156953Sbostic /*- 256953Sbostic * Copyright (c) 1992 The Regents of the University of California. 356953Sbostic * All rights reserved. 456953Sbostic * 556953Sbostic * %sccs.include.redist.c% 656953Sbostic */ 756953Sbostic 856953Sbostic #ifndef lint 9*57452Sbostic static char sccsid[] = "@(#)gamma.c 5.4 (Berkeley) 01/10/93"; 1056953Sbostic #endif /* not lint */ 1156953Sbostic 1257152Sbostic /* 1357152Sbostic * This code by P. McIlroy, Oct 1992; 1457152Sbostic * 1557152Sbostic * The financial support of UUNET Communications Services is greatfully 1657152Sbostic * acknowledged. 1757152Sbostic */ 1857152Sbostic 1956953Sbostic #include <math.h> 2057152Sbostic #include "mathimpl.h" 2156953Sbostic #include <errno.h> 2256953Sbostic 2356953Sbostic /* METHOD: 2456953Sbostic * x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x)) 2556953Sbostic * At negative integers, return +Inf, and set errno. 2656953Sbostic * 2757152Sbostic * x < 6.5: 2857152Sbostic * Use argument reduction G(x+1) = xG(x) to reach the 2957152Sbostic * range [1.066124,2.066124]. Use a rational 3057152Sbostic * approximation centered at the minimum (x0+1) to 3157152Sbostic * ensure monotonicity. 3256953Sbostic * 3357152Sbostic * x >= 6.5: Use the asymptotic approximation (Stirling's formula) 3457152Sbostic * adjusted for equal-ripples: 3556953Sbostic * 3656953Sbostic * log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x)) 3756953Sbostic * 3856953Sbostic * Keep extra precision in multiplying (x-.5)(log(x)-1), to 3956953Sbostic * avoid premature round-off. 4056953Sbostic * 4157152Sbostic * Special values: 4257152Sbostic * non-positive integer: Set overflow trap; return +Inf; 4357152Sbostic * x > 171.63: Set overflow trap; return +Inf; 4457152Sbostic * NaN: Set invalid trap; return NaN 4557152Sbostic * 4657152Sbostic * Accuracy: Gamma(x) is accurate to within 4757152Sbostic * x > 0: error provably < 0.9ulp. 4857152Sbostic * Maximum observed in 1,000,000 trials was .87ulp. 4957152Sbostic * x < 0: 5057152Sbostic * Maximum observed error < 4ulp in 1,000,000 trials. 5157152Sbostic */ 5257152Sbostic 5357152Sbostic static double neg_gam __P((double)); 5457152Sbostic static double small_gam __P((double)); 5557152Sbostic static double smaller_gam __P((double)); 5657152Sbostic static struct Double large_gam __P((double)); 5757152Sbostic static struct Double ratfun_gam __P((double, double)); 5857152Sbostic 5957152Sbostic /* 6057152Sbostic * Rational approximation, A0 + x*x*P(x)/Q(x), on the interval 6157152Sbostic * [1.066.., 2.066..] accurate to 4.25e-19. 6257152Sbostic */ 6357152Sbostic #define LEFT -.3955078125 /* left boundary for rat. approx */ 6457152Sbostic #define x0 .461632144968362356785 /* xmin - 1 */ 6557152Sbostic 6656953Sbostic #define a0_hi 0.88560319441088874992 6756953Sbostic #define a0_lo -.00000000000000004996427036469019695 6857152Sbostic #define P0 6.21389571821820863029017800727e-01 6957152Sbostic #define P1 2.65757198651533466104979197553e-01 7057152Sbostic #define P2 5.53859446429917461063308081748e-03 