148402Sbostic /*- 2*57151Sbostic * Copyright (c) 1992 The Regents of the University of California. 348402Sbostic * All rights reserved. 448402Sbostic * 5*57151Sbostic * %sccs.include.redist.c% 634118Sbostic */ 734118Sbostic 824598Szliu #ifndef lint 9*57151Sbostic static char sccsid[] = "@(#)j1.c 5.5 (Berkeley) 12/16/92"; 1034118Sbostic #endif /* not lint */ 1124598Szliu 1224598Szliu /* 13*57151Sbostic * 16 December 1992 14*57151Sbostic * Minor modifications by Peter McIlroy to adapt non-IEEE architecture. 15*57151Sbostic */ 1624598Szliu 17*57151Sbostic /* 18*57151Sbostic * ==================================================== 19*57151Sbostic * Copyright (C) 1992 by Sun Microsystems, Inc. 20*57151Sbostic * 21*57151Sbostic * Developed at SunPro, a Sun Microsystems, Inc. business. 22*57151Sbostic * Permission to use, copy, modify, and distribute this 23*57151Sbostic * software is freely granted, provided that this notice 24*57151Sbostic * is preserved. 25*57151Sbostic * ==================================================== 26*57151Sbostic * 27*57151Sbostic * ******************* WARNING ******************** 28*57151Sbostic * This is an alpha version of SunPro's FDLIBM (Freely 29*57151Sbostic * Distributable Math Library) for IEEE double precision 30*57151Sbostic * arithmetic. FDLIBM is a basic math library written 31*57151Sbostic * in C that runs on machines that conform to IEEE 32*57151Sbostic * Standard 754/854. This alpha version is distributed 33*57151Sbostic * for testing purpose. Those who use this software 34*57151Sbostic * should report any bugs to 35*57151Sbostic * 36*57151Sbostic * fdlibm-comments@sunpro.eng.sun.com 37*57151Sbostic * 38*57151Sbostic * -- K.C. Ng, Oct 12, 1992 39*57151Sbostic * ************************************************ 40*57151Sbostic */ 4124598Szliu 42*57151Sbostic /* double j1(double x), y1(double x) 43*57151Sbostic * Bessel function of the first and second kinds of order zero. 44*57151Sbostic * Method -- j1(x): 45*57151Sbostic * 1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ... 46*57151Sbostic * 2. Reduce x to |x| since j1(x)=-j1(-x), and 47*57151Sbostic * for x in (0,2) 48*57151Sbostic * j1(x) = x/2 + x*z*R0/S0, where z = x*x; 49*57151Sbostic * (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 ) 50*57151Sbostic * for x in (2,inf) 51*57151Sbostic * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1)) 52*57151Sbostic * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1)) 53*57151Sbostic * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1) 54*57151Sbostic * as follows: 55*57151Sbostic * cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) 56*57151Sbostic * = 1/sqrt(2) * (sin(x) - cos(x)) 57*57151Sbostic * sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) 58*57151Sbostic * = -1/sqrt(2) * (sin(x) + cos(x)) 59*57151Sbostic * (To avoid cancellation, use 60*57151Sbostic * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) 61*57151Sbostic * to compute the worse one.) 62*57151Sbostic * 63*57151Sbostic * 3 Special cases 64*57151Sbostic * j1(nan)= nan 65*57151Sbostic * j1(0) = 0 66*57151Sbostic * j1(inf) = 0 67*57151Sbostic * 68*57151Sbostic * Method -- y1(x): 69*57151Sbostic * 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN 70*57151Sbostic * 2. For x<2. 71*57151Sbostic * Since 72*57151Sbostic * y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...) 