148402Sbostic /*- 2*57151Sbostic * Copyright (c) 1992 The Regents of the University of California. 348402Sbostic * All rights reserved. 448402Sbostic * 5*57151Sbostic * %sccs.include.redist.c% 634117Sbostic */ 734117Sbostic 824597Szliu #ifndef lint 9*57151Sbostic static char sccsid[] = "@(#)j0.c 5.5 (Berkeley) 12/16/92"; 1034117Sbostic #endif /* not lint */ 1124597Szliu 1224597Szliu /* 13*57151Sbostic * 16 December 1992 14*57151Sbostic * Minor modifications by Peter McIlroy to adapt non-IEEE architecture. 15*57151Sbostic */ 1624597Szliu 17*57151Sbostic /* 18*57151Sbostic * ==================================================== 19*57151Sbostic * Copyright (C) 1992 by Sun Microsystems, Inc. 20*57151Sbostic * 21*57151Sbostic * Developed at SunPro, a Sun Microsystems, Inc. business. 22*57151Sbostic * Permission to use, copy, modify, and distribute this 23*57151Sbostic * software is freely granted, provided that this notice 24*57151Sbostic * is preserved. 25*57151Sbostic * ==================================================== 26*57151Sbostic * 27*57151Sbostic * ******************* WARNING ******************** 28*57151Sbostic * This is an alpha version of SunPro's FDLIBM (Freely 29*57151Sbostic * Distributable Math Library) for IEEE double precision 30*57151Sbostic * arithmetic. FDLIBM is a basic math library written 31*57151Sbostic * in C that runs on machines that conform to IEEE 32*57151Sbostic * Standard 754/854. This alpha version is distributed 33*57151Sbostic * for testing purpose. Those who use this software 34*57151Sbostic * should report any bugs to 35*57151Sbostic * 36*57151Sbostic * fdlibm-comments@sunpro.eng.sun.com 37*57151Sbostic * 38*57151Sbostic * -- K.C. Ng, Oct 12, 1992 39*57151Sbostic * ************************************************ 40*57151Sbostic */ 4124597Szliu 42*57151Sbostic /* double j0(double x), y0(double x) 43*57151Sbostic * Bessel function of the first and second kinds of order zero. 44*57151Sbostic * Method -- j0(x): 45*57151Sbostic * 1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ... 46*57151Sbostic * 2. Reduce x to |x| since j0(x)=j0(-x), and 47*57151Sbostic * for x in (0,2) 48*57151Sbostic * j0(x) = 1-z/4+ z^2*R0/S0, where z = x*x; 49*57151Sbostic * (precision: |j0-1+z/4-z^2R0/S0 |<2**-63.67 ) 50*57151Sbostic * for x in (2,inf) 51*57151Sbostic * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0)) 52*57151Sbostic * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0) 53*57151Sbostic * as follow: 54*57151Sbostic * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) 55*57151Sbostic * = 1/sqrt(2) * (cos(x) + sin(x)) 56*57151Sbostic * sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4) 57*57151Sbostic * = 1/sqrt(2) * (sin(x) - cos(x)) 58*57151Sbostic * (To avoid cancellation, use 59*57151Sbostic * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) 60*57151Sbostic * to compute the worse one.) 61*57151Sbostic * 62*57151Sbostic * 3 Special cases 63*57151Sbostic * j0(nan)= nan 64*57151Sbostic * j0(0) = 1 65*57151Sbostic * j0(inf) = 0 66*57151Sbostic * 67*57151Sbostic * Method -- y0(x): 68*57151Sbostic * 1. For x<2. 69*57151Sbostic * Since 70*57151Sbostic * y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...) 71*57151Sbostic * therefore y0(x)-2/pi*j0(x)*ln(x) is an even function. 