134126Sbostic /* 224603Szliu * Copyright (c) 1985 Regents of the University of California. 334126Sbostic * All rights reserved. 434126Sbostic * 534126Sbostic * Redistribution and use in source and binary forms are permitted 6*34931Sbostic * provided that the above copyright notice and this paragraph are 7*34931Sbostic * duplicated in all such forms and that any documentation, 8*34931Sbostic * advertising materials, and other materials related to such 9*34931Sbostic * distribution and use acknowledge that the software was developed 10*34931Sbostic * by the University of California, Berkeley. The name of the 11*34931Sbostic * University may not be used to endorse or promote products derived 12*34931Sbostic * from this software without specific prior written permission. 13*34931Sbostic * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR 14*34931Sbostic * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED 15*34931Sbostic * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. 1634126Sbostic * 1734126Sbostic * All recipients should regard themselves as participants in an ongoing 1834126Sbostic * research project and hence should feel obligated to report their 1934126Sbostic * experiences (good or bad) with these elementary function codes, using 2034126Sbostic * the sendbug(8) program, to the authors. 2124603Szliu */ 2224603Szliu 2324603Szliu #ifndef lint 24*34931Sbostic static char sccsid[] = "@(#)log1p.c 5.3 (Berkeley) 06/30/88"; 2534126Sbostic #endif /* not lint */ 2624603Szliu 2724603Szliu /* LOG1P(x) 2824603Szliu * RETURN THE LOGARITHM OF 1+x 2924603Szliu * DOUBLE PRECISION (VAX D FORMAT 56 bits, IEEE DOUBLE 53 BITS) 3024603Szliu * CODED IN C BY K.C. NG, 1/19/85; 3124603Szliu * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/24/85, 4/16/85. 3224603Szliu * 3324603Szliu * Required system supported functions: 3424603Szliu * scalb(x,n) 3524603Szliu * copysign(x,y) 3624603Szliu * logb(x) 3724603Szliu * finite(x) 3824603Szliu * 3924603Szliu * Required kernel function: 4024603Szliu * log__L(z) 4124603Szliu * 4224603Szliu * Method : 4324603Szliu * 1. Argument Reduction: find k and f such that 4424603Szliu * 1+x = 2^k * (1+f), 4524603Szliu * where sqrt(2)/2 < 1+f < sqrt(2) . 4624603Szliu * 4724603Szliu * 2. Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) 4824603Szliu * = 2s + 2/3 s**3 + 2/5 s**5 + ....., 4924603Szliu * log(1+f) is computed by 5024603Szliu * 5124603Szliu * log(1+f) = 2s + s*log__L(s*s) 5224603Szliu * where 5324603Szliu * log__L(z) = z*(L1 + z*(L2 + z*(... (L6 + z*L7)...))) 5424603Szliu * 5524603Szliu * See log__L() for the values of the coefficients. 5624603Szliu * 5724603Szliu * 3. Finally, log(1+x) = k*ln2 + log(1+f). 5824603Szliu * 5924603Szliu * Remarks 1. In step 3 n*ln2 will be stored in two floating point numbers 6024603Szliu * n*ln2hi + n*ln2lo, where ln2hi is chosen such that the last 6124603Szliu * 20 bits (for VAX D format), or the last 21 bits ( for IEEE 6224603Szliu * double) is 0. This ensures n*ln2hi is exactly representable. 6324603Szliu * 2. In step 1, f may not be representable. A correction term c 6424603Szliu * for f is computed. It follows that the correction term for 6524603Szliu * f - t (the leading term of log(1+f) in step 2) is c-c*x. We 6624603Szliu * add this correction term to n*ln2lo to attenuate the error. 6724603Szliu * 6824603Szliu * 6924603Szliu * Special cases: 7024603Szliu * log1p(x) is NaN with signal if x < -1; log1p(NaN) is NaN with no signal; 7124603Szliu * log1p(INF) is +INF; log1p(-1) is -INF with signal; 7224603Szliu * only log1p(0)=0 is exact for finite argument. 7324603Szliu * 7424603Szliu * Accuracy: 7524603Szliu * log1p(x) returns the exact log(1+x) nearly rounded. In a test run 7624603Szliu * with 1,536,000 random arguments on a VAX, the maximum observed 7724603Szliu * error was .846 ulps (units in the last place). 