73*57151Sbostic * therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function. 74*57151Sbostic * We use the following function to approximate y1, 75*57151Sbostic * y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2 76*57151Sbostic * where for x in [0,2] (abs err less than 2**-65.89) 77*57151Sbostic * U(z) = u0 + u1*z + ... + u4*z^4 78*57151Sbostic * V(z) = 1 + v1*z + ... + v5*z^5 79*57151Sbostic * Note: For tiny x, 1/x dominate y1 and hence 80*57151Sbostic * y1(tiny) = -2/pi/tiny, (choose tiny<2**-54) 81*57151Sbostic * 3. For x>=2. 82*57151Sbostic * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1)) 83*57151Sbostic * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1) 84*57151Sbostic * by method mentioned above. 85*57151Sbostic */ 8624598Szliu 87*57151Sbostic #include <math.h> 88*57151Sbostic #include <float.h> 8924598Szliu 90*57151Sbostic #if defined(vax) || defined(tahoe) 91*57151Sbostic #define _IEEE 0 92*57151Sbostic #else 93*57151Sbostic #define _IEEE 1 94*57151Sbostic #define infnan(x) (0.0) 95*57151Sbostic #endif 9624598Szliu 97*57151Sbostic static double pone(), qone(); 9824598Szliu 99*57151Sbostic static double 100*57151Sbostic huge = 1e300, 101*57151Sbostic zero = 0.0, 102*57151Sbostic one = 1.0, 103*57151Sbostic invsqrtpi= 5.641895835477562869480794515607725858441e-0001, 104*57151Sbostic tpi = 0.636619772367581343075535053490057448, 10524598Szliu 106*57151Sbostic /* R0/S0 on [0,2] */ 107*57151Sbostic r00 = -6.250000000000000020842322918309200910191e-0002, 108*57151Sbostic r01 = 1.407056669551897148204830386691427791200e-0003, 109*57151Sbostic r02 = -1.599556310840356073980727783817809847071e-0005, 110*57151Sbostic r03 = 4.967279996095844750387702652791615403527e-0008, 111*57151Sbostic s01 = 1.915375995383634614394860200531091839635e-0002, 112*57151Sbostic s02 = 1.859467855886309024045655476348872850396e-0004, 113*57151Sbostic s03 = 1.177184640426236767593432585906758230822e-0006, 114*57151Sbostic s04 = 5.046362570762170559046714468225101016915e-0009, 115*57151Sbostic s05 = 1.235422744261379203512624973117299248281e-0011; 11624598Szliu 117*57151Sbostic #define two_129 6.80564733841876926e+038 /* 2^129 */ 118*57151Sbostic #define two_m54 5.55111512312578270e-017 /* 2^-54 */ 119*57151Sbostic double j1(x) 120*57151Sbostic double x; 121*57151Sbostic { 122*57151Sbostic double z, s,c,ss,cc,r,u,v,y; 123*57151Sbostic y = fabs(x); 124*57151Sbostic if (!finite(x)) /* Inf or NaN */ 125*57151Sbostic if (_IEEE && x != x) 126*57151Sbostic return(x); 127*57151Sbostic else 128*57151Sbostic return (copysign(x, zero)); 129*57151Sbostic y = fabs(x); 130*57151Sbostic if (y >= 2) /* |x| >= 2.0 */ 131*57151Sbostic { 132*57151Sbostic s = sin(y); 133*57151Sbostic c = cos(y); 134*57151Sbostic ss = -s-c; 135*57151Sbostic cc = s-c; 136*57151Sbostic if (y < .5*DBL_MAX) { /* make sure y+y not overflow */ 137*57151Sbostic z = cos(y+y); 138*57151Sbostic if ((s*c)<zero) cc = z/ss; 139*57151Sbostic else ss = z/cc; 140*57151Sbostic } 141*57151Sbostic /* 142*57151Sbostic * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x) 143*57151Sbostic * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x) 144*57151Sbostic */ 145*57151Sbostic #if !defined(vax) && !defined(tahoe) 146*57151Sbostic if (y > two_129) /* x > 2^129 */ 147*57151Sbostic z = (invsqrtpi*cc)/sqrt(y); 148*57151Sbostic