1*34126Sbostic /* 224603Szliu * Copyright (c) 1985 Regents of the University of California. 3*34126Sbostic * All rights reserved. 4*34126Sbostic * 5*34126Sbostic * Redistribution and use in source and binary forms are permitted 6*34126Sbostic * provided that this notice is preserved and that due credit is given 7*34126Sbostic * to the University of California at Berkeley. The name of the University 8*34126Sbostic * may not be used to endorse or promote products derived from this 9*34126Sbostic * software without specific prior written permission. This software 10*34126Sbostic * is provided ``as is'' without express or implied warranty. 11*34126Sbostic * 12*34126Sbostic * All recipients should regard themselves as participants in an ongoing 13*34126Sbostic * research project and hence should feel obligated to report their 14*34126Sbostic * experiences (good or bad) with these elementary function codes, using 15*34126Sbostic * the sendbug(8) program, to the authors. 1624603Szliu */ 1724603Szliu 1824603Szliu #ifndef lint 19*34126Sbostic static char sccsid[] = "@(#)log1p.c 5.2 (Berkeley) 04/29/88"; 20*34126Sbostic #endif /* not lint */ 2124603Szliu 2224603Szliu /* LOG1P(x) 2324603Szliu * RETURN THE LOGARITHM OF 1+x 2424603Szliu * DOUBLE PRECISION (VAX D FORMAT 56 bits, IEEE DOUBLE 53 BITS) 2524603Szliu * CODED IN C BY K.C. NG, 1/19/85; 2624603Szliu * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/24/85, 4/16/85. 2724603Szliu * 2824603Szliu * Required system supported functions: 2924603Szliu * scalb(x,n) 3024603Szliu * copysign(x,y) 3124603Szliu * logb(x) 3224603Szliu * finite(x) 3324603Szliu * 3424603Szliu * Required kernel function: 3524603Szliu * log__L(z) 3624603Szliu * 3724603Szliu * Method : 3824603Szliu * 1. Argument Reduction: find k and f such that 3924603Szliu * 1+x = 2^k * (1+f), 4024603Szliu * where sqrt(2)/2 < 1+f < sqrt(2) . 4124603Szliu * 4224603Szliu * 2. Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) 4324603Szliu * = 2s + 2/3 s**3 + 2/5 s**5 + ....., 4424603Szliu * log(1+f) is computed by 4524603Szliu * 4624603Szliu * log(1+f) = 2s + s*log__L(s*s) 4724603Szliu * where 4824603Szliu * log__L(z) = z*(L1 + z*(L2 + z*(... (L6 + z*L7)...))) 4924603Szliu * 5024603Szliu * See log__L() for the values of the coefficients. 5124603Szliu * 5224603Szliu * 3. Finally, log(1+x) = k*ln2 + log(1+f). 5324603Szliu * 5424603Szliu * Remarks 1. In step 3 n*ln2 will be stored in two floating point numbers 5524603Szliu * n*ln2hi + n*ln2lo, where ln2hi is chosen such that the last 5624603Szliu * 20 bits (for VAX D format), or the last 21 bits ( for IEEE 5724603Szliu * double) is 0. This ensures n*ln2hi is exactly representable. 5824603Szliu * 2. In step 1, f may not be representable. A correction term c 5924603Szliu * for f is computed. It follows that the correction term for 6024603Szliu * f - t (the leading term of log(1+f) in step 2) is c-c*x. We 6124603Szliu * add this correction term to n*ln2lo to attenuate the error. 6224603Szliu * 6324603Szliu * 6424603Szliu * Special cases: 6524603Szliu * log1p(x) is NaN with signal if x < -1; log1p(NaN) is NaN with no signal; 6624603Szliu * log1p(INF) is +INF; log1p(-1) is -INF with signal; 6724603Szliu * only log1p(0)=0 is exact for finite argument. 6824603Szliu * 6924603Szliu * Accuracy: 7024603Szliu * log1p(x) returns the exact log(1+x) nearly rounded. In a test run 7124603Szliu * with 1,536,000 random arguments on a VAX, the maximum observed 7224603Szliu * error was .846 ulps (units in the last place). 7324603Szliu * 7424603Szliu * Constants: 7524603Szliu * The hexadecimal values are the intended ones for the following constants. 