148402Sbostic /*- 2*57151Sbostic * Copyright (c) 1992 The Regents of the University of California. 348402Sbostic * All rights reserved. 448402Sbostic * 5*57151Sbostic * %sccs.include.redist.c% 634119Sbostic */ 734119Sbostic 824599Szliu #ifndef lint 9*57151Sbostic static char sccsid[] = "@(#)jn.c 5.5 (Berkeley) 12/16/92"; 1034119Sbostic #endif /* not lint */ 1124599Szliu 1224599Szliu /* 13*57151Sbostic * 16 December 1992 14*57151Sbostic * Minor modifications by Peter McIlroy to adapt non-IEEE architecture. 15*57151Sbostic */ 1624599Szliu 17*57151Sbostic /* 18*57151Sbostic * ==================================================== 19*57151Sbostic * Copyright (C) 1992 by Sun Microsystems, Inc. 20*57151Sbostic * 21*57151Sbostic * Developed at SunPro, a Sun Microsystems, Inc. business. 22*57151Sbostic * Permission to use, copy, modify, and distribute this 23*57151Sbostic * software is freely granted, provided that this notice 24*57151Sbostic * is preserved. 25*57151Sbostic * ==================================================== 26*57151Sbostic * 27*57151Sbostic * ******************* WARNING ******************** 28*57151Sbostic * This is an alpha version of SunPro's FDLIBM (Freely 29*57151Sbostic * Distributable Math Library) for IEEE double precision 30*57151Sbostic * arithmetic. FDLIBM is a basic math library written 31*57151Sbostic * in C that runs on machines that conform to IEEE 32*57151Sbostic * Standard 754/854. This alpha version is distributed 33*57151Sbostic * for testing purpose. Those who use this software 34*57151Sbostic * should report any bugs to 35*57151Sbostic * 36*57151Sbostic * fdlibm-comments@sunpro.eng.sun.com 37*57151Sbostic * 38*57151Sbostic * -- K.C. Ng, Oct 12, 1992 39*57151Sbostic * ************************************************ 40*57151Sbostic */ 4124599Szliu 42*57151Sbostic /* 43*57151Sbostic * jn(int n, double x), yn(int n, double x) 44*57151Sbostic * floating point Bessel's function of the 1st and 2nd kind 45*57151Sbostic * of order n 46*57151Sbostic * 47*57151Sbostic * Special cases: 48*57151Sbostic * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; 49*57151Sbostic * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. 50*57151Sbostic * Note 2. About jn(n,x), yn(n,x) 51*57151Sbostic * For n=0, j0(x) is called, 52*57151Sbostic * for n=1, j1(x) is called, 53*57151Sbostic * for n<x, forward recursion us used starting 54*57151Sbostic * from values of j0(x) and j1(x). 55*57151Sbostic * for n>x, a continued fraction approximation to 56*57151Sbostic * j(n,x)/j(n-1,x) is evaluated and then backward 57*57151Sbostic * recursion is used starting from a supposed value 58*57151Sbostic * for j(n,x). The resulting value of j(0,x) is 59*57151Sbostic * compared with the actual value to correct the 60*57151Sbostic * supposed value of j(n,x). 61*57151Sbostic * 62*57151Sbostic * yn(n,x) is similar in all respects, except 63*57151Sbostic * that forward recursion is used for all 64*57151Sbostic * values of n>1. 65*57151Sbostic * 66*57151Sbostic */ 6724599Szliu 68*57151Sbostic #include <math.h> 69*57151Sbostic #include <float.h> 70*57151Sbostic #include <errno.h> 7124599Szliu 72*57151Sbostic #if defined(vax) || defined(tahoe) 73*57151Sbostic #define _IEEE 0 74*57151Sbostic #else 75*57151Sbostic #define _IEEE 1 76*57151Sbostic #define infnan(x) (0.0) 77*57151Sbostic #endif 7824599Szliu 79*57151Sbostic extern double j0(),j1(),log(),fabs(),sqrt(),cos(),sin(),y0(),y1(); 80*57151Sbostic static double 81*57151Sbostic invsqrtpi= 5.641895835477562869480794515607725858441e-0001, 82*57151Sbostic two = 2.0, 83*57151Sbostic zero = 0.0, 84*57151Sbostic one = 1.0; 8524599Szliu 86*57151Sbostic double jn(n,x) 87*57151Sbostic int n; double x; 88*57151Sbostic { 89*57151Sbostic int i, sgn; 9024599Szliu double a, b, temp; 91*57151Sbostic double z, w; 