else 149*57151Sbostic #endif /* defined(vax) || defined(tahoe) */ 150*57151Sbostic { 151*57151Sbostic u = pone(y); v = qone(y); 152*57151Sbostic z = invsqrtpi*(u*cc-v*ss)/sqrt(y); 153*57151Sbostic } 154*57151Sbostic if (x < 0) return -z; 155*57151Sbostic else return z; 156*57151Sbostic } 157*57151Sbostic if (y < 7.450580596923828125e-009) { /* |x|<2**-27 */ 158*57151Sbostic if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */ 159*57151Sbostic } 160*57151Sbostic z = x*x; 161*57151Sbostic r = z*(r00+z*(r01+z*(r02+z*r03))); 162*57151Sbostic s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05)))); 163*57151Sbostic r *= x; 164*57151Sbostic return (x*0.5+r/s); 165*57151Sbostic } 16624598Szliu 167*57151Sbostic static double u0[5] = { 168*57151Sbostic -1.960570906462389484206891092512047539632e-0001, 169*57151Sbostic 5.044387166398112572026169863174882070274e-0002, 170*57151Sbostic -1.912568958757635383926261729464141209569e-0003, 171*57151Sbostic 2.352526005616105109577368905595045204577e-0005, 172*57151Sbostic -9.190991580398788465315411784276789663849e-0008, 173*57151Sbostic }; 174*57151Sbostic static double v0[5] = { 175*57151Sbostic 1.991673182366499064031901734535479833387e-0002, 176*57151Sbostic 2.025525810251351806268483867032781294682e-0004, 177*57151Sbostic 1.356088010975162198085369545564475416398e-0006, 178*57151Sbostic 6.227414523646214811803898435084697863445e-0009, 179*57151Sbostic 1.665592462079920695971450872592458916421e-0011, 180*57151Sbostic }; 18135679Sbostic 182*57151Sbostic double y1(x) 183*57151Sbostic double x; 184*57151Sbostic { 185*57151Sbostic double z, s,c,ss,cc,u,v,j1(); 186*57151Sbostic /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */ 187*57151Sbostic if (!finite(x)) 188*57151Sbostic if (!_IEEE) return (infnan(EDOM)); 189*57151Sbostic else if (x < 0) 190*57151Sbostic return(zero/zero); 191*57151Sbostic else if (x > 0) 192*57151Sbostic return (0); 193*57151Sbostic else 194*57151Sbostic return(x); 195*57151Sbostic if (x <= 0) { 196*57151Sbostic if (_IEEE && x == 0) return -one/zero; 197*57151Sbostic else if(x == 0) return(infnan(-ERANGE)); 198*57151Sbostic else if(_IEEE) return (zero/zero); 199*57151Sbostic else return(infnan(EDOM)); 200*57151Sbostic } 201*57151Sbostic if (x >= 2) /* |x| >= 2.0 */ 202*57151Sbostic { 203*57151Sbostic s = sin(x); 204*57151Sbostic c = cos(x); 205*57151Sbostic ss = -s-c; 206*57151Sbostic cc = s-c; 207*57151Sbostic if (x < .5 * DBL_MAX) /* make sure x+x not overflow */ 208*57151Sbostic { 209*57151Sbostic z = cos(x+x); 210*57151Sbostic if ((s*c)>zero) cc = z/ss; 211*57151Sbostic else ss = z/cc; 212*57151Sbostic } 213*57151Sbostic /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0)) 214*57151Sbostic * where x0 = x-3pi/4 215*57151Sbostic * Better formula: 216*57151Sbostic * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) 217*57151Sbostic * = 1/sqrt(2) * (sin(x) - cos(x)) 218*57151Sbostic * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) 219*57151Sbostic * = -1/sqrt(2) * (cos(x) + sin(x)) 220*57151Sbostic * To avoid cancellation, use 221*57151Sbostic * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) 222*57151Sbostic * to compute the worse one. 223*57151Sbostic */ 224*57151Sbostic if (_IEEE && x>two_129) 225*57151Sbostic z = (invsqrtpi*ss)/sqrt(x); 226*57151Sbostic else { 227*57151Sbostic u = pone(x); v = qone(x); 