72*57151Sbostic * We use the following function to approximate y0, 73*57151Sbostic * y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2 74*57151Sbostic * where 75*57151Sbostic * U(z) = u0 + u1*z + ... + u6*z^6 76*57151Sbostic * V(z) = 1 + v1*z + ... + v4*z^4 77*57151Sbostic * with absolute approximation error bounded by 2**-72. 78*57151Sbostic * Note: For tiny x, U/V = u0 and j0(x)~1, hence 79*57151Sbostic * y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27) 80*57151Sbostic * 2. For x>=2. 81*57151Sbostic * y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0)) 82*57151Sbostic * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0) 83*57151Sbostic * by the method mentioned above. 84*57151Sbostic * 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0. 85*57151Sbostic */ 8624597Szliu 87*57151Sbostic #include <math.h> 88*57151Sbostic #include <float.h> 89*57151Sbostic #if defined(vax) || defined(tahoe) 90*57151Sbostic #define _IEEE 0 91*57151Sbostic #else 92*57151Sbostic #define _IEEE 1 93*57151Sbostic #define infnan(x) (0.0) 94*57151Sbostic #endif 9524597Szliu 96*57151Sbostic static double pzero __P((double)), qzero __P((double)); 9724597Szliu 98*57151Sbostic static double 99*57151Sbostic huge = 1e300, 100*57151Sbostic zero = 0.0, 101*57151Sbostic one = 1.0, 102*57151Sbostic invsqrtpi= 5.641895835477562869480794515607725858441e-0001, 103*57151Sbostic tpi = 0.636619772367581343075535053490057448, 104*57151Sbostic /* R0/S0 on [0, 2.00] */ 105*57151Sbostic r02 = 1.562499999999999408594634421055018003102e-0002, 106*57151Sbostic r03 = -1.899792942388547334476601771991800712355e-0004, 107*57151Sbostic r04 = 1.829540495327006565964161150603950916854e-0006, 108*57151Sbostic r05 = -4.618326885321032060803075217804816988758e-0009, 109*57151Sbostic s01 = 1.561910294648900170180789369288114642057e-0002, 110*57151Sbostic s02 = 1.169267846633374484918570613449245536323e-0004, 111*57151Sbostic s03 = 5.135465502073181376284426245689510134134e-0007, 112*57151Sbostic s04 = 1.166140033337900097836930825478674320464e-0009; 11324597Szliu 114*57151Sbostic double 115*57151Sbostic j0(x) 116*57151Sbostic double x; 117*57151Sbostic { 118*57151Sbostic double z, s,c,ss,cc,r,u,v; 11924597Szliu 120*57151Sbostic if (!finite(x)) 121*57151Sbostic if (_IEEE) return one/(x*x); 122*57151Sbostic else return (0); 123*57151Sbostic x = fabs(x); 124*57151Sbostic if (x >= 2.0) { /* |x| >= 2.0 */ 125*57151Sbostic s = sin(x); 126*57151Sbostic c = cos(x); 127*57151Sbostic ss = s-c; 128*57151Sbostic cc = s+c; 129*57151Sbostic if (x < .5 * DBL_MAX) { /* make sure x+x not overflow */ 130*57151Sbostic z = -cos(x+x); 131*57151Sbostic if ((s*c)<zero) cc = z/ss; 132*57151Sbostic else ss = z/cc; 133*57151Sbostic } 134*57151Sbostic /* 135*57151Sbostic * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) 136*57151Sbostic * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) 137*57151Sbostic */ 138*57151Sbostic if (_IEEE && x> 6.80564733841876927e+38) /* 2^129 */ 139*57151Sbostic z = (invsqrtpi*cc)/sqrt(x); 140*57151Sbostic else { 141*57151Sbostic u = pzero(x); v = qzero(x); 142*57151Sbostic z = invsqrtpi*(u*cc-v*ss)/sqrt(x); 143*57151Sbostic } 144*57151Sbostic return z; 145*57151Sbostic } 146*57151Sbostic if (x < 1.220703125e-004) { /* |x| < 2**-13 */ 147*57151Sbostic if (huge+x > one) { /* raise inexact if x != 0 */ 148*57151Sbostic if (x < 