xref: /csrg-svn/lib/libm/common_source/expm1.c (revision 42657)
1 /*
2  * Copyright (c) 1985 Regents of the University of California.
3  * All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  *
7  * All recipients should regard themselves as participants in an ongoing
8  * research project and hence should feel obligated to report their
9  * experiences (good or bad) with these elementary function codes, using
10  * the sendbug(8) program, to the authors.
11  */
12 
13 #ifndef lint
14 static char sccsid[] = "@(#)expm1.c	5.5 (Berkeley) 06/01/90";
15 #endif /* not lint */
16 
17 /* EXPM1(X)
18  * RETURN THE EXPONENTIAL OF X MINUS ONE
19  * DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS)
20  * CODED IN C BY K.C. NG, 1/19/85;
21  * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85.
22  *
23  * Required system supported functions:
24  *	scalb(x,n)
25  *	copysign(x,y)
26  *	finite(x)
27  *
28  * Kernel function:
29  *	exp__E(x,c)
30  *
31  * Method:
32  *	1. Argument Reduction: given the input x, find r and integer k such
33  *	   that
34  *	                   x = k*ln2 + r,  |r| <= 0.5*ln2 .
35  *	   r will be represented as r := z+c for better accuracy.
36  *
37  *	2. Compute EXPM1(r)=exp(r)-1 by
38  *
39  *			EXPM1(r=z+c) := z + exp__E(z,c)
40  *
41  *	3. EXPM1(x) =  2^k * ( EXPM1(r) + 1-2^-k ).
42  *
43  * 	Remarks:
44  *	   1. When k=1 and z < -0.25, we use the following formula for
45  *	      better accuracy:
46  *			EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) )
47  *	   2. To avoid rounding error in 1-2^-k where k is large, we use
48  *			EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 }
49  *	      when k>56.
50  *
51  * Special cases:
52  *	EXPM1(INF) is INF, EXPM1(NaN) is NaN;
53  *	EXPM1(-INF)= -1;
54  *	for finite argument, only EXPM1(0)=0 is exact.
55  *
56  * Accuracy:
57  *	EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with
58  *	1,166,000 random arguments on a VAX, the maximum observed error was
59  *	.872 ulps (units of the last place).
60  *
61  * Constants:
62  * The hexadecimal values are the intended ones for the following constants.
63  * The decimal values may be used, provided that the compiler will convert
64  * from decimal to binary accurately enough to produce the hexadecimal values
65  * shown.
66  */
67 
68 #include "mathimpl.h"
69 
70 vc(ln2hi,  6.9314718055829871446E-1  ,7217,4031,0000,f7d0,   0, .B17217F7D00000)
71 vc(ln2lo,  1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
72 vc(lnhuge, 9.4961163736712506989E1   ,ec1d,43bd,9010,a73e,   7, .BDEC1DA73E9010)
73 vc(invln2, 1.4426950408889634148E0   ,aa3b,40b8,17f1,295c,   1, .B8AA3B295C17F1)
74 
75 ic(ln2hi,  6.9314718036912381649E-1,   -1, 1.62E42FEE00000)
76 ic(ln2lo,  1.9082149292705877000E-10, -33, 1.A39EF35793C76)
77 ic(lnhuge, 7.1602103751842355450E2,     9, 1.6602B15B7ECF2)
78 ic(invln2, 1.4426950408889633870E0,     0, 1.71547652B82FE)
79 
80 #ifdef vccast
81 #define	ln2hi	vccast(ln2hi)
82 #define	ln2lo	vccast(ln2lo)
83 #define	lnhuge	vccast(lnhuge)
84 #define	invln2	vccast(invln2)
85 #endif
86 
87 double expm1(x)
88 double x;
89 {
90 	const static double one=1.0, half=1.0/2.0;
91 	double  z,hi,lo,c;
92 	int k;
93 #if defined(vax)||defined(tahoe)
94 	static prec=56;
95 #else	/* defined(vax)||defined(tahoe) */
96 	static prec=53;
97 #endif	/* defined(vax)||defined(tahoe) */
98 
99 #if !defined(vax)&&!defined(tahoe)
100 	if(x!=x) return(x);	/* x is NaN */
101 #endif	/* !defined(vax)&&!defined(tahoe) */
102 
103 	if( x <= lnhuge ) {
104 		if( x >= -40.0 ) {
105 
106 		    /* argument reduction : x - k*ln2 */
107 			k= invln2 *x+copysign(0.5,x);	/* k=NINT(x/ln2) */
108 			hi=x-k*ln2hi ;
109 			z=hi-(lo=k*ln2lo);
110 			c=(hi-z)-lo;
111 
112 			if(k==0) return(z+exp__E(z,c));
113 			if(k==1)
114 			    if(z< -0.25)
115 				{x=z+half;x +=exp__E(z,c); return(x+x);}
116 			    else
117 				{z+=exp__E(z,c); x=half+z; return(x+x);}
118 		    /* end of k=1 */
119 
120 			else {
121 			    if(k<=prec)
122 			      { x=one-scalb(one,-k); z += exp__E(z,c);}
123 			    else if(k<100)
124 			      { x = exp__E(z,c)-scalb(one,-k); x+=z; z=one;}
125 			    else
126 			      { x = exp__E(z,c)+z; z=one;}
127 
128 			    return (scalb(x+z,k));
129 			}
130 		}
131 		/* end of x > lnunfl */
132 
133 		else
134 		     /* expm1(-big#) rounded to -1 (inexact) */
135 		     if(finite(x))
136 			 { ln2hi+ln2lo; return(-one);}
137 
138 		     /* expm1(-INF) is -1 */
139 		     else return(-one);
140 	}
141 	/* end of x < lnhuge */
142 
143 	else
144 	/*  expm1(INF) is INF, expm1(+big#) overflows to INF */
145 	    return( finite(x) ?  scalb(one,5000) : x);
146 }
147