7157152Sbostic #define P3 1.38456698304096573887145282811e-03 7257152Sbostic #define P4 2.40659950032711365819348969808e-03 7357152Sbostic #define Q0 1.45019531250000000000000000000e+00 7457152Sbostic #define Q1 1.06258521948016171343454061571e+00 7557152Sbostic #define Q2 -2.07474561943859936441469926649e-01 7657152Sbostic #define Q3 -1.46734131782005422506287573015e-01 7757152Sbostic #define Q4 3.07878176156175520361557573779e-02 7857152Sbostic #define Q5 5.12449347980666221336054633184e-03 7957152Sbostic #define Q6 -1.76012741431666995019222898833e-03 8057152Sbostic #define Q7 9.35021023573788935372153030556e-05 8157152Sbostic #define Q8 6.13275507472443958924745652239e-06 8257152Sbostic /* 8357152Sbostic * Constants for large x approximation (x in [6, Inf]) 8457152Sbostic * (Accurate to 2.8*10^-19 absolute) 8557152Sbostic */ 8656953Sbostic #define lns2pi_hi 0.418945312500000 8756953Sbostic #define lns2pi_lo -.000006779295327258219670263595 8857152Sbostic #define Pa0 8.33333333333333148296162562474e-02 8957152Sbostic #define Pa1 -2.77777777774548123579378966497e-03 9057152Sbostic #define Pa2 7.93650778754435631476282786423e-04 9157152Sbostic #define Pa3 -5.95235082566672847950717262222e-04 9257152Sbostic #define Pa4 8.41428560346653702135821806252e-04 9357152Sbostic #define Pa5 -1.89773526463879200348872089421e-03 9457152Sbostic #define Pa6 5.69394463439411649408050664078e-03 9557152Sbostic #define Pa7 -1.44705562421428915453880392761e-02 9656953Sbostic 9757152Sbostic static const double zero = 0., one = 1.0, tiny = 1e-300; 9857152Sbostic static int endian; 9957152Sbostic /* 10057152Sbostic * TRUNC sets trailing bits in a floating-point number to zero. 10157152Sbostic * is a temporary variable. 10257152Sbostic */ 10357152Sbostic #if defined(vax) || defined(tahoe) 10457152Sbostic #define _IEEE 0 10557152Sbostic #define TRUNC(x) x = (double) (float) (x) 10657152Sbostic #else 10757152Sbostic #define _IEEE 1 10857152Sbostic #define TRUNC(x) *(((int *) &x) + endian) &= 0xf8000000 10957152Sbostic #define infnan(x) 0.0 11057152Sbostic #endif 11156953Sbostic 11256953Sbostic double 11356953Sbostic gamma(x) 11456953Sbostic double x; 11556953Sbostic { 11656953Sbostic struct Double u; 11757152Sbostic endian = (*(int *) &one) ? 1 : 0; 11857152Sbostic 11957152Sbostic if (x >= 6) { 12056953Sbostic if(x > 171.63) 12157152Sbostic return(one/zero); 12256953Sbostic u = large_gam(x); 123*57452Sbostic return(__exp__D(u.a, u.b)); 12456953Sbostic } else if (x >= 1.0 + LEFT + x0) 12556953Sbostic return (small_gam(x)); 12657152Sbostic else if (x > 1.e-17) 12756953Sbostic return (smaller_gam(x)); 12857152Sbostic else if (x > -1.e-17) { 12957152Sbostic if (x == 0.0) 13057152Sbostic if (!_IEEE) return (infnan(ERANGE)); 13157152Sbostic else return (one/x); 13257152Sbostic one+1e-20; /* Raise inexact flag. */ 13357152Sbostic return (one/x); 13457152Sbostic } else if (!finite(x)) { 13557152Sbostic if (_IEEE) /* x = NaN, -Inf */ 13657152Sbostic return (x*x); 13757152Sbostic else 13857152Sbostic return (infnan(EDOM)); 13957152Sbostic } else 14056953Sbostic return (neg_gam(x)); 14156953Sbostic } 14257152Sbostic /* 14357152Sbostic * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error. 