7.450580596923828125e-009) /* |x|<2**-27 */ 149*57151Sbostic return one; 150*57151Sbostic else return (one - 0.25*x*x); 151*57151Sbostic } 152*57151Sbostic } 153*57151Sbostic z = x*x; 154*57151Sbostic r = z*(r02+z*(r03+z*(r04+z*r05))); 155*57151Sbostic s = one+z*(s01+z*(s02+z*(s03+z*s04))); 156*57151Sbostic if (x < one) { /* |x| < 1.00 */ 157*57151Sbostic return (one + z*(-0.25+(r/s))); 158*57151Sbostic } else { 159*57151Sbostic u = 0.5*x; 160*57151Sbostic return ((one+u)*(one-u)+z*(r/s)); 161*57151Sbostic } 162*57151Sbostic } 16324597Szliu 164*57151Sbostic static double 165*57151Sbostic u00 = -7.380429510868722527422411862872999615628e-0002, 166*57151Sbostic u01 = 1.766664525091811069896442906220827182707e-0001, 167*57151Sbostic u02 = -1.381856719455968955440002438182885835344e-0002, 168*57151Sbostic u03 = 3.474534320936836562092566861515617053954e-0004, 169*57151Sbostic u04 = -3.814070537243641752631729276103284491172e-0006, 170*57151Sbostic u05 = 1.955901370350229170025509706510038090009e-0008, 171*57151Sbostic u06 = -3.982051941321034108350630097330144576337e-0011, 172*57151Sbostic v01 = 1.273048348341237002944554656529224780561e-0002, 173*57151Sbostic v02 = 7.600686273503532807462101309675806839635e-0005, 174*57151Sbostic v03 = 2.591508518404578033173189144579208685163e-0007, 175*57151Sbostic v04 = 4.411103113326754838596529339004302243157e-0010; 17624597Szliu 177*57151Sbostic double 178*57151Sbostic y0(x) 179*57151Sbostic double x; 180*57151Sbostic { 181*57151Sbostic double z, s,c,ss,cc,u,v,j0(); 182*57151Sbostic /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */ 183*57151Sbostic if (!finite(x)) 184*57151Sbostic if (_IEEE) 185*57151Sbostic return (one/(x+x*x)); 186*57151Sbostic else 187*57151Sbostic return (0); 188*57151Sbostic if (x == 0) 189*57151Sbostic if (_IEEE) return (-one/zero); 190*57151Sbostic else return(infnan(-ERANGE)); 191*57151Sbostic if (x<0) 192*57151Sbostic if (_IEEE) return (zero/zero); 193*57151Sbostic else return (infnan(EDOM)); 194*57151Sbostic if (x >= 2.00) { /* |x| >= 2.0 */ 195*57151Sbostic /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0)) 196*57151Sbostic * where x0 = x-pi/4 197*57151Sbostic * Better formula: 198*57151Sbostic * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) 199*57151Sbostic * = 1/sqrt(2) * (sin(x) + cos(x)) 200*57151Sbostic * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) 201*57151Sbostic * = 1/sqrt(2) * (sin(x) - cos(x)) 202*57151Sbostic * To avoid cancellation, use 203*57151Sbostic * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) 204*57151Sbostic * to compute the worse one. 205*57151Sbostic */ 206*57151Sbostic s = sin(x); 207*57151Sbostic c = cos(x); 208*57151Sbostic ss = s-c; 209*57151Sbostic cc = s+c; 210*57151Sbostic /* 211*57151Sbostic * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) 212*57151Sbostic * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) 213*57151Sbostic */ 214*57151Sbostic if (x < .5 * DBL_MAX) { /* make sure x+x not overflow */ 215*57151Sbostic z = -cos(x+x); 216*57151Sbostic if ((s*c)<zero) cc = z/ss; 217*57151Sbostic else ss = z/cc; 218*57151Sbostic } 219*57151Sbostic if (_IEEE && x > 6.80564733841876927e+38) /* > 2^129 */ 220*57151Sbostic z = (invsqrtpi*ss)/sqrt(x); 221*57151Sbostic else { 222*57151Sbostic u = pzero(x); v = qzero(x); 223*57151Sbostic z = invsqrtpi*(u*ss+v*cc)/sqrt(x); 