9224599Szliu 93*57151Sbostic /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) 94*57151Sbostic * Thus, J(-n,x) = J(n,-x) 95*57151Sbostic */ 96*57151Sbostic /* if J(n,NaN) is NaN */ 97*57151Sbostic if (_IEEE && isnan(x)) return x+x; 98*57151Sbostic if (n<0){ 9924599Szliu n = -n; 10024599Szliu x = -x; 10124599Szliu } 102*57151Sbostic if (n==0) return(j0(x)); 103*57151Sbostic if (n==1) return(j1(x)); 104*57151Sbostic sgn = (n&1)&(x < zero); /* even n -- 0, odd n -- sign(x) */ 105*57151Sbostic x = fabs(x); 106*57151Sbostic if (x == 0 || !finite (x)) /* if x is 0 or inf */ 107*57151Sbostic b = zero; 108*57151Sbostic else if ((double) n <= x) { 109*57151Sbostic /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ 110*57151Sbostic if (_IEEE && x >= 8.148143905337944345e+090) { 111*57151Sbostic /* x >= 2**302 */ 112*57151Sbostic /* (x >> n**2) 113*57151Sbostic * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) 114*57151Sbostic * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) 115*57151Sbostic * Let s=sin(x), c=cos(x), 116*57151Sbostic * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then 117*57151Sbostic * 118*57151Sbostic * n sin(xn)*sqt2 cos(xn)*sqt2 119*57151Sbostic * ---------------------------------- 120*57151Sbostic * 0 s-c c+s 121*57151Sbostic * 1 -s-c -c+s 122*57151Sbostic * 2 -s+c -c-s 123*57151Sbostic * 3 s+c c-s 124*57151Sbostic */ 125*57151Sbostic switch(n&3) { 126*57151Sbostic case 0: temp = cos(x)+sin(x); break; 127*57151Sbostic case 1: temp = -cos(x)+sin(x); break; 128*57151Sbostic case 2: temp = -cos(x)-sin(x); break; 129*57151Sbostic case 3: temp = cos(x)-sin(x); break; 130*57151Sbostic } 131*57151Sbostic b = invsqrtpi*temp/sqrt(x); 132*57151Sbostic } else { 133*57151Sbostic a = j0(x); 134*57151Sbostic b = j1(x); 135*57151Sbostic for(i=1;i<n;i++){ 136*57151Sbostic temp = b; 137*57151Sbostic b = b*((double)(i+i)/x) - a; /* avoid underflow */ 138*57151Sbostic a = temp; 139*57151Sbostic } 140*57151Sbostic } 141*57151Sbostic } else { 142*57151Sbostic if (x < 1.86264514923095703125e-009) { /* x < 2**-29 */ 143*57151Sbostic /* x is tiny, return the first Taylor expansion of J(n,x) 144*57151Sbostic * J(n,x) = 1/n!*(x/2)^n - ... 145*57151Sbostic */ 146*57151Sbostic if (n > 33) /* underflow */ 147*57151Sbostic b = zero; 148*57151Sbostic else { 149*57151Sbostic temp = x*0.5; b = temp; 150*57151Sbostic for (a=one,i=2;i<=n;i++) { 151*57151Sbostic a *= (double)i; /* a = n! */ 152*57151Sbostic b *= temp; /* b = (x/2)^n */ 153*57151Sbostic } 154*57151Sbostic b = b/a; 155*57151Sbostic } 156*57151Sbostic } else { 157*57151Sbostic /* use backward recurrence */ 158*57151Sbostic /* x x^2 x^2 159*57151Sbostic * J(n,x)/J(n-1,x) = ---- ------ ------ ..... 160*57151Sbostic * 2n - 2(n+1) - 2(n+2) 161*57151Sbostic * 162*57151Sbostic * 1 1 1 163*57151Sbostic * (for large x) = ---- ------ ------ ..... 164*57151Sbostic * 2n 2(n+1) 2(n+2) 165*57151Sbostic * -- - ------ - ------ - 166*57151Sbostic * x x x 167*57151Sbostic * 168*57151Sbostic * Let w = 2n/x and h=2/x, then the above quotient 169*57151Sbostic * is equal to the continued fraction: 170*57151Sbostic * 1 171*57151Sbostic * = ----------------------- 172*57151Sbostic * 1 173*57151Sbostic * w - ----------------- 174*57151Sbostic * 1 175*57151Sbostic * w+h - --------- 176*57151Sbostic * w+2h - ... 