14457152Sbostic */ 14556953Sbostic static struct Double 14656953Sbostic large_gam(x) 14756953Sbostic double x; 14856953Sbostic { 14956953Sbostic double z, p; 15056953Sbostic int i; 15156953Sbostic struct Double t, u, v; 15257152Sbostic 15357152Sbostic z = one/(x*x); 15457152Sbostic p = Pa0+z*(Pa1+z*(Pa2+z*(Pa3+z*(Pa4+z*(Pa5+z*(Pa6+z*Pa7)))))); 15557152Sbostic p = p/x; 15657152Sbostic 157*57452Sbostic u = __log__D(x); 15857152Sbostic u.a -= one; 15956953Sbostic v.a = (x -= .5); 16056953Sbostic TRUNC(v.a); 16156953Sbostic v.b = x - v.a; 16256953Sbostic t.a = v.a*u.a; /* t = (x-.5)*(log(x)-1) */ 16356953Sbostic t.b = v.b*u.a + x*u.b; 16456953Sbostic /* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */ 16557152Sbostic t.b += lns2pi_lo; t.b += p; 16656953Sbostic u.a = lns2pi_hi + t.b; u.a += t.a; 16756953Sbostic u.b = t.a - u.a; 16856953Sbostic u.b += lns2pi_hi; u.b += t.b; 16956953Sbostic return (u); 17056953Sbostic } 17157152Sbostic /* 17257152Sbostic * Good to < 1 ulp. (provably .90 ulp; .87 ulp on 1,000,000 runs.) 17357152Sbostic * It also has correct monotonicity. 17456953Sbostic */ 17556953Sbostic static double 17656953Sbostic small_gam(x) 17756953Sbostic double x; 17856953Sbostic { 17957152Sbostic double y, ym1, t, x1; 18056953Sbostic struct Double yy, r; 18157152Sbostic y = x - one; 18257152Sbostic ym1 = y - one; 18356953Sbostic if (y <= 1.0 + (LEFT + x0)) { 18456953Sbostic yy = ratfun_gam(y - x0, 0); 18556953Sbostic return (yy.a + yy.b); 18656953Sbostic } 18757152Sbostic r.a = y; 18856953Sbostic TRUNC(r.a); 18957152Sbostic yy.a = r.a - one; 19057152Sbostic y = ym1; 19156953Sbostic yy.b = r.b = y - yy.a; 19257152Sbostic /* Argument reduction: G(x+1) = x*G(x) */ 19357152Sbostic for (ym1 = y-one; ym1 > LEFT + x0; y = ym1--, yy.a--) { 19457152Sbostic t = r.a*yy.a; 19557152Sbostic r.b = r.a*yy.b + y*r.b; 19657152Sbostic r.a = t; 19757152Sbostic TRUNC(r.a); 19857152Sbostic r.b += (t - r.a); 19957152Sbostic } 20057152Sbostic /* Return r*gamma(y). */ 20156953Sbostic yy = ratfun_gam(y - x0, 0); 20257152Sbostic y = r.b*(yy.a + yy.b) + r.a*yy.b; 20356953Sbostic y += yy.a*r.a; 20456953Sbostic return (y); 20556953Sbostic } 20657152Sbostic /* 20757152Sbostic * Good on (0, 1+x0+LEFT]. Accurate to 1ulp. 20856953Sbostic */ 20956953Sbostic static double 21056953Sbostic smaller_gam(x) 21156953Sbostic double x; 21256953Sbostic { 21356953Sbostic double t, d; 21456953Sbostic struct Double r, xx; 21556953Sbostic if (x < x0 + LEFT) { 21656953Sbostic t = x, TRUNC(t); 21756953Sbostic d = (t+x)*(x-t); 21856953Sbostic t *= t; 21957152Sbostic xx.a = (t + x), TRUNC(xx.a); 22056953Sbostic xx.b = x - xx.a; xx.b += t; xx.b += d; 22157152Sbostic t = (one-x0); t += x; 22257152Sbostic d = (one-x0); d -= t; d += x; 22356953Sbostic x = xx.a + xx.b; 22456953Sbostic } else { 22556953Sbostic xx.a = x, TRUNC(xx.a); 22656953Sbostic