224*57151Sbostic } 225*57151Sbostic return z; 226*57151Sbostic } 227*57151Sbostic if (x <= 7.450580596923828125e-009) { /* x < 2**-27 */ 228*57151Sbostic return (u00 + tpi*log(x)); 229*57151Sbostic } 230*57151Sbostic z = x*x; 231*57151Sbostic u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06))))); 232*57151Sbostic v = one+z*(v01+z*(v02+z*(v03+z*v04))); 233*57151Sbostic return (u/v + tpi*(j0(x)*log(x))); 234*57151Sbostic } 23535679Sbostic 236*57151Sbostic /* The asymptotic expansions of pzero is 237*57151Sbostic * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x. 238*57151Sbostic * For x >= 2, We approximate pzero by 239*57151Sbostic * pzero(x) = 1 + (R/S) 240*57151Sbostic * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10 241*57151Sbostic * S = 1 + ps0*s^2 + ... + ps4*s^10 242*57151Sbostic * and 243*57151Sbostic * | pzero(x)-1-R/S | <= 2 ** ( -60.26) 244*57151Sbostic */ 245*57151Sbostic static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ 246*57151Sbostic 0.0, 247*57151Sbostic -7.031249999999003994151563066182798210142e-0002, 248*57151Sbostic -8.081670412753498508883963849859423939871e+0000, 249*57151Sbostic -2.570631056797048755890526455854482662510e+0002, 250*57151Sbostic -2.485216410094288379417154382189125598962e+0003, 251*57151Sbostic -5.253043804907295692946647153614119665649e+0003, 25224597Szliu }; 253*57151Sbostic static double ps8[5] = { 254*57151Sbostic 1.165343646196681758075176077627332052048e+0002, 255*57151Sbostic 3.833744753641218451213253490882686307027e+0003, 256*57151Sbostic 4.059785726484725470626341023967186966531e+0004, 257*57151Sbostic 1.167529725643759169416844015694440325519e+0005, 258*57151Sbostic 4.762772841467309430100106254805711722972e+0004, 25924597Szliu }; 260*57151Sbostic 261*57151Sbostic static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ 262*57151Sbostic -1.141254646918944974922813501362824060117e-0011, 263*57151Sbostic -7.031249408735992804117367183001996028304e-0002, 264*57151Sbostic -4.159610644705877925119684455252125760478e+0000, 265*57151Sbostic -6.767476522651671942610538094335912346253e+0001, 266*57151Sbostic -3.312312996491729755731871867397057689078e+0002, 267*57151Sbostic -3.464333883656048910814187305901796723256e+0002, 26824597Szliu }; 269*57151Sbostic static double ps5[5] = { 270*57151Sbostic 6.075393826923003305967637195319271932944e+0001, 271*57151Sbostic 1.051252305957045869801410979087427910437e+0003, 272*57151Sbostic 5.978970943338558182743915287887408780344e+0003, 273*57151Sbostic 9.625445143577745335793221135208591603029e+0003, 274*57151Sbostic 2.406058159229391070820491174867406875471e+0003, 27524597Szliu }; 276*57151Sbostic 277*57151Sbostic static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ 278*57151Sbostic -2.547046017719519317420607587742992297519e-0009, 279*57151Sbostic -7.031196163814817199050629727406231152464e-0002, 280*57151Sbostic -2.409032215495295917537157371488126555072e+0000, 281*57151Sbostic -2.196597747348830936268718293366935843223e+0001, 282*57151Sbostic -5.807917047017375458527187341817239891940e+0001, 283*57151Sbostic -3.144794705948885090518775074177485744176e+0001, 28424597Szliu }; 285*57151Sbostic static double ps3[5] = { 286*57151Sbostic 3.585603380552097167919946472266854507059e+0001, 287*57151Sbostic 3.615139830503038919981567245265266294189e+0002, 