177*57151Sbostic * 178*57151Sbostic * To determine how many terms needed, let 179*57151Sbostic * Q(0) = w, Q(1) = w(w+h) - 1, 180*57151Sbostic * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), 181*57151Sbostic * When Q(k) > 1e4 good for single 182*57151Sbostic * When Q(k) > 1e9 good for double 183*57151Sbostic * When Q(k) > 1e17 good for quadruple 184*57151Sbostic */ 185*57151Sbostic /* determine k */ 186*57151Sbostic double t,v; 187*57151Sbostic double q0,q1,h,tmp; int k,m; 188*57151Sbostic w = (n+n)/(double)x; h = 2.0/(double)x; 189*57151Sbostic q0 = w; z = w+h; q1 = w*z - 1.0; k=1; 190*57151Sbostic while (q1<1.0e9) { 191*57151Sbostic k += 1; z += h; 192*57151Sbostic tmp = z*q1 - q0; 193*57151Sbostic q0 = q1; 194*57151Sbostic q1 = tmp; 195*57151Sbostic } 196*57151Sbostic m = n+n; 197*57151Sbostic for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t); 198*57151Sbostic a = t; 199*57151Sbostic b = one; 200*57151Sbostic /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) 201*57151Sbostic * Hence, if n*(log(2n/x)) > ... 202*57151Sbostic * single 8.8722839355e+01 203*57151Sbostic * double 7.09782712893383973096e+02 204*57151Sbostic * long double 1.1356523406294143949491931077970765006170e+04 205*57151Sbostic * then recurrent value may overflow and the result will 206*57151Sbostic * likely underflow to zero 207*57151Sbostic */ 208*57151Sbostic tmp = n; 209*57151Sbostic v = two/x; 210*57151Sbostic tmp = tmp*log(fabs(v*tmp)); 211*57151Sbostic for (i=n-1;i>0;i--){ 212*57151Sbostic temp = b; 213*57151Sbostic b = ((i+i)/x)*b - a; 214*57151Sbostic a = temp; 215*57151Sbostic /* scale b to avoid spurious overflow */ 216*57151Sbostic # if defined(vax) || defined(tahoe) 217*57151Sbostic # define BMAX 1e13 218*57151Sbostic # else 219*57151Sbostic # define BMAX 1e100 220*57151Sbostic # endif /* defined(vax) || defined(tahoe) */ 221*57151Sbostic if (b > BMAX) { 222*57151Sbostic a /= b; 223*57151Sbostic t /= b; 224*57151Sbostic b = one; 225*57151Sbostic } 226*57151Sbostic } 227*57151Sbostic b = (t*j0(x)/b); 228*57151Sbostic } 22924599Szliu } 230*57151Sbostic return ((sgn == 1) ? -b : b); 23124599Szliu } 232*57151Sbostic double yn(n,x) 233*57151Sbostic int n; double x; 234*57151Sbostic { 235*57151Sbostic int i, sign; 23624599Szliu double a, b, temp; 23724599Szliu 238*57151Sbostic /* Y(n,NaN), Y(n, x < 0) is NaN */ 239*57151Sbostic if (x <= 0 || (_IEEE && x != x)) 240*57151Sbostic if (_IEEE && x < 0) return zero/zero; 241*57151Sbostic else if (x < 0) return (infnan(EDOM)); 242*57151Sbostic else if (_IEEE) return -one/zero; 243*57151Sbostic else return(infnan(-ERANGE)); 244*57151Sbostic else if (!finite(x)) return(0); 24524599Szliu sign = 1; 246*57151Sbostic if (n<0){ 24724599Szliu n = -n; 248*57151Sbostic sign = 1 - ((n&1)<<2); 24924599Szliu } 250*57151Sbostic if (n == 0) return(y0(x)); 251*57151Sbostic if (n == 1) return(sign*y1(x)); 252*57151Sbostic if(_IEEE && x >= 8.148143905337944345e+090) { /* x > 2**302 */ 253*57151Sbostic /* (x >> n**2) 254*57151Sbostic * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) 255*57151Sbostic * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) 256*57151Sbostic * Let s=sin(x), c=cos(x), 257*57151Sbostic * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then 258*57151Sbostic * 259*57151Sbostic * n sin(xn)*sqt2 cos(xn)*sqt2 260*57151Sbostic * ---------------------------------- 261*57151Sbostic * 0 s-c c+s 262*57151Sbostic * 1 -s-c -c+s 263*57151Sbostic * 2 -s+c -c-s 264*57151Sbostic * 3 s+c c-s 265*57151Sbostic */ 266*57151Sbostic switch (n&3) { 267*57151Sbostic case 0: temp = sin(x)-cos(x); break; 268*57151Sbostic case 1: temp = -sin(x)-cos(x); break; 269*57151Sbostic case 2: temp = -sin(x)+cos(x); break; 270*57151Sbostic case 3: temp = sin(x)+cos(x); break; 271*57151Sbostic } 272*57151Sbostic b = invsqrtpi*temp/sqrt(x); 273*57151Sbostic } else { 274*57151Sbostic a = y0(x); 275*57151Sbostic b = y1(x); 276*57151Sbostic /* quit if b is -inf */ 277*57151Sbostic for (i = 1; i < n && !finite(b); i++){ 27824599Szliu temp = b; 279*57151Sbostic b = ((double)(i+i)/x)*b - a; 28024599Szliu a = temp; 281*57151Sbostic } 28224599Szliu } 283*57151Sbostic if (!_IEEE && !finite(b)) 284*57151Sbostic return (infnan(-sign * ERANGE)); 285*57151Sbostic return ((sign > 0) ? b : -b); 28624599Szliu } 287