7824603Szliu * 7924603Szliu * Constants: 8024603Szliu * The hexadecimal values are the intended ones for the following constants. 8124603Szliu * The decimal values may be used, provided that the compiler will convert 8224603Szliu * from decimal to binary accurately enough to produce the hexadecimal values 8324603Szliu * shown. 8424603Szliu */ 8524603Szliu 8631853Szliu #if defined(vax)||defined(tahoe) /* VAX D format */ 8724603Szliu #include <errno.h> 8831853Szliu #ifdef vax 8931812Szliu #define _0x(A,B) 0x/**/A/**/B 9031853Szliu #else /* vax */ 9131812Szliu #define _0x(A,B) 0x/**/B/**/A 9231853Szliu #endif /* vax */ 9326893Selefunt /* static double */ 9424603Szliu /* ln2hi = 6.9314718055829871446E-1 , Hex 2^ 0 * .B17217F7D00000 */ 9524603Szliu /* ln2lo = 1.6465949582897081279E-12 , Hex 2^-39 * .E7BCD5E4F1D9CC */ 9624603Szliu /* sqrt2 = 1.4142135623730950622E0 ; Hex 2^ 1 * .B504F333F9DE65 */ 9731812Szliu static long ln2hix[] = { _0x(7217,4031), _0x(0000,f7d0)}; 9831812Szliu static long ln2lox[] = { _0x(bcd5,2ce7), _0x(d9cc,e4f1)}; 9931812Szliu static long sqrt2x[] = { _0x(04f3,40b5), _0x(de65,33f9)}; 10024603Szliu #define ln2hi (*(double*)ln2hix) 10124603Szliu #define ln2lo (*(double*)ln2lox) 10224603Szliu #define sqrt2 (*(double*)sqrt2x) 10331853Szliu #else /* defined(vax)||defined(tahoe) */ 10426893Selefunt static double 10524603Szliu ln2hi = 6.9314718036912381649E-1 , /*Hex 2^ -1 * 1.62E42FEE00000 */ 10624603Szliu ln2lo = 1.9082149292705877000E-10 , /*Hex 2^-33 * 1.A39EF35793C76 */ 10724603Szliu sqrt2 = 1.4142135623730951455E0 ; /*Hex 2^ 0 * 1.6A09E667F3BCD */ 10831853Szliu #endif /* defined(vax)||defined(tahoe) */ 10924603Szliu 11024603Szliu double log1p(x) 11124603Szliu double x; 11224603Szliu { 11324603Szliu static double zero=0.0, negone= -1.0, one=1.0, 11424603Szliu half=1.0/2.0, small=1.0E-20; /* 1+small == 1 */ 11524603Szliu double logb(),copysign(),scalb(),log__L(),z,s,t,c; 11624603Szliu int k,finite(); 11724603Szliu 11831853Szliu #if !defined(vax)&&!defined(tahoe) 11924603Szliu if(x!=x) return(x); /* x is NaN */ 12031853Szliu #endif /* !defined(vax)&&!defined(tahoe) */ 12124603Szliu 12224603Szliu if(finite(x)) { 12324603Szliu if( x > negone ) { 12424603Szliu 12524603Szliu /* argument reduction */ 12624603Szliu if(copysign(x,one)<small) return(x); 12724603Szliu k=logb(one+x); z=scalb(x,-k); t=scalb(one,-k); 12824603Szliu if(z+t >= sqrt2 ) 12924603Szliu { k += 1 ; z *= half; t *= half; } 13024603Szliu t += negone; x = z + t; 13124603Szliu c = (t-x)+z ; /* correction term for x */ 13224603Szliu 13324603Szliu /* compute log(1+x) */ 13424603Szliu s = x/(2+x); t = x*x*half; 13524603Szliu c += (k*ln2lo-c*x); 13624603Szliu z = c+s*(t+log__L(s*s)); 13724603Szliu x += (z - t) ; 13824603Szliu 13924603Szliu return(k*ln2hi+x); 14024603Szliu } 14124603Szliu /* end of if (x > negone) */ 14224603Szliu 14324603Szliu else { 14431853Szliu #if defined(vax)||defined(tahoe) 14524603Szliu extern double infnan(); 14624603Szliu if ( x == negone ) 14724603Szliu return (infnan(-ERANGE)); /* -INF */ 14824603Szliu else 14924603Szliu return (infnan(EDOM)); /* NaN */ 15031853Szliu #else /* defined(vax)||defined(tahoe) */ 15124603Szliu /* x = -1, return -INF with signal */ 15224603Szliu if ( x == negone ) return( negone/zero ); 15324603Szliu 15424603Szliu /* negative argument for log, return NaN with signal */ 15524603Szliu else return ( zero / zero ); 15631853Szliu #endif /* defined(vax)||defined(tahoe) */ 15724603Szliu } 15824603Szliu } 15924603Szliu /* end of if (finite(x)) */ 16024603Szliu 16124603Szliu /* log(-INF) is NaN */ 16224603Szliu else if(x<0) 16324603Szliu return(zero/zero); 16424603Szliu 16524603Szliu /* log(+INF) is INF */ 16624603Szliu else return(x); 16724603Szliu } 168