xx.b = x - xx.a; 22756953Sbostic t = x - x0; 22856953Sbostic d = (-x0 -t); d += x; 22956953Sbostic } 23056953Sbostic r = ratfun_gam(t, d); 23156953Sbostic d = r.a/x, TRUNC(d); 23256953Sbostic r.a -= d*xx.a; r.a -= d*xx.b; r.a += r.b; 23356953Sbostic return (d + r.a/x); 23456953Sbostic } 23557152Sbostic /* 23657152Sbostic * returns (z+c)^2 * P(z)/Q(z) + a0 23757152Sbostic */ 23856953Sbostic static struct Double 23956953Sbostic ratfun_gam(z, c) 24056953Sbostic double z, c; 24156953Sbostic { 24256953Sbostic int i; 24357152Sbostic double p, q; 24457152Sbostic struct Double r, t; 24556953Sbostic 24656953Sbostic q = Q0 +z*(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*Q8))))))); 24756953Sbostic p = P0 + z*(P1 + z*(P2 + z*(P3 + z*P4))); 24856953Sbostic 24957152Sbostic /* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */ 25056953Sbostic p = p/q; 25157152Sbostic t.a = z, TRUNC(t.a); /* t ~= z + c */ 25257152Sbostic t.b = (z - t.a) + c; 25357152Sbostic t.b *= (t.a + z); 25457152Sbostic q = (t.a *= t.a); /* t = (z+c)^2 */ 25557152Sbostic TRUNC(t.a); 25657152Sbostic t.b += (q - t.a); 25757152Sbostic r.a = p, TRUNC(r.a); /* r = P/Q */ 25857152Sbostic r.b = p - r.a; 25957152Sbostic t.b = t.b*p + t.a*r.b + a0_lo; 26057152Sbostic t.a *= r.a; /* t = (z+c)^2*(P/Q) */ 26157152Sbostic r.a = t.a + a0_hi, TRUNC(r.a); 26257152Sbostic r.b = ((a0_hi-r.a) + t.a) + t.b; 26357152Sbostic return (r); /* r = a0 + t */ 26456953Sbostic } 26557152Sbostic 26656953Sbostic static double 26756953Sbostic neg_gam(x) 26856953Sbostic double x; 26956953Sbostic { 27056953Sbostic int sgn = 1; 27156953Sbostic struct Double lg, lsine; 27257152Sbostic double y, z; 27357152Sbostic 27456953Sbostic y = floor(x + .5); 27557152Sbostic if (y == x) /* Negative integer. */ 27657152Sbostic if(!_IEEE) 27757152Sbostic return (infnan(ERANGE)); 27857152Sbostic else 27957152Sbostic return (one/zero); 28056953Sbostic z = fabs(x - y); 28157152Sbostic y = .5*ceil(x); 28257152Sbostic if (y == ceil(y)) 28356953Sbostic sgn = -1; 28457152Sbostic if (z < .25) 28557152Sbostic z = sin(M_PI*z); 28657152Sbostic else 28757152Sbostic z = cos(M_PI*(0.5-z)); 28857152Sbostic /* Special case: G(1-x) = Inf; G(x) may be nonzero. */ 28957152Sbostic if (x < -170) { 29057152Sbostic if (x < -190) 29157152Sbostic return ((double)sgn*tiny*tiny); 29257152Sbostic y = one - x; /* exact: 128 < |x| < 255 */ 29357152Sbostic lg = large_gam(y); 294*57452Sbostic lsine = __log__D(M_PI/z); /* = TRUNC(log(u)) + small */ 295*57452Sbostic lg.a -= lsine.a; /* exact (opposite signs) */ 29657152Sbostic lg.b -= lsine.b; 29757152Sbostic y = -(lg.a + lg.b); 29857171Smcilroy z = (y + lg.a) + lg.b; 299*57452Sbostic y = __exp__D(y, z); 30057152Sbostic if (sgn < 0) y = -y; 30156953Sbostic return (y); 30256953Sbostic } 30357152Sbostic y = one-x; 30457152Sbostic if (one-y == x) 30557152Sbostic y = gamma(y); 30656953Sbostic else /* 1-x is inexact */ 30757152Sbostic y = -x*gamma(-x); 30856953Sbostic if (sgn < 0) y = -y; 30957152Sbostic return (M_PI / (y*z)); 31056953Sbostic } 311