228*57151Sbostic z = invsqrtpi*(u*ss+v*cc)/sqrt(x); 229*57151Sbostic } 230*57151Sbostic return z; 231*57151Sbostic } 232*57151Sbostic if (x <= two_m54) { /* x < 2**-54 */ 233*57151Sbostic return (-tpi/x); 234*57151Sbostic } 235*57151Sbostic z = x*x; 236*57151Sbostic u = u0[0]+z*(u0[1]+z*(u0[2]+z*(u0[3]+z*u0[4]))); 237*57151Sbostic v = one+z*(v0[0]+z*(v0[1]+z*(v0[2]+z*(v0[3]+z*v0[4])))); 238*57151Sbostic return (x*(u/v) + tpi*(j1(x)*log(x)-one/x)); 239*57151Sbostic } 24035679Sbostic 241*57151Sbostic /* For x >= 8, the asymptotic expansions of pone is 242*57151Sbostic * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x. 243*57151Sbostic * We approximate pone by 244*57151Sbostic * pone(x) = 1 + (R/S) 245*57151Sbostic * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10 246*57151Sbostic * S = 1 + ps0*s^2 + ... + ps4*s^10 247*57151Sbostic * and 248*57151Sbostic * | pone(x)-1-R/S | <= 2 ** ( -60.06) 249*57151Sbostic */ 25035679Sbostic 251*57151Sbostic static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ 252*57151Sbostic 0.0, 253*57151Sbostic 1.171874999999886486643746274751925399540e-0001, 254*57151Sbostic 1.323948065930735690925827997575471527252e+0001, 255*57151Sbostic 4.120518543073785433325860184116512799375e+0002, 256*57151Sbostic 3.874745389139605254931106878336700275601e+0003, 257*57151Sbostic 7.914479540318917214253998253147871806507e+0003, 25824598Szliu }; 259*57151Sbostic static double ps8[5] = { 260*57151Sbostic 1.142073703756784104235066368252692471887e+0002, 261*57151Sbostic 3.650930834208534511135396060708677099382e+0003, 262*57151Sbostic 3.695620602690334708579444954937638371808e+0004, 263*57151Sbostic 9.760279359349508334916300080109196824151e+0004, 264*57151Sbostic 3.080427206278887984185421142572315054499e+0004, 26524598Szliu }; 266*57151Sbostic 267*57151Sbostic static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ 268*57151Sbostic 1.319905195562435287967533851581013807103e-0011, 269*57151Sbostic 1.171874931906140985709584817065144884218e-0001, 270*57151Sbostic 6.802751278684328781830052995333841452280e+0000, 271*57151Sbostic 1.083081829901891089952869437126160568246e+0002, 272*57151Sbostic 5.176361395331997166796512844100442096318e+0002, 273*57151Sbostic 5.287152013633375676874794230748055786553e+0002, 27424598Szliu }; 275*57151Sbostic static double ps5[5] = { 276*57151Sbostic 5.928059872211313557747989128353699746120e+0001, 277*57151Sbostic 9.914014187336144114070148769222018425781e+0002, 278*57151Sbostic 5.353266952914879348427003712029704477451e+0003, 279*57151Sbostic 7.844690317495512717451367787640014588422e+0003, 280*57151Sbostic 1.504046888103610723953792002716816255382e+0003, 28124598Szliu }; 282*57151Sbostic 283*57151Sbostic static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ 284*57151Sbostic 3.025039161373736032825049903408701962756e-0009, 285*57151Sbostic 1.171868655672535980750284752227495879921e-0001, 286*57151Sbostic 3.932977500333156527232725812363183251138e+0000, 287*57151Sbostic 3.511940355916369600741054592597098912682e+0001, 288*57151Sbostic 9.105501107507812029367749771053045219094e+0001, 289*57151Sbostic 4.855906851973649494139275085628195457113e+0001, 29024598Szliu }; 291*57151Sbostic static double ps3[5] = { 292*57151Sbostic 3.479130950012515114598605916318694946754e+0001, 293*57151Sbostic 3.367624587478257581844639171605788622549e+0002, 