1 /*
2  * Copyright (c) 1985 Regents of the University of California.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms are permitted
6  * provided that this notice is preserved and that due credit is given
7  * to the University of California at Berkeley. The name of the University
8  * may not be used to endorse or promote products derived from this
9  * software without specific prior written permission. This software
10  * is provided ``as is'' without express or implied warranty.
11  *
12  * All recipients should regard themselves as participants in an ongoing
13  * research project and hence should feel obligated to report their
14  * experiences (good or bad) with these elementary function codes, using
15  * the sendbug(8) program, to the authors.
16  */
17 
18 #ifndef lint
19 static char sccsid[] = "@(#)log__L.c	5.2 (Berkeley) 04/29/88";
20 #endif /* not lint */
21 
22 /* log__L(Z)
23  *		LOG(1+X) - 2S			       X
24  * RETURN      ---------------  WHERE Z = S*S,  S = ------- , 0 <= Z <= .0294...
25  *		      S				     2 + X
26  *
27  * DOUBLE PRECISION (VAX D FORMAT 56 bits or IEEE DOUBLE 53 BITS)
28  * KERNEL FUNCTION FOR LOG; TO BE USED IN LOG1P, LOG, AND POW FUNCTIONS
29  * CODED IN C BY K.C. NG, 1/19/85;
30  * REVISED BY K.C. Ng, 2/3/85, 4/16/85.
31  *
32  * Method :
33  *	1. Polynomial approximation: let s = x/(2+x).
34  *	   Based on log(1+x) = log(1+s) - log(1-s)
35  *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
36  *
37  *	   (log(1+x) - 2s)/s is computed by
38  *
39  *	       z*(L1 + z*(L2 + z*(... (L7 + z*L8)...)))
40  *
41  *	   where z=s*s. (See the listing below for Lk's values.) The
42  *	   coefficients are obtained by a special Remez algorithm.
43  *
44  * Accuracy:
45  *	Assuming no rounding error, the maximum magnitude of the approximation
46  *	error (absolute) is 2**(-58.49) for IEEE double, and 2**(-63.63)
47  *	for VAX D format.
48  *
49  * Constants:
50  * The hexadecimal values are the intended ones for the following constants.
51  * The decimal values may be used, provided that the compiler will convert
52  * from decimal to binary accurately enough to produce the hexadecimal values
53  * shown.
54  */
55 
56 #if defined(vax)||defined(tahoe)	/* VAX D format (56 bits) */
57 #ifdef vax
58 #define _0x(A,B)	0x/**/A/**/B
59 #else	/* vax */
60 #define _0x(A,B)	0x/**/B/**/A
61 #endif	/* vax */
62 /* static double */
63 /* L1     =  6.6666666666666703212E-1    , Hex  2^  0   *  .AAAAAAAAAAAAC5 */
64 /* L2     =  3.9999999999970461961E-1    , Hex  2^ -1   *  .CCCCCCCCCC2684 */
65 /* L3     =  2.8571428579395698188E-1    , Hex  2^ -1   *  .92492492F85782 */
66 /* L4     =  2.2222221233634724402E-1    , Hex  2^ -2   *  .E38E3839B7AF2C */
67 /* L5     =  1.8181879517064680057E-1    , Hex  2^ -2   *  .BA2EB4CC39655E */
68 /* L6     =  1.5382888777946145467E-1    , Hex  2^ -2   *  .9D8551E8C5781D */
69 /* L7     =  1.3338356561139403517E-1    , Hex  2^ -2   *  .8895B3907FCD92 */
70 /* L8     =  1.2500000000000000000E-1    , Hex  2^ -2   *  .80000000000000 */
71 static long        L1x[] = { _0x(aaaa,402a), _0x(aac5,aaaa)};
72 static long        L2x[] = { _0x(cccc,3fcc), _0x(2684,cccc)};
73 static long        L3x[] = { _0x(4924,3f92), _0x(5782,92f8)};
74 static long        L4x[] = { _0x(8e38,3f63), _0x(af2c,39b7)};
75 static long        L5x[] = { _0x(2eb4,3f3a), _0x(655e,cc39)};
76 static long        L6x[] = { _0x(8551,3f1d), _0x(781d,e8c5)};
77 static long        L7x[] = { _0x(95b3,3f08), _0x(cd92,907f)};
78 static long        L8x[] = { _0x(0000,3f00), _0x(0000,0000)};
79 #define       L1    (*(double*)L1x)
80 #define       L2    (*(double*)L2x)
81 #define       L3    (*(double*)L3x)
82 #define       L4    (*(double*)L4x)
83 #define       L5    (*(double*)L5x)
84 #define       L6    (*(double*)L6x)
85 #define       L7    (*(double*)L7x)
86 #define       L8    (*(double*)L8x)
87 #else	/* defined(vax)||defined(tahoe)	*/
88 static double
89 L1     =  6.6666666666667340202E-1    , /*Hex  2^ -1   *  1.5555555555592 */
90 L2     =  3.9999999999416702146E-1    , /*Hex  2^ -2   *  1.999999997FF24 */
91 L3     =  2.8571428742008753154E-1    , /*Hex  2^ -2   *  1.24924941E07B4 */
92 L4     =  2.2222198607186277597E-1    , /*Hex  2^ -3   *  1.C71C52150BEA6 */
93 L5     =  1.8183562745289935658E-1    , /*Hex  2^ -3   *  1.74663CC94342F */
94 L6     =  1.5314087275331442206E-1    , /*Hex  2^ -3   *  1.39A1EC014045B */
95 L7     =  1.4795612545334174692E-1    ; /*Hex  2^ -3   *  1.2F039F0085122 */
96 #endif	/* defined(vax)||defined(tahoe)	*/
97 
98 double log__L(z)
99 double z;
100 {
101 #if defined(vax)||defined(tahoe)
102     return(z*(L1+z*(L2+z*(L3+z*(L4+z*(L5+z*(L6+z*(L7+z*L8))))))));
103 #else	/* defined(vax)||defined(tahoe) */
104     return(z*(L1+z*(L2+z*(L3+z*(L4+z*(L5+z*(L6+z*L7)))))));
105 #endif	/* defined(vax)||defined(tahoe) */
106 }
107