xref: /csrg-svn/lib/libm/common_source/log.c (revision 56955)
1 /*
2  * Copyright (c) 1992 Regents of the University of California.
3  * All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  */
7 
8 #ifndef lint
9 static char sccsid[] = "@(#)log.c	5.7 (Berkeley) 12/02/92";
10 #endif /* not lint */
11 
12 #include <math.h>
13 #include <errno.h>
14 
15 #include "log_table.h"
16 #include "dmath.h"
17 
18 /* Table-driven natural logarithm.
19  *
20  * This code was derived, with minor modifications, from:
21  *	Peter Tang, "Table-Driven Implementation of the
22  *	Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
23  *	Math Software, vol 16. no 4, pp 378-400, Dec 1990).
24  *
25  * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256,
26  * where F = j/128 for j an integer in [0, 128].
27  *
28  * log(2^m) = log2_hi*m + log2_tail*m
29  * since m is an integer, the dominant term is exact.
30  * m has at most 10 digits (for subnormal numbers),
31  * and log2_hi has 11 trailing zero bits.
32  *
33  * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h
34  * logF_hi[] + 512 is exact.
35  *
36  * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
37  * the leading term is calculated to extra precision in two
38  * parts, the larger of which adds exactly to the dominant
39  * m and F terms.
40  * There are two cases:
41  *	1. when m, j are non-zero (m | j), use absolute
42  *	   precision for the leading term.
43  *	2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
44  *	   In this case, use a relative precision of 24 bits.
45  * (This is done differently in the original paper)
46  *
47  * Special cases:
48  *	0	return signalling -Inf
49  *	neg	return signalling NaN
50  *	+Inf	return +Inf
51 */
52 
53 #if defined(vax) || defined(tahoe)
54 #define _IEEE	0
55 #define TRUNC(x) (double) (float) (x)
56 #else
57 #define _IEEE	1
58 #define TRUNC(x) *(((int *) &x) + 1) &= 0xf8000000
59 #define infnan(x) 0.0
60 #endif
61 
62 double
63 #ifdef _ANSI_SOURCE
64 log(double x)
65 #else
66 log(x) double x;
67 #endif
68 {
69 	int m, j;
70 	double F, f, g, q, u, u2, v, zero = 0.0, one = 1.0;
71 	double logb(), ldexp();
72 	volatile double u1;
73 
74 	/* Catch special cases */
75 	if (x <= 0)
76 		if (_IEEE && x == zero)	/* log(0) = -Inf */
77 			return (-one/zero);
78 		else if (_IEEE)		/* log(neg) = NaN */
79 			return (zero/zero);
80 		else if (x == zero)	/* NOT REACHED IF _IEEE */
81 			return (infnan(-ERANGE));
82 		else
83 			return (infnan(EDOM));
84 	else if (!finite(x))
85 		if (_IEEE)		/* x = NaN, Inf */
86 			return (x+x);
87 		else
88 			return (infnan(ERANGE));
89 
90 	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/
91 	/* y = F*(1 + f/F) for |f| <= 2^-8		*/
92 
93 	m = logb(x);
94 	g = ldexp(x, -m);
95 	if (_IEEE && m == -1022) {
96 		j = logb(g), m += j;
97 		g = ldexp(g, -j);
98 	}
99 	j = N*(g-1) + .5;
100 	F = (1.0/N) * j + 1;	/* F*128 is an integer in [128, 512] */
101 	f = g - F;
102 
103 	/* Approximate expansion for log(1+f/F) ~= u + q */
104 	g = 1/(2*F+f);
105 	u = 2*f*g;
106 	v = u*u;
107 	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
108 
109     /* case 1: u1 = u rounded to 2^-43 absolute.  Since u < 2^-8,
110      * 	       u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.
111      *         It also adds exactly to |m*log2_hi + log_F_head[j] | < 750
112     */
113 	if (m | j)
114 		u1 = u + 513, u1 -= 513;
115 
116     /* case 2:	|1-x| < 1/256. The m- and j- dependent terms are zero;
117      * 		u1 = u to 24 bits.
118     */
119 	else
120 		u1 = u, TRUNC(u1);
121 	u2 = (2.0*(f - F*u1) - u1*f) * g;
122 			/* u1 + u2 = 2f/(2F+f) to extra precision.	*/
123 
124 	/* log(x) = log(2^m*F*(1+f/F)) =				*/
125 	/* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q);	*/
126 	/* (exact) + (tiny)						*/
127 
128 	u1 += m*logF_head[N] + logF_head[j];		/* exact */
129 	u2 = (u2 + logF_tail[j]) + q;			/* tiny */
130 	u2 += logF_tail[N]*m;
131 	return (u1 + u2);
132 }
133 
134 /* Extra precision variant, returning
135  * struct {double a, b;}; log(x) = a+b to 63 bits, with
136  * a is rounded to 26 bits.
137  */
138 struct Double
139 #ifdef _ANSI_SOURCE
140 log__D(double x)
141 #else
142 log__D(x) double x;
143 #endif
144 {
145 	int m, j;
146 	double F, f, g, q, u, v, u2;
147 	double logb(), ldexp();
148 	volatile double u1;
149 	struct Double r;
150 
151 	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/
152 	/* y = F*(1 + f/F) for |f| <= 2^-8		*/
153 
154 	m = logb(x);
155 	g = ldexp(x, -m);
156 	if (_IEEE && m == -1022) {
157 		j = logb(g), m += j;
158 		g = ldexp(g, -j);
159 	}
160 	j = N*(g-1) + .5;
161 	F = (1.0/N) * j + 1;
162 	f = g - F;
163 
164 	g = 1/(2*F+f);
165 	u = 2*f*g;
166 	v = u*u;
167 	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
168 	if (m | j)
169 		u1 = u + 513, u1 -= 513;
170 	else
171 		u1 = u, TRUNC(u1);
172 	u2 = (2.0*(f - F*u1) - u1*f) * g;
173 
174 	u1 += m*logF_head[N] + logF_head[j];
175 
176 	u2 +=  logF_tail[j]; u2 += q;
177 	u2 += logF_tail[N]*m;
178 	r.a = u1 + u2;			/* Only difference is here */
179 	TRUNC(r.a);
180 	r.b = (u1 - r.a) + u2;
181 	return (r);
182 }
183