294*57151Sbostic 1.046871399757751279180649307467612538415e+0003, 295*57151Sbostic 8.908113463982564638443204408234739237639e+0002, 296*57151Sbostic 1.037879324396392739952487012284401031859e+0002, 29724598Szliu }; 298*57151Sbostic 299*57151Sbostic static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ 300*57151Sbostic 1.077108301068737449490056513753865482831e-0007, 301*57151Sbostic 1.171762194626833490512746348050035171545e-0001, 302*57151Sbostic 2.368514966676087902251125130227221462134e+0000, 303*57151Sbostic 1.224261091482612280835153832574115951447e+0001, 304*57151Sbostic 1.769397112716877301904532320376586509782e+0001, 305*57151Sbostic 5.073523125888185399030700509321145995160e+0000, 30624598Szliu }; 307*57151Sbostic static double ps2[5] = { 308*57151Sbostic 2.143648593638214170243114358933327983793e+0001, 309*57151Sbostic 1.252902271684027493309211410842525120355e+0002, 310*57151Sbostic 2.322764690571628159027850677565128301361e+0002, 311*57151Sbostic 1.176793732871470939654351793502076106651e+0002, 312*57151Sbostic 8.364638933716182492500902115164881195742e+0000, 31324598Szliu }; 31424598Szliu 315*57151Sbostic static double pone(x) 316*57151Sbostic double x; 317*57151Sbostic { 318*57151Sbostic double *p,*q,z,r,s; 319*57151Sbostic if (x >= 8.0) {p = pr8; q= ps8;} 320*57151Sbostic else if (x >= 4.54545211791992188) {p = pr5; q= ps5;} 321*57151Sbostic else if (x >= 2.85714149475097656) {p = pr3; q= ps3;} 322*57151Sbostic else /* if (x >= 2.0) */ {p = pr2; q= ps2;} 323*57151Sbostic z = one/(x*x); 324*57151Sbostic r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); 325*57151Sbostic s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); 326*57151Sbostic return (one + r/s); 327*57151Sbostic } 328*57151Sbostic 32935679Sbostic 330*57151Sbostic /* For x >= 8, the asymptotic expansions of qone is 331*57151Sbostic * 3/8 s - 105/1024 s^3 - ..., where s = 1/x. 332*57151Sbostic * We approximate pone by 333*57151Sbostic * qone(x) = s*(0.375 + (R/S)) 334*57151Sbostic * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10 335*57151Sbostic * S = 1 + qs1*s^2 + ... + qs6*s^12 336*57151Sbostic * and 337*57151Sbostic * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13) 338*57151Sbostic */ 33924598Szliu 340*57151Sbostic static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ 341*57151Sbostic 0.0, 342*57151Sbostic -1.025390624999927207385863635575804210817e-0001, 343*57151Sbostic -1.627175345445899724355852152103771510209e+0001, 344*57151Sbostic -7.596017225139501519843072766973047217159e+0002, 345*57151Sbostic -1.184980667024295901645301570813228628541e+0004, 346*57151Sbostic -4.843851242857503225866761992518949647041e+0004, 347*57151Sbostic }; 348*57151Sbostic static double qs8[6] = { 349*57151Sbostic 1.613953697007229231029079421446916397904e+0002, 350*57151Sbostic 7.825385999233484705298782500926834217525e+0003, 351*57151Sbostic 1.338753362872495800748094112937868089032e+0005, 352*57151Sbostic 7.196577236832409151461363171617204036929e+0005, 353*57151Sbostic 6.666012326177764020898162762642290294625e+0005, 354*57151Sbostic -2.944902643038346618211973470809456636830e+0005, 355*57151Sbostic }; 35624598Szliu 357*57151Sbostic static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ 358*57151Sbostic -2.089799311417640889742251585097264715678e-0011, 359*57151Sbostic -1.025390502413754195402736294609692303708e-0001, 360*57151Sbostic -8.056448281239359746193011295417408828404e+0000, 361*57151Sbostic -1.836696074748883785606784430098756513222e+0002, 362*57151Sbostic -1.373193760655081612991329358017247355921e+0003, 363*57151Sbostic -2.612444404532156676659706427295870995743e+0003, 364*57151Sbostic }; 365*57151Sbostic static double qs5[6] = { 366*57151Sbostic 8.127655013843357670881559763225310973118e+0001, 367*57151Sbostic 1.991798734604859732508048816860471197220e+0003, 368*57151Sbostic 1.746848519249089131627491835267411777366e+0004, 369*57151Sbostic 4.985142709103522808438758919150738000353e+0004, 370*57151Sbostic 2.794807516389181249227113445299675335543e+0004, 371*57151Sbostic -4.719183547951285076111596613593553911065e+0003, 372*57151Sbostic }; 37324598Szliu 374*57151Sbostic static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ 375*57151Sbostic -5.078312264617665927595954813341838734288e-0009, 376*57151Sbostic -1.025378298208370901410560259001035577681e-0001, 377*57151Sbostic -4.610115811394734131557983832055607679242e+0000, 378*57151Sbostic -5.784722165627836421815348508816936196402e+0001, 379*57151Sbostic -2.282445407376317023842545937526967035712e+0002, 380*57151Sbostic -2.192101284789093123936441805496580237676e+0002, 381*57151Sbostic }; 382*57151Sbostic static double qs3[6] = { 383*57151Sbostic 4.766515503237295155392317984171640809318e+0001, 384*57151Sbostic 6.738651126766996691330687210949984203167e+0002, 385*57151Sbostic 3.380152866795263466426219644231687474174e+0003, 386*57151Sbostic 5.547729097207227642358288160210745890345e+0003, 387*57151Sbostic 1.903119193388108072238947732674639066045e+0003, 388*57151Sbostic -1.352011914443073322978097159157678748982e+0002, 389*57151Sbostic }; 39024598Szliu 391*57151Sbostic static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ 392*57151Sbostic -1.783817275109588656126772316921194887979e-0007, 393*57151Sbostic -1.025170426079855506812435356168903694433e-0001, 394*57151Sbostic -2.752205682781874520495702498875020485552e+0000, 395*57151Sbostic -1.966361626437037351076756351268110418862e+0001, 396*57151Sbostic -4.232531333728305108194363846333841480336e+0001, 397*57151Sbostic -2.137192117037040574661406572497288723430e+0001, 398*57151Sbostic }; 399*57151Sbostic static double qs2[6] = { 400*57151Sbostic 2.953336290605238495019307530224241335502e+0001, 401*57151Sbostic 2.529815499821905343698811319455305266409e+0002, 402*57151Sbostic 7.575028348686454070022561120722815892346e+0002, 403*57151Sbostic 7.393932053204672479746835719678434981599e+0002, 404*57151Sbostic 1.559490033366661142496448853793707126179e+0002, 405*57151Sbostic -4.959498988226281813825263003231704397158e+0000, 406*57151Sbostic }; 407*57151Sbostic 408*57151Sbostic static double qone(x) 409*57151Sbostic double x; 410*57151Sbostic { 411*57151Sbostic double *p,*q, s,r,z; 412*57151Sbostic if (x >= 8.0) {p = qr8; q= qs8;} 413*57151Sbostic else if (x >= 4.54545211791992188) {p = qr5; q= qs5;} 414*57151Sbostic else if (x >= 2.85714149475097656) {p = qr3; q= qs3;} 415*57151Sbostic else /* if (x >= 2.0) */ {p = qr2; q= qs2;} 416*57151Sbostic z = one/(x*x); 417*57151Sbostic r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); 418*57151Sbostic s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); 419*57151Sbostic return (.375 + r/s)/x; 42024598Szliu } 421