288*57151Sbostic 1.193607837921115243628631691509851364715e+0003, 289*57151Sbostic 1.127996798569074250675414186814529958010e+0003, 290*57151Sbostic 1.735809308133357510239737333055228118910e+0002, 29124597Szliu }; 292*57151Sbostic 293*57151Sbostic static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ 294*57151Sbostic -8.875343330325263874525704514800809730145e-0008, 295*57151Sbostic -7.030309954836247756556445443331044338352e-0002, 296*57151Sbostic -1.450738467809529910662233622603401167409e+0000, 297*57151Sbostic -7.635696138235277739186371273434739292491e+0000, 298*57151Sbostic -1.119316688603567398846655082201614524650e+0001, 299*57151Sbostic -3.233645793513353260006821113608134669030e+0000, 30024597Szliu }; 301*57151Sbostic static double ps2[5] = { 302*57151Sbostic 2.222029975320888079364901247548798910952e+0001, 303*57151Sbostic 1.362067942182152109590340823043813120940e+0002, 304*57151Sbostic 2.704702786580835044524562897256790293238e+0002, 305*57151Sbostic 1.538753942083203315263554770476850028583e+0002, 306*57151Sbostic 1.465761769482561965099880599279699314477e+0001, 30724597Szliu }; 30824597Szliu 309*57151Sbostic static double pzero(x) 310*57151Sbostic double x; 311*57151Sbostic { 312*57151Sbostic double *p,*q,z,r,s; 313*57151Sbostic if (x >= 8.00) {p = pr8; q= ps8;} 314*57151Sbostic else if (x >= 4.54545211791992188) {p = pr5; q= ps5;} 315*57151Sbostic else if (x >= 2.85714149475097656) {p = pr3; q= ps3;} 316*57151Sbostic else if (x >= 2.00) {p = pr2; q= ps2;} 317*57151Sbostic z = one/(x*x); 318*57151Sbostic r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); 319*57151Sbostic s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); 320*57151Sbostic return one+ r/s; 321*57151Sbostic } 322*57151Sbostic 32335679Sbostic 324*57151Sbostic /* For x >= 8, the asymptotic expansions of qzero is 325*57151Sbostic * -1/8 s + 75/1024 s^3 - ..., where s = 1/x. 326*57151Sbostic * We approximate pzero by 327*57151Sbostic * qzero(x) = s*(-1.25 + (R/S)) 328*57151Sbostic * where R = qr0 + qr1*s^2 + qr2*s^4 + ... + qr5*s^10 329*57151Sbostic * S = 1 + qs0*s^2 + ... + qs5*s^12 330*57151Sbostic * and 331*57151Sbostic * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22) 332*57151Sbostic */ 333*57151Sbostic static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ 334*57151Sbostic 0.0, 335*57151Sbostic 7.324218749999350414479738504551775297096e-0002, 336*57151Sbostic 1.176820646822526933903301695932765232456e+0001, 337*57151Sbostic 5.576733802564018422407734683549251364365e+0002, 338*57151Sbostic 8.859197207564685717547076568608235802317e+0003, 339*57151Sbostic 3.701462677768878501173055581933725704809e+0004, 340*57151Sbostic }; 341*57151Sbostic static double qs8[6] = { 342*57151Sbostic 1.637760268956898345680262381842235272369e+0002, 343*57151Sbostic 8.098344946564498460163123708054674227492e+0003, 344*57151Sbostic 1.425382914191204905277585267143216379136e+0005, 345*57151Sbostic 8.033092571195144136565231198526081387047e+0005, 346*57151Sbostic 8.405015798190605130722042369969184811488e+0005, 347*57151Sbostic -3.438992935378666373204500729736454421006e+0005, 348*57151Sbostic }; 34924597Szliu 350*57151Sbostic static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ 351*57151Sbostic 1.840859635945155400568380711372759921179e-0011, 352*57151Sbostic 