1 /*-
2  * Copyright (c) 1992 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  */
7 
8 #ifndef lint
9 static char sccsid[] = "@(#)lgamma.c	5.7 (Berkeley) 12/14/92";
10 #endif /* not lint */
11 
12 #include <math.h>
13 #include <errno.h>
14 
15 #include "mathimpl.h"
16 
17 /* Log gamma function.
18  * Error:  x > 0 error < 1.3ulp.
19  *	   x > 4, error < 1ulp.
20  *	   x > 9, error < .6ulp.
21  * 	   x < 0, all bets are off.
22  * Method:
23  *	x > 6:
24  *		Use the asymptotic expansion (Stirling's Formula)
25  *	0 < x < 6:
26  *		Use gamma(x+1) = x*gamma(x)
27  *		Use rational approximation in
28  *		the range 1.2, 2.5
29  *	x < 0:
30  *		Use the reflection formula,
31  *		G(1-x)G(x) = PI/sin(PI*x)
32  * Special values:
33  *	non-positive integer	returns +Inf.
34  *	NaN			returns NaN
35 */
36 #if defined(vax) || defined(tahoe)
37 /* double and float have same size exponent field */
38 #define TRUNC(x) (double) (float) (x)
39 #define _IEEE	0
40 #else
41 #define TRUNC(x) *(((int *) &x) + 1) &= 0xf8000000
42 #define _IEEE	1
43 #define infnan(x) (zero/zero)
44 #endif
45 
46 extern double log1p(double);
47 static double small_lgam(double);
48 static double large_lgam(double);
49 static double neg_lgam(double);
50 static double zero = 0.0, one = 1.0;
51 int signgam;
52 
53 #define lns2pi	.418938533204672741780329736405
54 #define UNDERFL (1e-1020 * 1e-1020)
55 
56 #define LEFT	(1.0 - (x0 + .25))
57 #define RIGHT	(x0 - .218)
58 /*
59 /* Constants for approximation in [1.244,1.712]
60 */
61 #define x0	0.461632144968362356785
62 #define x0_lo	-.000000000000000015522348162858676890521
63 #define a0_hi	-0.12148629128932952880859
64 #define a0_lo	.0000000007534799204229502
65 #define r0	-2.771227512955130520e-002
66 #define r1	-2.980729795228150847e-001
67 #define r2	-3.257411333183093394e-001
68 #define r3	-1.126814387531706041e-001
69 #define r4	-1.129130057170225562e-002
70 #define r5	-2.259650588213369095e-005
71 #define s0	 1.714457160001714442e+000
72 #define s1	 2.786469504618194648e+000
73 #define s2	 1.564546365519179805e+000
74 #define s3	 3.485846389981109850e-001
75 #define s4	 2.467759345363656348e-002
76 /*
77  * Constants for approximation in [1.71, 2.5]
78 */
79 #define a1_hi	4.227843350984671344505727574870e-01
80 #define a1_lo	4.670126436531227189e-18
81 #define p0	3.224670334241133695662995251041e-01
82 #define p1	3.569659696950364669021382724168e-01
83 #define p2	1.342918716072560025853732668111e-01
84 #define p3	1.950702176409779831089963408886e-02
85 #define p4	8.546740251667538090796227834289e-04
86 #define q0	1.000000000000000444089209850062e+00
87 #define q1	1.315850076960161985084596381057e+00
88 #define q2	6.274644311862156431658377186977e-01
89 #define q3	1.304706631926259297049597307705e-01
90 #define q4	1.102815279606722369265536798366e-02
91 #define q5	2.512690594856678929537585620579e-04
92 #define q6	-1.003597548112371003358107325598e-06
93 /*
94  * Stirling's Formula, adjusted for equal-ripple. x in [6,Inf].
