xref: /csrg-svn/lib/libm/common_source/expm1.c (revision 34124)
1 /*
2  * Copyright (c) 1985 Regents of the University of California.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms are permitted
6  * provided that this notice is preserved and that due credit is given
7  * to the University of California at Berkeley. The name of the University
8  * may not be used to endorse or promote products derived from this
9  * software without specific prior written permission. This software
10  * is provided ``as is'' without express or implied warranty.
11  *
12  * All recipients should regard themselves as participants in an ongoing
13  * research project and hence should feel obligated to report their
14  * experiences (good or bad) with these elementary function codes, using
15  * the sendbug(8) program, to the authors.
16  */
17 
18 #ifndef lint
19 static char sccsid[] = "@(#)expm1.c	5.2 (Berkeley) 04/29/88";
20 #endif /* not lint */
21 
22 /* EXPM1(X)
23  * RETURN THE EXPONENTIAL OF X MINUS ONE
24  * DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS)
25  * CODED IN C BY K.C. NG, 1/19/85;
26  * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85.
27  *
28  * Required system supported functions:
29  *	scalb(x,n)
30  *	copysign(x,y)
31  *	finite(x)
32  *
33  * Kernel function:
34  *	exp__E(x,c)
35  *
36  * Method:
37  *	1. Argument Reduction: given the input x, find r and integer k such
38  *	   that
39  *	                   x = k*ln2 + r,  |r| <= 0.5*ln2 .
40  *	   r will be represented as r := z+c for better accuracy.
41  *
42  *	2. Compute EXPM1(r)=exp(r)-1 by
43  *
44  *			EXPM1(r=z+c) := z + exp__E(z,c)
45  *
46  *	3. EXPM1(x) =  2^k * ( EXPM1(r) + 1-2^-k ).
47  *
48  * 	Remarks:
49  *	   1. When k=1 and z < -0.25, we use the following formula for
50  *	      better accuracy:
51  *			EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) )
52  *	   2. To avoid rounding error in 1-2^-k where k is large, we use
53  *			EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 }
54  *	      when k>56.
55  *
56  * Special cases:
57  *	EXPM1(INF) is INF, EXPM1(NaN) is NaN;
58  *	EXPM1(-INF)= -1;
59  *	for finite argument, only EXPM1(0)=0 is exact.
60  *
61  * Accuracy:
62  *	EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with
63  *	1,166,000 random arguments on a VAX, the maximum observed error was
64  *	.872 ulps (units of the last place).
65  *
66  * Constants:
67  * The hexadecimal values are the intended ones for the following constants.
68  * The decimal values may be used, provided that the compiler will convert
69  * from decimal to binary accurately enough to produce the hexadecimal values
70  * shown.
71  */
72 
73 #if defined(vax)||defined(tahoe)	/* VAX D format */
74 #ifdef vax
75 #define _0x(A,B)	0x/**/A/**/B
76 #else	/* vax */
77 #define _0x(A,B)	0x/**/B/**/A
78 #endif	/* vax */
79 /* static double */
80 /* ln2hi  =  6.9314718055829871446E-1    , Hex  2^  0   *  .B17217F7D00000 */
81 /* ln2lo  =  1.6465949582897081279E-12   , Hex  2^-39   *  .E7BCD5E4F1D9CC */
82 /* lnhuge =  9.4961163736712506989E1     , Hex  2^  7   *  .BDEC1DA73E9010 */
83 /* invln2 =  1.4426950408889634148E0     ; Hex  2^  1   *  .B8AA3B295C17F1 */
84 static long     ln2hix[] = { _0x(7217,4031), _0x(0000,f7d0)};
85 static long     ln2lox[] = { _0x(bcd5,2ce7), _0x(d9cc,e4f1)};
86 static long    lnhugex[] = { _0x(ec1d,43bd), _0x(9010,a73e)};
87 static long    invln2x[] = { _0x(aa3b,40b8), _0x(17f1,295c)};
88 #define    ln2hi    (*(double*)ln2hix)
89 #define    ln2lo    (*(double*)ln2lox)
90 #define   lnhuge    (*(double*)lnhugex)
91 #define   invln2    (*(double*)invln2x)
92 #else	/* defined(vax)||defined(tahoe)	*/
93 static double
94 ln2hi  =  6.9314718036912381649E-1    , /*Hex  2^ -1   *  1.62E42FEE00000 */
95 ln2lo  =  1.9082149292705877000E-10   , /*Hex  2^-33   *  1.A39EF35793C76 */
96 lnhuge =  7.1602103751842355450E2     , /*Hex  2^  9   *  1.6602B15B7ECF2 */
97 invln2 =  1.4426950408889633870E0     ; /*Hex  2^  0   *  1.71547652B82FE */
98 #endif	/* defined(vax)||defined(tahoe)	*/
99 
100 double expm1(x)
101 double x;
102 {
103 	static double one=1.0, half=1.0/2.0;
104 	double scalb(), copysign(), exp__E(), z,hi,lo,c;
105 	int k,finite();
106 #if defined(vax)||defined(tahoe)
107 	static prec=56;
108 #else	/* defined(vax)||defined(tahoe) */
109 	static prec=53;
110 #endif	/* defined(vax)||defined(tahoe) */
111 #if !defined(vax)&&!defined(tahoe)
112 	if(x!=x) return(x);	/* x is NaN */
113 #endif	/* !defined(vax)&&!defined(tahoe) */
114 
115 	if( x <= lnhuge ) {
116 		if( x >= -40.0 ) {
117 
118 		    /* argument reduction : x - k*ln2 */
119 			k= invln2 *x+copysign(0.5,x);	/* k=NINT(x/ln2) */
120 			hi=x-k*ln2hi ;
121 			z=hi-(lo=k*ln2lo);
122 			c=(hi-z)-lo;
123 
124 			if(k==0) return(z+exp__E(z,c));
125 			if(k==1)
126 			    if(z< -0.25)
127 				{x=z+half;x +=exp__E(z,c); return(x+x);}
128 			    else
129 				{z+=exp__E(z,c); x=half+z; return(x+x);}
130 		    /* end of k=1 */
131 
132 			else {
133 			    if(k<=prec)
134 			      { x=one-scalb(one,-k); z += exp__E(z,c);}
135 			    else if(k<100)
136 			      { x = exp__E(z,c)-scalb(one,-k); x+=z; z=one;}
137 			    else
138 			      { x = exp__E(z,c)+z; z=one;}
139 
140 			    return (scalb(x+z,k));
141 			}
142 		}
143 		/* end of x > lnunfl */
144 
145 		else
146 		     /* expm1(-big#) rounded to -1 (inexact) */
147 		     if(finite(x))
148 			 { ln2hi+ln2lo; return(-one);}
149 
150 		     /* expm1(-INF) is -1 */
151 		     else return(-one);
152 	}
153 	/* end of x < lnhuge */
154 
155 	else
156 	/*  expm1(INF) is INF, expm1(+big#) overflows to INF */
157 	    return( finite(x) ?  scalb(one,5000) : x);
158 }
159