1 /*
2  * Copyright (c) 1985 Regents of the University of California.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms are permitted
6  * provided that the above copyright notice and this paragraph are
7  * duplicated in all such forms and that any documentation,
8  * advertising materials, and other materials related to such
9  * distribution and use acknowledge that the software was developed
10  * by the University of California, Berkeley.  The name of the
11  * University may not be used to endorse or promote products derived
12  * from this software without specific prior written permission.
13  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
14  * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
15  * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
16  *
17  * All recipients should regard themselves as participants in an ongoing
18  * research project and hence should feel obligated to report their
19  * experiences (good or bad) with these elementary function codes, using
20  * the sendbug(8) program, to the authors.
21  */
22 
23 #ifndef lint
24 static char sccsid[] = "@(#)log__L.c	5.3 (Berkeley) 06/30/88";
25 #endif /* not lint */
26 
27 /* log__L(Z)
28  *		LOG(1+X) - 2S			       X
29  * RETURN      ---------------  WHERE Z = S*S,  S = ------- , 0 <= Z <= .0294...
30  *		      S				     2 + X
31  *
32  * DOUBLE PRECISION (VAX D FORMAT 56 bits or IEEE DOUBLE 53 BITS)
33  * KERNEL FUNCTION FOR LOG; TO BE USED IN LOG1P, LOG, AND POW FUNCTIONS
34  * CODED IN C BY K.C. NG, 1/19/85;
35  * REVISED BY K.C. Ng, 2/3/85, 4/16/85.
36  *
37  * Method :
38  *	1. Polynomial approximation: let s = x/(2+x).
39  *	   Based on log(1+x) = log(1+s) - log(1-s)
40  *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
41  *
42  *	   (log(1+x) - 2s)/s is computed by
43  *
44  *	       z*(L1 + z*(L2 + z*(... (L7 + z*L8)...)))
45  *
46  *	   where z=s*s. (See the listing below for Lk's values.) The
47  *	   coefficients are obtained by a special Remez algorithm.
48  *
49  * Accuracy:
50  *	Assuming no rounding error, the maximum magnitude of the approximation
51  *	error (absolute) is 2**(-58.49) for IEEE double, and 2**(-63.63)
52  *	for VAX D format.
53  *
54  * Constants:
55  * The hexadecimal values are the intended ones for the following constants.
56  * The decimal values may be used, provided that the compiler will convert
57  * from decimal to binary accurately enough to produce the hexadecimal values
58  * shown.
59  */
60 
61 #if defined(vax)||defined(tahoe)	/* VAX D format (56 bits) */
62 #ifdef vax
63 #define _0x(A,B)	0x/**/A/**/B
64 #else	/* vax */
65 #define _0x(A,B)	0x/**/B/**/A
66 #endif	/* vax */
67 /* static double */
68 /* L1     =  6.6666666666666703212E-1    , Hex  2^  0   *  .AAAAAAAAAAAAC5 */
69 /* L2     =  3.9999999999970461961E-1    , Hex  2^ -1   *  .CCCCCCCCCC2684 */
70 /* L3     =  2.8571428579395698188E-1    , Hex  2^ -1   *  .92492492F85782 */
71 /* L4     =  2.2222221233634724402E-1    , Hex  2^ -2   *  .E38E3839B7AF2C */
72 /* L5     =  1.8181879517064680057E-1    , Hex  2^ -2   *  .BA2EB4CC39655E */
73 /* L6     =  1.5382888777946145467E-1    , Hex  2^ -2   *  .9D8551E8C5781D */
74 /* L7     =  1.3338356561139403517E-1    , Hex  2^ -2   *  .8895B3907FCD92 */
75 /* L8     =  1.2500000000000000000E-1    , Hex  2^ -2   *  .80000000000000 */
76 static long        L1x[] = { _0x(aaaa,402a), _0x(aac5,aaaa)};
77 static long        L2x[] = { _0x(cccc,3fcc), _0x(2684,cccc)};
78 static long        L3x[] = { _0x(4924,3f92), _0x(5782,92f8)};
79 static long        L4x[] = { _0x(8e38,3f63), _0x(af2c,39b7)};
80 static long        L5x[] = { _0x(2eb4,3f3a), _0x(655e,cc39)};
81 static long        L6x[] = { _0x(8551,3f1d), _0x(781d,e8c5)};
82 static long        L7x[] = { _0x(95b3,3f08), _0x(cd92,907f)};
83 static long        L8x[] = { _0x(0000,3f00), _0x(0000,0000)};
84 #define       L1    (*(double*)L1x)
85 #define       L2    (*(double*)L2x)
86 #define       L3    (*(double*)L3x)
87 #define       L4    (*(double*)L4x)
88 #define       L5    (*(double*)L5x)
89 #define       L6    (*(double*)L6x)
90 #define       L7    (*(double*)L7x)
91 #define       L8    (*(double*)L8x)
92 #else	/* defined(vax)||defined(tahoe)	*/
93 static double
94 L1     =  6.6666666666667340202E-1    , /*Hex  2^ -1   *  1.5555555555592 */
95 L2     =  3.9999999999416702146E-1    , /*Hex  2^ -2   *  1.999999997FF24 */
96 L3     =  2.8571428742008753154E-1    , /*Hex  2^ -2   *  1.24924941E07B4 */
97 L4     =  2.2222198607186277597E-1    , /*Hex  2^ -3   *  1.C71C52150BEA6 */
98 L5     =  1.8183562745289935658E-1    , /*Hex  2^ -3   *  1.74663CC94342F */
99 L6     =  1.5314087275331442206E-1    , /*Hex  2^ -3   *  1.39A1EC014045B */
100 L7     =  1.4795612545334174692E-1    ; /*Hex  2^ -3   *  1.2F039F0085122 */
101 #endif	/* defined(vax)||defined(tahoe)	*/
102 
103 double log__L(z)
104 double z;
105 {
106 #if defined(vax)||defined(tahoe)
107     return(z*(L1+z*(L2+z*(L3+z*(L4+z*(L5+z*(L6+z*(L7+z*L8))))))));
108 #else	/* defined(vax)||defined(tahoe) */
109     return(z*(L1+z*(L2+z*(L3+z*(L4+z*(L5+z*(L6+z*L7)))))));
110 #endif	/* defined(vax)||defined(tahoe) */
111 }
112