95 */
96 #define pb0	.0833333333333333148296162562474
97 #define pb1	-.00277777777774548123579378966497
98 #define pb2	.000793650778754435631476282786423
99 #define pb3	-.000595235082566672847950717262222
100 #define pb4	.000841428560346653702135821806252
101 #define pb5	-.00189773526463879200348872089421
102 #define pb6	.00569394463439411649408050664078
103 #define pb7	-.0144705562421428915453880392761
104 
105 double
106 lgamma(double x)
107 {
108 	double r;
109 	signgam = 1;
110 	if (!finite(x))
111 		if (_IEEE)
112 			return (x+x);
113 		else return (infnan(EDOM));
114 
115 	if (x > 6 + RIGHT) {
116 		r = large_lgam(x);
117 		return (r);
118 	} else if (x > 1e-16)
119 		return (small_lgam(x));
120 	else if (x > -1e-16) {
121 		if (x < 0)
122 			signgam = -1, x = -x;
123 		return (-log(x));
124 	} else
125 		return (neg_lgam(x));
126 }
127 
128 static double
129 large_lgam(double x)
130 {
131 	double z, p, x1;
132 	int i;
133 	struct Double t, u, v;
134 	u = log__D(x);
135 	u.a -= 1.0;
136 	if (x > 1e15) {
137 		v.a = x - 0.5;
138 		TRUNC(v.a);
139 		v.b = (x - v.a) - 0.5;
140 		t.a = u.a*v.a;
141 		t.b = x*u.b + v.b*u.a;
142 		if (_IEEE == 0 && !finite(t.a))
143 			return(infnan(ERANGE));
144 		return(t.a + t.b);
145 	}
146 	x1 = 1./x;
147 	z = x1*x1;
148 	p = pb0+z*(pb1+z*(pb2+z*(pb3+z*(pb4+z*(pb5+z*(pb6+z*pb7))))));
149 					/* error in approximation = 2.8e-19 */
150 
151 	p = p*x1;			/* error < 2.3e-18 absolute */
152 					/* 0 < p < 1/64 (at x = 5.5) */
153 	x = x - 0.5;
154 	TRUNC(v.a);			/* truncate v.a to 26 bits. */
155 	v.b = x - v.a;
156 	t.a = v.a*u.a;			/* t = (x-.5)*(log(x)-1) */
157 	t.b = v.b*u.a + z*u.b;
158 	t.b += p; t.b += lns2pi;	/* return t + lns2pi + p */
159 	return (t.a + t.b);
160 }
161 
162 static double
163 small_lgam(double x)
164 {
165 	int x_int;
166 	double y, z, t, r = 0, p, q, hi, lo;
167 	struct Double rr;
168 	x_int = (x + .5);
169 	y = x - x_int;
170 	if (x_int <= 2 && y > RIGHT) {
171 		t = y - x0;
172 		y--; x_int++;
173 		goto CONTINUE;
174 	} else if (y < -LEFT) {
175 		t = y +(1.0-x0);
176 CONTINUE:
177 		z = t - x0_lo;
178 		p = r0+z*(r1+z*(r2+z*(r3+z*(r4+z*r5))));
179 		q = s0+z*(s1+z*(s2+z*(s3+z*s4)));
180 		r = t*(z*(p/q) - x0_lo);
181 		t = .5*t*t;
182 		z = 1.0;
183 		switch (x_int) {
184 		case 6:	z  = (y + 5);
185 		case 5:	z *= (y + 4);
186 		case 4:	z *= (y + 3);
187 		case 3:	z *= (y + 2);
188 			rr = log__D(z);
189 			rr.b += a0_lo; rr.a += a0_hi;
190 			return(((r+rr.b)+t+rr.a));
191 		case 2: return(((r+a0_lo)+t)+a0_hi);
192 		case 0: r -= log1p(x);
193 		default: rr = log__D(x);
194 			rr.a -= a0_hi; rr.b -= a0_lo;
195 			return(((r - rr.b) + t) - rr.a);
196 		}
197 	} else {
198 		p = p0+y*(p1+y*(p2+y*(p3+y*p4)));
199 		q = q0+y*(q1+y*(q2+y*(q3+y*(q4+y*(q5+y*q6)))));
200 		p = p*(y/q);
201 		t = (double)(float) y;
202 		z = y-t;
203 		hi = (double)(float) (p+a1_hi);
204 		lo = a1_hi - hi; lo += p; lo += a1_lo;
205 		r = lo*y + z*hi;	/* q + r = y*(a0+p/q) */
206 		q = hi*t;
207 		z = 1.0;
208 		switch (x_int) {
209 		case 6:	z  = (y + 5);
210 		case 5:	z *= (y + 4);
211 		case 4:	z *= (y + 3);
212 		case 3:	z *= (y + 2);
213 			rr = log__D(z);
214 			r += rr.b; r += q;
215 			return(rr.a + r);
216 		case 2:	return (q+ r);
217 		case 0: rr = log__D(x);
218 			r -= rr.b; r -= log1p(x);
219 			r += q; r-= rr.a;
220 			return(r);
221 		default: rr = log__D(x);
222 			r -= rr.b;
223 			q -= rr.a;
224 			return (r+q);
225 		}
226 	}
227 }
228 
229 #define lpi_hi 1.1447298858494001638
230 #define lpi_lo .0000000000000000102659511627078262
231 /* Error: within 3.5 ulp for x < 171.  For large x, see lgamma. */
232 static double
233 neg_lgam(double x)
234 {
235 	double y, z, one = 1.0, zero = 0.0;
236 
237 	z = floor(x + .5);
238 	if (z == x) {		/* convention: G(-(integer)) -> +Inf */
239 		if (_IEEE)
240 			return (one/zero);
241 		else
242 			return (infnan(ERANGE));
243 	}
244 	y = .5*ceil(x);
245 	if (y == ceil(y))
246 		signgam = -1;
247 	x = -x;
248 	z = fabs(x + z);	/* 0 < z <= .5 */
249 	if (z < .25)
250 		z = sin(M_PI*z);
251 	else
252 		z = cos(M_PI*(0.5-z));
253 	z = -log(z*x/M_PI);
254 
255 	if (x > 6. + RIGHT)
256 		y -= large_lgam(x);
257 	else
258 		y = -small_lgam (x);
259 	return (y + z);
260 }
261