1 /* 2 * Copyright (c) 1985 Regents of the University of California. 3 * All rights reserved. The Berkeley software License Agreement 4 * specifies the terms and conditions for redistribution. 5 */ 6 7 #ifndef lint 8 static char sccsid[] = "@(#)lgamma.c 5.2 (Berkeley) 04/29/88"; 9 #endif /* not lint */ 10 11 /* 12 C program for floating point log Gamma function 13 14 lgamma(x) computes the log of the absolute 15 value of the Gamma function. 16 The sign of the Gamma function is returned in the 17 external quantity signgam. 18 19 The coefficients for expansion around zero 20 are #5243 from Hart & Cheney; for expansion 21 around infinity they are #5404. 22 23 Calls log, floor and sin. 24 */ 25 26 #include <math.h> 27 #if defined(vax)||defined(tahoe) 28 #include <errno.h> 29 #endif /* defined(vax)||defined(tahoe) */ 30 int signgam = 0; 31 static double goobie = 0.9189385332046727417803297; /* log(2*pi)/2 */ 32 static double pi = 3.1415926535897932384626434; 33 34 #define M 6 35 #define N 8 36 static double p1[] = { 37 0.83333333333333101837e-1, 38 -.277777777735865004e-2, 39 0.793650576493454e-3, 40 -.5951896861197e-3, 41 0.83645878922e-3, 42 -.1633436431e-2, 43 }; 44 static double p2[] = { 45 -.42353689509744089647e5, 46 -.20886861789269887364e5, 47 -.87627102978521489560e4, 48 -.20085274013072791214e4, 49 -.43933044406002567613e3, 50 -.50108693752970953015e2, 51 -.67449507245925289918e1, 52 0.0, 53 }; 54 static double q2[] = { 55 -.42353689509744090010e5, 56 -.29803853309256649932e4, 57 0.99403074150827709015e4, 58 -.15286072737795220248e4, 59 -.49902852662143904834e3, 60 0.18949823415702801641e3, 61 -.23081551524580124562e2, 62 0.10000000000000000000e1, 63 }; 64 65 double 66 lgamma(arg) 67 double arg; 68 { 69 double log(), pos(), neg(), asym(); 70 71 signgam = 1.; 72 if(arg <= 0.) return(neg(arg)); 73 if(arg > 8.) return(asym(arg)); 74 return(log(pos(arg))); 75 } 76 77 static double 78 asym(arg) 79 double arg; 80 { 81 double log(); 82 double n, argsq; 83 int i; 84 85 argsq = 1./(arg*arg); 86 for(n=0,i=M-1; i>=0; i--){ 87 n = n*argsq + p1[i]; 88 } 89 return((arg-.5)*log(arg) - arg + goobie + n/arg); 90 } 91 92 static double 93 neg(arg) 94 double arg; 95 { 96 double t; 97 double log(), sin(), floor(), pos(); 98 99 arg = -arg; 100 /* 101 * to see if arg were a true integer, the old code used the 102 * mathematically correct observation: 103 * sin(n*pi) = 0 <=> n is an integer. 104 * but in finite precision arithmetic, sin(n*PI) will NEVER 105 * be zero simply because n*PI is a rational number. hence 106 * it failed to work with our newer, more accurate sin() 107 * which uses true pi to do the argument reduction... 108 * temp = sin(pi*arg); 109 */ 110 t = floor(arg); 111 if (arg - t > 0.5e0) 112 t += 1.e0; /* t := integer nearest arg */ 113 #if defined(vax)||defined(tahoe) 114 if (arg == t) { 115 extern double infnan(); 116 return(infnan(ERANGE)); /* +INF */ 117 } 118 #endif /* defined(vax)||defined(tahoe) */ 119 signgam = (int) (t - 2*floor(t/2)); /* signgam = 1 if t was odd, */ 120 /* 0 if t was even */ 121 signgam = signgam - 1 + signgam; /* signgam = 1 if t was odd, */ 122 /* -1 if t was even */ 123 t = arg - t; /* -0.5 <= t <= 0.5 */ 124 if (t < 0.e0) { 125 t = -t; 126 signgam = -signgam; 127 } 128 return(-log(arg*pos(arg)*sin(pi*t)/pi)); 129 } 130 131 static double 132 pos(arg) 133 double arg; 134 { 135 double n, d, s; 136 register i; 137 138 if(arg < 2.) return(pos(arg+1.)/arg); 139 if(arg > 3.) return((arg-1.)*pos(arg-1.)); 140 141 s = arg - 2.; 142 for(n=0,d=0,i=N-1; i>=0; i--){ 143 n = n*s + p2[i]; 144 d = d*s + q2[i]; 145 } 146 return(n/d); 147 } 148