1 /* 2 * Copyright (c) 1985 Regents of the University of California. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms are permitted 6 * provided that the above copyright notice and this paragraph are 7 * duplicated in all such forms and that any documentation, 8 * advertising materials, and other materials related to such 9 * distribution and use acknowledge that the software was developed 10 * by the University of California, Berkeley. The name of the 11 * University may not be used to endorse or promote products derived 12 * from this software without specific prior written permission. 13 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR 14 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED 15 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. 16 * 17 * All recipients should regard themselves as participants in an ongoing 18 * research project and hence should feel obligated to report their 19 * experiences (good or bad) with these elementary function codes, using 20 * the sendbug(8) program, to the authors. 21 */ 22 23 #ifndef lint 24 static char sccsid[] = "@(#)log__L.c 5.3 (Berkeley) 06/30/88"; 25 #endif /* not lint */ 26 27 /* log__L(Z) 28 * LOG(1+X) - 2S X 29 * RETURN --------------- WHERE Z = S*S, S = ------- , 0 <= Z <= .0294... 30 * S 2 + X 31 * 32 * DOUBLE PRECISION (VAX D FORMAT 56 bits or IEEE DOUBLE 53 BITS) 33 * KERNEL FUNCTION FOR LOG; TO BE USED IN LOG1P, LOG, AND POW FUNCTIONS 34 * CODED IN C BY K.C. NG, 1/19/85; 35 * REVISED BY K.C. Ng, 2/3/85, 4/16/85. 36 * 37 * Method : 38 * 1. Polynomial approximation: let s = x/(2+x). 39 * Based on log(1+x) = log(1+s) - log(1-s) 40 * = 2s + 2/3 s**3 + 2/5 s**5 + ....., 41 * 42 * (log(1+x) - 2s)/s is computed by 43 * 44 * z*(L1 + z*(L2 + z*(... (L7 + z*L8)...))) 45 * 46 * where z=s*s. (See the listing below for Lk's values.) The 47 * coefficients are obtained by a special Remez algorithm. 48 * 49 * Accuracy: 50 * Assuming no rounding error, the maximum magnitude of the approximation 51 * error (absolute) is 2**(-58.49) for IEEE double, and 2**(-63.63) 52 * for VAX D format. 53 * 54 * Constants: 55 * The hexadecimal values are the intended ones for the following constants. 56 * The decimal values may be used, provided that the compiler will convert 57 * from decimal to binary accurately enough to produce the hexadecimal values 58 * shown. 59 */ 60 61 #if defined(vax)||defined(tahoe) /* VAX D format (56 bits) */ 62 #ifdef vax 63 #define _0x(A,B) 0x/**/A/**/B 64 #else /* vax */ 65 #define _0x(A,B) 0x/**/B/**/A 66 #endif /* vax */ 67 /* static double */ 68 /* L1 = 6.6666666666666703212E-1 , Hex 2^ 0 * .AAAAAAAAAAAAC5 */ 69 /* L2 = 3.9999999999970461961E-1 , Hex 2^ -1 * .CCCCCCCCCC2684 */ 70 /* L3 = 2.8571428579395698188E-1 , Hex 2^ -1 * .92492492F85782 */ 71 /* L4 = 2.2222221233634724402E-1 , Hex 2^ -2 * .E38E3839B7AF2C */ 72 /* L5 = 1.8181879517064680057E-1 , Hex 2^ -2 * .BA2EB4CC39655E */ 73 /* L6 = 1.5382888777946145467E-1 , Hex 2^ -2 * .9D8551E8C5781D */ 74 /* L7 = 1.3338356561139403517E-1 , Hex 2^ -2 * .8895B3907FCD92 */ 75 /* L8 = 1.2500000000000000000E-1 , Hex 2^ -2 * .80000000000000 */ 76 static long L1x[] = { _0x(aaaa,402a), _0x(aac5,aaaa)}; 77 static long L2x[] = { _0x(cccc,3fcc), _0x(2684,cccc)}; 78 static long L3x[] = { _0x(4924,3f92), _0x(5782,92f8)}; 79 static long L4x[] = { _0x(8e38,3f63), _0x(af2c,39b7)}; 80 static long L5x[] = { _0x(2eb4,3f3a), _0x(655e,cc39)}; 81 static long L6x[] = { _0x(8551,3f1d), _0x(781d,e8c5)}; 82 static long L7x[] = { _0x(95b3,3f08), _0x(cd92,907f)}; 83 static long L8x[] = { _0x(0000,3f00), _0x(0000,0000)}; 84 #define L1 (*(double*)L1x) 85 #define L2 (*(double*)L2x) 86 #define L3 (*(double*)L3x) 87 #define L4 (*(double*)L4x) 88 #define L5 (*(double*)L5x) 89 #define L6 (*(double*)L6x) 90 #define L7 (*(double*)L7x) 91 #define L8 (*(double*)L8x) 92 #else /* defined(vax)||defined(tahoe) */ 93 static double 94 L1 = 6.6666666666667340202E-1 , /*Hex 2^ -1 * 1.5555555555592 */ 95 L2 = 3.9999999999416702146E-1 , /*Hex 2^ -2 * 1.999999997FF24 */ 96 L3 = 2.8571428742008753154E-1 , /*Hex 2^ -2 * 1.24924941E07B4 */ 97 L4 = 2.2222198607186277597E-1 , /*Hex 2^ -3 * 1.C71C52150BEA6 */ 98 L5 = 1.8183562745289935658E-1 , /*Hex 2^ -3 * 1.74663CC94342F */ 99 L6 = 1.5314087275331442206E-1 , /*Hex 2^ -3 * 1.39A1EC014045B */ 100 L7 = 1.4795612545334174692E-1 ; /*Hex 2^ -3 * 1.2F039F0085122 */ 101 #endif /* defined(vax)||defined(tahoe) */ 102 103 double log__L(z) 104 double z; 105 { 106 #if defined(vax)||defined(tahoe) 107 return(z*(L1+z*(L2+z*(L3+z*(L4+z*(L5+z*(L6+z*(L7+z*L8)))))))); 108 #else /* defined(vax)||defined(tahoe) */ 109 return(z*(L1+z*(L2+z*(L3+z*(L4+z*(L5+z*(L6+z*L7))))))); 110 #endif /* defined(vax)||defined(tahoe) */ 111 } 112