1*24598Szliu #ifndef lint 2*24598Szliu static char sccsid[] = "@(#)j1.c 1.1 (ELEFUNT) 09/06/85"; 3*24598Szliu #endif not lint 4*24598Szliu 5*24598Szliu /* 6*24598Szliu floating point Bessel's function 7*24598Szliu of the first and second kinds 8*24598Szliu of order one 9*24598Szliu 10*24598Szliu j1(x) returns the value of J1(x) 11*24598Szliu for all real values of x. 12*24598Szliu 13*24598Szliu There are no error returns. 14*24598Szliu Calls sin, cos, sqrt. 15*24598Szliu 16*24598Szliu There is a niggling bug in J1 which 17*24598Szliu causes errors up to 2e-16 for x in the 18*24598Szliu interval [-8,8]. 19*24598Szliu The bug is caused by an inappropriate order 20*24598Szliu of summation of the series. rhm will fix it 21*24598Szliu someday. 22*24598Szliu 23*24598Szliu Coefficients are from Hart & Cheney. 24*24598Szliu #6050 (20.98D) 25*24598Szliu #6750 (19.19D) 26*24598Szliu #7150 (19.35D) 27*24598Szliu 28*24598Szliu y1(x) returns the value of Y1(x) 29*24598Szliu for positive real values of x. 30*24598Szliu For x<=0, if on the VAX, error number EDOM is set and 31*24598Szliu the reserved operand fault is generated; 32*24598Szliu otherwise (an IEEE machine) an invalid operation is performed. 33*24598Szliu 34*24598Szliu Calls sin, cos, sqrt, log, j1. 35*24598Szliu 36*24598Szliu The values of Y1 have not been checked 37*24598Szliu to more than ten places. 38*24598Szliu 39*24598Szliu Coefficients are from Hart & Cheney. 40*24598Szliu #6447 (22.18D) 41*24598Szliu #6750 (19.19D) 42*24598Szliu #7150 (19.35D) 43*24598Szliu */ 44*24598Szliu 45*24598Szliu #include <math.h> 46*24598Szliu #ifdef VAX 47*24598Szliu #include <errno.h> 48*24598Szliu #else /* IEEE double */ 49*24598Szliu static double zero = 0.e0; 50*24598Szliu #endif 51*24598Szliu static double pzero, qzero; 52*24598Szliu static double tpi = .6366197723675813430755350535e0; 53*24598Szliu static double pio4 = .7853981633974483096156608458e0; 54*24598Szliu static double p1[] = { 55*24598Szliu 0.581199354001606143928050809e21, 56*24598Szliu -.6672106568924916298020941484e20, 57*24598Szliu 0.2316433580634002297931815435e19, 58*24598Szliu -.3588817569910106050743641413e17, 59*24598Szliu 0.2908795263834775409737601689e15, 60*24598Szliu -.1322983480332126453125473247e13, 61*24598Szliu 0.3413234182301700539091292655e10, 62*24598Szliu -.4695753530642995859767162166e7, 63*24598Szliu 0.2701122710892323414856790990e4, 64*24598Szliu }; 65*24598Szliu static double q1[] = { 66*24598Szliu 0.1162398708003212287858529400e22, 67*24598Szliu 0.1185770712190320999837113348e20, 68*24598Szliu 0.6092061398917521746105196863e17, 69*24598Szliu 0.2081661221307607351240184229e15, 70*24598Szliu 0.5243710262167649715406728642e12, 71*24598Szliu 0.1013863514358673989967045588e10, 72*24598Szliu 0.1501793594998585505921097578e7, 73*24598Szliu 0.1606931573481487801970916749e4, 74*24598Szliu 1.0, 75*24598Szliu }; 76*24598Szliu static double p2[] = { 77*24598Szliu -.4435757816794127857114720794e7, 78*24598Szliu -.9942246505077641195658377899e7, 79*24598Szliu -.6603373248364939109255245434e7, 80*24598Szliu -.1523529351181137383255105722e7, 81*24598Szliu -.1098240554345934672737413139e6, 82*24598Szliu -.1611616644324610116477412898e4, 83*24598Szliu 0.0, 84*24598Szliu }; 85*24598Szliu static double q2[] = { 86*24598Szliu -.4435757816794127856828016962e7, 87*24598Szliu -.9934124389934585658967556309e7, 88*24598Szliu -.6585339479723087072826915069e7, 89*24598Szliu -.1511809506634160881644546358e7, 90*24598Szliu -.1072638599110382011903063867e6, 91*24598Szliu -.1455009440190496182453565068e4, 92*24598Szliu 1.0, 93*24598Szliu }; 94*24598Szliu static double p3[] = { 95*24598Szliu 0.3322091340985722351859704442e5, 96*24598Szliu 0.8514516067533570196555001171e5, 