7624603Szliu * The decimal values may be used, provided that the compiler will convert 7724603Szliu * from decimal to binary accurately enough to produce the hexadecimal values 7824603Szliu * shown. 7924603Szliu */ 8024603Szliu 8131853Szliu #if defined(vax)||defined(tahoe) /* VAX D format */ 8224603Szliu #include <errno.h> 8331853Szliu #ifdef vax 8431812Szliu #define _0x(A,B) 0x/**/A/**/B 8531853Szliu #else /* vax */ 8631812Szliu #define _0x(A,B) 0x/**/B/**/A 8731853Szliu #endif /* vax */ 8826893Selefunt /* static double */ 8924603Szliu /* ln2hi = 6.9314718055829871446E-1 , Hex 2^ 0 * .B17217F7D00000 */ 9024603Szliu /* ln2lo = 1.6465949582897081279E-12 , Hex 2^-39 * .E7BCD5E4F1D9CC */ 9124603Szliu /* sqrt2 = 1.4142135623730950622E0 ; Hex 2^ 1 * .B504F333F9DE65 */ 9231812Szliu static long ln2hix[] = { _0x(7217,4031), _0x(0000,f7d0)}; 9331812Szliu static long ln2lox[] = { _0x(bcd5,2ce7), _0x(d9cc,e4f1)}; 9431812Szliu static long sqrt2x[] = { _0x(04f3,40b5), _0x(de65,33f9)}; 9524603Szliu #define ln2hi (*(double*)ln2hix) 9624603Szliu #define ln2lo (*(double*)ln2lox) 9724603Szliu #define sqrt2 (*(double*)sqrt2x) 9831853Szliu #else /* defined(vax)||defined(tahoe) */ 9926893Selefunt static double 10024603Szliu ln2hi = 6.9314718036912381649E-1 , /*Hex 2^ -1 * 1.62E42FEE00000 */ 10124603Szliu ln2lo = 1.9082149292705877000E-10 , /*Hex 2^-33 * 1.A39EF35793C76 */ 10224603Szliu sqrt2 = 1.4142135623730951455E0 ; /*Hex 2^ 0 * 1.6A09E667F3BCD */ 10331853Szliu #endif /* defined(vax)||defined(tahoe) */ 10424603Szliu 10524603Szliu double log1p(x) 10624603Szliu double x; 10724603Szliu { 10824603Szliu static double zero=0.0, negone= -1.0, one=1.0, 10924603Szliu half=1.0/2.0, small=1.0E-20; /* 1+small == 1 */ 11024603Szliu double logb(),copysign(),scalb(),log__L(),z,s,t,c; 11124603Szliu int k,finite(); 11224603Szliu 11331853Szliu #if !defined(vax)&&!defined(tahoe) 11424603Szliu if(x!=x) return(x); /* x is NaN */ 11531853Szliu #endif /* !defined(vax)&&!defined(tahoe) */ 11624603Szliu 11724603Szliu if(finite(x)) { 11824603Szliu if( x > negone ) { 11924603Szliu 12024603Szliu /* argument reduction */ 12124603Szliu if(copysign(x,one)<small) return(x); 12224603Szliu k=logb(one+x); z=scalb(x,-k); t=scalb(one,-k); 12324603Szliu if(z+t >= sqrt2 ) 12424603Szliu { k += 1 ; z *= half; t *= half; } 12524603Szliu t += negone; x = z + t; 12624603Szliu c = (t-x)+z ; /* correction term for x */ 12724603Szliu 12824603Szliu /* compute log(1+x) */ 12924603Szliu s = x/(2+x); t = x*x*half; 13024603Szliu c += (k*ln2lo-c*x); 13124603Szliu z = c+s*(t+log__L(s*s)); 13224603Szliu x += (z - t) ; 13324603Szliu 13424603Szliu return(k*ln2hi+x); 13524603Szliu } 13624603Szliu /* end of if (x > negone) */ 13724603Szliu 13824603Szliu else { 13931853Szliu #if defined(vax)||defined(tahoe) 14024603Szliu extern double infnan(); 14124603Szliu if ( x == negone ) 14224603Szliu return (infnan(-ERANGE)); /* -INF */ 14324603Szliu else 14424603Szliu return (infnan(EDOM)); /* NaN */ 14531853Szliu #else /* defined(vax)||defined(tahoe) */ 14624603Szliu /* x = -1, return -INF with signal */ 14724603Szliu if ( x == negone ) return( negone/zero ); 14824603Szliu 14924603Szliu /* negative argument for log, return NaN with signal */ 15024603Szliu else return ( zero / zero ); 15131853Szliu #endif /* defined(vax)||defined(tahoe) */ 15224603Szliu } 15324603Szliu } 15424603Szliu /* end of if (finite(x)) */ 15524603Szliu 15624603Szliu /* log(-INF) is NaN */ 15724603Szliu else if(x<0) 15824603Szliu return(zero/zero); 15924603Szliu 16024603Szliu /* log(+INF) is INF */ 16124603Szliu else return(x); 16224603Szliu } 163