7.324217666126847411304688081129741939255e-0002, 353*57151Sbostic 5.835635089620569401157245917610984757296e+0000, 354*57151Sbostic 1.351115772864498375785526599119895942361e+0002, 355*57151Sbostic 1.027243765961641042977177679021711341529e+0003, 356*57151Sbostic 1.989977858646053872589042328678602481924e+0003, 357*57151Sbostic }; 358*57151Sbostic static double qs5[6] = { 359*57151Sbostic 8.277661022365377058749454444343415524509e+0001, 360*57151Sbostic 2.077814164213929827140178285401017305309e+0003, 361*57151Sbostic 1.884728877857180787101956800212453218179e+0004, 362*57151Sbostic 5.675111228949473657576693406600265778689e+0004, 363*57151Sbostic 3.597675384251145011342454247417399490174e+0004, 364*57151Sbostic -5.354342756019447546671440667961399442388e+0003, 365*57151Sbostic }; 36624597Szliu 367*57151Sbostic static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ 368*57151Sbostic 4.377410140897386263955149197672576223054e-0009, 369*57151Sbostic 7.324111800429115152536250525131924283018e-0002, 370*57151Sbostic 3.344231375161707158666412987337679317358e+0000, 371*57151Sbostic 4.262184407454126175974453269277100206290e+0001, 372*57151Sbostic 1.708080913405656078640701512007621675724e+0002, 373*57151Sbostic 1.667339486966511691019925923456050558293e+0002, 374*57151Sbostic }; 375*57151Sbostic static double qs3[6] = { 376*57151Sbostic 4.875887297245871932865584382810260676713e+0001, 377*57151Sbostic 7.096892210566060535416958362640184894280e+0002, 378*57151Sbostic 3.704148226201113687434290319905207398682e+0003, 379*57151Sbostic 6.460425167525689088321109036469797462086e+0003, 380*57151Sbostic 2.516333689203689683999196167394889715078e+0003, 381*57151Sbostic -1.492474518361563818275130131510339371048e+0002, 382*57151Sbostic }; 38324597Szliu 384*57151Sbostic static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ 385*57151Sbostic 1.504444448869832780257436041633206366087e-0007, 386*57151Sbostic 7.322342659630792930894554535717104926902e-0002, 387*57151Sbostic 1.998191740938159956838594407540292600331e+0000, 388*57151Sbostic 1.449560293478857407645853071687125850962e+0001, 389*57151Sbostic 3.166623175047815297062638132537957315395e+0001, 390*57151Sbostic 1.625270757109292688799540258329430963726e+0001, 391*57151Sbostic }; 392*57151Sbostic static double qs2[6] = { 393*57151Sbostic 3.036558483552191922522729838478169383969e+0001, 394*57151Sbostic 2.693481186080498724211751445725708524507e+0002, 395*57151Sbostic 8.447837575953201460013136756723746023736e+0002, 396*57151Sbostic 8.829358451124885811233995083187666981299e+0002, 397*57151Sbostic 2.126663885117988324180482985363624996652e+0002, 398*57151Sbostic -5.310954938826669402431816125780738924463e+0000, 399*57151Sbostic }; 40024597Szliu 401*57151Sbostic static double qzero(x) 402*57151Sbostic double x; 403*57151Sbostic { 404*57151Sbostic double *p,*q, s,r,z; 405*57151Sbostic if (x >= 8.00) {p = qr8; q= qs8;} 406*57151Sbostic else if (x >= 4.54545211791992188) {p = qr5; q= qs5;} 407*57151Sbostic else if (x >= 2.85714149475097656) {p = qr3; q= qs3;} 408*57151Sbostic else if (x >= 2.00) {p = qr2; q= qs2;} 409*57151Sbostic z = one/(x*x); 410*57151Sbostic r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); 411*57151Sbostic s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); 412*57151Sbostic return (-.125 + r/s)/x; 41324597Szliu } 414