log__L(s*s));
190 	t= z-(c-tx); tx += (z-t)-c;
191 
192    /* if y*log(x) is neither too big nor too small */
193 	if((s=logb(y)+logb(n+t)) < 12.0)
194 	    if(s>-60.0) {
195 
196 	/* compute y*log(x) ~ mlog2 + t + c */
197         	s=y*(n+invln2*t);
198                 m=s+copysign(half,s);   /* m := nint(y*log(x)) */
199 		k=y;
200 		if((double)k==y) {	/* if y is an integer */
201 		    k = m-k*n;
202 		    sx=t; tx+=(t-sx); }
203 		else	{		/* if y is not an integer */
204 		    k =m;
205 	 	    tx+=n*ln2lo;
206 		    sx=(c=n*ln2hi)+t; tx+=(c-sx)+t; }
207 	   /* end of checking whether k==y */
208 
209                 sy=y; ty=y-sy;          /* y ~ sy + ty */
210 		s=(double)sx*sy-k*ln2hi;        /* (sy+ty)*(sx+tx)-kln2 */
211 		z=(tx*ty-k*ln2lo);
212 		tx=tx*sy; ty=sx*ty;
213 		t=ty+z; t+=tx; t+=s;
214 		c= -((((t-s)-tx)-ty)-z);
215 
216 	    /* return exp(y*log(x)) */
217 		t += exp__E(t,c); return(scalb(one+t,m));
218 	     }
219 	/* end of if log(y*log(x)) > -60.0 */
220 
221 	    else
222 		/* exp(+- tiny) = 1 with inexact flag */
223 			{ln2hi+ln2lo; return(one);}
224 	    else if(copysign(one,y)*(n+invln2*t) <zero)
225 		/* exp(-(big#)) underflows to zero */
226 	        	return(scalb(one,-5000));
227 	    else
228 	        /* exp(+(big#)) overflows to INF */
229 	    		return(scalb(one, 5000));
230 
231 }
232