97*24598Szliu 0.6617883658127083517939992166e5, 98*24598Szliu 0.1849426287322386679652009819e5, 99*24598Szliu 0.1706375429020768002061283546e4, 100*24598Szliu 0.3526513384663603218592175580e2, 101*24598Szliu 0.0, 102*24598Szliu }; 103*24598Szliu static double q3[] = { 104*24598Szliu 0.7087128194102874357377502472e6, 105*24598Szliu 0.1819458042243997298924553839e7, 106*24598Szliu 0.1419460669603720892855755253e7, 107*24598Szliu 0.4002944358226697511708610813e6, 108*24598Szliu 0.3789022974577220264142952256e5, 109*24598Szliu 0.8638367769604990967475517183e3, 110*24598Szliu 1.0, 111*24598Szliu }; 112*24598Szliu static double p4[] = { 113*24598Szliu -.9963753424306922225996744354e23, 114*24598Szliu 0.2655473831434854326894248968e23, 115*24598Szliu -.1212297555414509577913561535e22, 116*24598Szliu 0.2193107339917797592111427556e20, 117*24598Szliu -.1965887462722140658820322248e18, 118*24598Szliu 0.9569930239921683481121552788e15, 119*24598Szliu -.2580681702194450950541426399e13, 120*24598Szliu 0.3639488548124002058278999428e10, 121*24598Szliu -.2108847540133123652824139923e7, 122*24598Szliu 0.0, 123*24598Szliu }; 124*24598Szliu static double q4[] = { 125*24598Szliu 0.5082067366941243245314424152e24, 126*24598Szliu 0.5435310377188854170800653097e22, 127*24598Szliu 0.2954987935897148674290758119e20, 128*24598Szliu 0.1082258259408819552553850180e18, 129*24598Szliu 0.2976632125647276729292742282e15, 130*24598Szliu 0.6465340881265275571961681500e12, 131*24598Szliu 0.1128686837169442121732366891e10, 132*24598Szliu 0.1563282754899580604737366452e7, 133*24598Szliu 0.1612361029677000859332072312e4, 134*24598Szliu 1.0, 135*24598Szliu }; 136*24598Szliu 137*24598Szliu double 138*24598Szliu j1(arg) double arg;{ 139*24598Szliu double xsq, n, d, x; 140*24598Szliu double sin(), cos(), sqrt(); 141*24598Szliu int i; 142*24598Szliu 143*24598Szliu x = arg; 144*24598Szliu if(x < 0.) x = -x; 145*24598Szliu if(x > 8.){ 146*24598Szliu asympt(x); 147*24598Szliu n = x - 3.*pio4; 148*24598Szliu n = sqrt(tpi/x)*(pzero*cos(n) - qzero*sin(n)); 149*24598Szliu if(arg <0.) n = -n; 150*24598Szliu return(n); 151*24598Szliu } 152*24598Szliu xsq = x*x; 153*24598Szliu for(n=0,d=0,i=8;i>=0;i--){ 154*24598Szliu n = n*xsq + p1[i]; 155*24598Szliu d = d*xsq + q1[i]; 156*24598Szliu } 157*24598Szliu return(arg*n/d); 158*24598Szliu } 159*24598Szliu 160*24598Szliu double 161*24598Szliu y1(arg) double arg;{ 162*24598Szliu double xsq, n, d, x; 163*24598Szliu double sin(), cos(), sqrt(), log(), j1(); 164*24598Szliu int i; 165*24598Szliu 166*24598Szliu x = arg; 167*24598Szliu if(x <= 0.){ 168*24598Szliu #ifdef VAX 169*24598Szliu extern double infnan(); 170*24598Szliu return(infnan(EDOM)); /* NaN */ 171*24598Szliu #else /* IEEE double */ 172*24598Szliu return(zero/zero); /* IEEE machines: invalid operation */ 173*24598Szliu #endif 174*24598Szliu } 175*24598Szliu if(x > 8.){ 176*24598Szliu asympt(x); 177*24598Szliu n = x - 3*pio4; 178*24598Szliu return(sqrt(tpi/x)*(pzero*sin(n) + qzero*cos(n))); 179*24598Szliu } 180*24598Szliu xsq = x*x; 181*24598Szliu for(n=0,d=0,i=9;i>=0;i--){ 182*24598Szliu n = n*xsq + p4[i]; 183*24598Szliu d = d*xsq + q4[i]; 184*24598Szliu } 185*24598Szliu return(x*n/d + tpi*(j1(x)*log(x)-1./x)); 186*24598Szliu } 187*24598Szliu 188*24598Szliu static 189*24598Szliu asympt(arg) double arg;{ 190*24598Szliu double zsq, n, d; 191*24598Szliu int i; 192*24598Szliu zsq = 64./(arg*arg); 193*24598Szliu for(n=0,d=0,i=6;i>=0;i--){ 194*24598Szliu n = n*zsq + p2[i]; 195*24598Szliu d = d*zsq + q2[i]; 196*24598Szliu } 197*24598Szliu pzero = n/d; 198*24598Szliu for(n=0,d=0,i=6;i>=0;i--){ 199*24598Szliu n = n*zsq + p3[i]; 200*24598Szliu d = d*zsq + q3[i]; 201*24598Szliu } 202*24598Szliu qzero = (8./arg)*(n/d); 203*24598Szliu } 204